首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
pH及苯影响下生物质炭吸附毒莠定的行为   总被引:2,自引:2,他引:0  
生物质炭(Bio-char,BC)是生物质低温热解生成的含碳产物,近年来,在碳封存和土壤修复领域有着广泛的应用.进入土壤的黑碳会强烈改变疏水性有机污染物的吸附行为.采用恒温振荡平衡吸附法研究了生物质炭及硝酸氧化生物质炭(OBC)对非疏水的两性农药(毒莠定)的吸附行为,研究了在pH及苯污染共存影响下,毒莠定的吸附规律.结果表明:在不同平衡pH条件下,毒莠定的吸附能力表现为pH1.3> pH2.9> pH5.0,即低pH值条件有利于对毒莠定的吸附;硝酸改性使得BC的比表面积减少了53.7%,同时表面酸性基团有所增加(41.0%),碱性基团有所降低(69.2%),这导致生物质炭吸附能力显著下降;在苯污染物共存情况下,BC及OBC对毒莠定的吸附量均有所降低,且苯对BC较对OBC的影响更为显著.  相似文献   

2.
洗脱处理对生物质炭吸附铜离子行为的影响   总被引:1,自引:0,他引:1  
常用生物质炭制备方法会产生焦油、醋液和无机盐等热解副产物,这些物质附着在生物质炭表面,会影响对其性质和应用的研究。以四种溶剂(水、稀酸溶液、稀碱溶液、无水乙醇)作为洗脱剂,对生物质炭进行浸泡处理,比较洗脱前后的性质;用洗脱后的生物质炭吸附铜离子,探讨不同洗脱处理是否会对生物质炭吸附重金属离子的能力产生影响;分析不同洗脱处理得到上清液的成分,探讨洗脱处理去除的热解副产物组成;比较洗脱前后生物质炭的漫反射傅里叶变换红外光谱,分析洗脱处理对其表面官能团的影响。结果表明,四种洗脱处理均能不同程度地去除生物质炭表面附着的热解副产物,为使洗脱处理对生物质炭性质的影响较小,据此建议以醇-水处理和水洗处理作为生物质炭吸附铜离子研究的前处理方法。  相似文献   

3.
木屑和稻秆基生物质炭对汞的吸附特性比较   总被引:1,自引:0,他引:1  
在600℃热解条件下制得木屑和稻秆两种生物质炭,用于比较不同类型的生物质炭对水溶液中重金属Hg(Ⅱ)的吸附特性,通过分析溶液p H值、吸附剂投加量和吸附时间对吸附的影响,探讨了其吸附动力学行为和汞的去除机理。实验结果表明,溶液p H值为5时,两种生物质炭对溶液中Hg(Ⅱ)的去除效果最佳;等温线数据能较好地拟合Langmuir方程,假二阶动力学方程则能较好地描述吸附动力学过程,由粒子内扩散模型分析可知两种生物质炭的吸附过程均受内扩散和膜扩散共同控制。SEM-EDS分析结果表明,生物质炭对Hg(Ⅱ)的吸附机制涉及离子交换作用,同时还可能包括还原作用和生物质炭羟基与羧基与汞的络合作用。  相似文献   

4.
木薯渣基生物质炭对土壤中阿特拉津 吸附特性的影响   总被引:1,自引:0,他引:1  
以木薯渣为前驱物,采用持续升温限氧法制备了不同温度(350、550、750益)的生物质炭(BC350、BC550 和BC750),并对其结构和成分进行了表征。基于guideline106 批量平衡法,研究了生物质炭对砖红壤中阿特拉津吸 附行为的影响。结果表明,阿特拉津的吸附动力学是一个先快后慢的过程,生物质炭施用可缩短阿特拉津达到吸 附平衡的时间,施入量越多,达到饱和的时间越短。施入量相同条件下,最早到达平衡的处理是BC750,BC550 次 之,BC350 最后达到饱和。伪二级动力学方程能较好地描述生物质炭对砖红壤中阿特拉津的吸附动力学特性(R2> 0.864)。阿特拉津在生物质炭土壤中的吸附等温线表现为非线性,分配作用和表面吸附作用联合是主要机制。在土 壤中添加3%和5%BC750 的处理用Temkin 方程拟合最佳,其余处理均符合Langmuir 方程和Freundlich 方程。logKF 值随着生物质的量增加而逐渐增大。对于不同温度制备的生物质炭,logKF 的大小顺序表现为BC750>BC550> BC350,说明土壤中阿特拉津的吸附能力与生物质炭的热解温度有关。此外,阿特拉津的吸附-解吸过程存在明显 的滞后现象,滞后系数HI 均大于1,且表现为BC750>BC550>BC350。因此,土壤中阿特拉津的风险评价和修复需 考虑滞后现象。  相似文献   

5.
以OECD Guideline 106为基础,采用批量平衡法研究不同Ca~(2+)强度(0.01、0.03、0.05、0.08、0.1 mol·L-1)以及不同阳离子类型(0.01 mol·L-1KCl、ZnCl_2、CaCl_2、Al Cl3)对土霉素在3种菠萝皮渣生物质炭(BL350、BL500、BL650)中吸附的影响。结果表明,随着溶液中Ca~(2+)浓度的增加,土霉素在生物质炭中的吸附参数lg Kf逐渐减小趋于稳定,且lg Kf值与CaCl_2浓度之间呈显著负相关(P0.05)。与此同时,Ca~(2+)浓度的增加对低浓度土霉素溶液的吸附影响与高浓度时相比不明显。不同阳离子条件下,Freundlich和Langmuir模型均能较好地对吸附数据进行非线性拟合,平均R2分别是0.922 1、0.946 3。除了土霉素在BL650的Al Cl3介质中1/n接近1,吸附趋于线性外,其他介质条件下的吸附等温线均呈"L"型。4种阳离子对土霉素在3种生物质炭中吸附行为的影响存在较大差异,具体表现为K+与Al3+之间存在显著差异(P0.05),而Zn2+与K+、Al3+之间存在极显著差异(P0.01)。与其他阳离子相比,K+的存在显著降低溶液中土霉素在生物质炭上的吸附强度(1/n)。  相似文献   

6.
花生壳生物炭对硝态氮的吸附机制研究   总被引:6,自引:3,他引:6  
以花生壳为原料,300℃热解条件下制得生物炭。通过批量平衡吸附试验,结合吸附前后FTIR、XPS图谱表征分析探索硝态氮(NO-3-N)在生物炭表面的吸附机制。结果表明,生物炭对NO-3-N的吸附显著受溶液pH值影响,当pH6时有利于吸附的进行。随溶液初始NO-3-N浓度增加,生物炭对其吸附量逐渐增加,在初始浓度800 mg·L-1的吸附体系中,最大吸附量达40 mg·g-1,Freundlich方程可较好地拟合(R2=0.975)生物炭对NO-3-N等温吸附过程,吸附为非均一的多分子层吸附;生物炭对NO-3-N的吸附可在30 min达到平衡,伪二级动力学方程能够较好地描述吸附动力学过程,表明吸附以化学吸附为主。FTIR、XPS图谱分析表明,生物炭表面分布的羟基(-OH)、芳香环羰基(-C=O)及脂肪族醚类(-O-)等官能团参与了吸附过程,且与之相连的C原子结合能均增加。结合生物炭表面金属离子分布状况,综合分析认为,通过氢键形成和金属桥键作用是生物炭对NO-3-N吸附的主要机制。  相似文献   

7.
生物质炭施入土壤后能够降低土壤有机碳的矿化程度。将400 ℃热解制得的生物质炭分别用酸、碱、醇、水四种溶液进行清洗,尽可能减少生物质炭制备过程中产生的热解副产物对研究矿化行为的影响。用洗脱后的生物质炭与活性有机物质(葡萄糖、谷氨酸)在室温下恒温避光培养,以CO2释放量为指标,探讨不同洗脱方法对生物质炭与活性有机物质的矿化行为的影响。结果表明,短期培养110 d后,经过不同洗脱处理的生物质炭的矿化行为存在差异,生物质炭与活性有机物质共培养的CO2累积释放量均低于活性有机物质单独培养的处理,证明生物质炭对活性有机物质具有一定的保护作用。生物质炭与活性有机物质之间存在相互作用,这种相互作用受生物质炭表面性状、活性有机物质的浓度和种类的影响,并且在培养初期表现为相互促进矿化,培养一段时间后则表现为共稳定机制。  相似文献   

8.
不同原料生物炭对铵态氮的吸附性能研究   总被引:4,自引:3,他引:4  
为探讨不同原料生物炭对铵态氮吸附量及吸附机制,以花生壳、玉米秆、杨木屑和竹屑为原料,在500℃下充N_2保护热解制备生物炭,通过电镜扫面图(SEM)与傅立叶红外光谱图(FTIR)表征NH_4~+-N在生物炭表面的吸附特征,结合批量平衡吸附试验,对比研究不同原料生物炭对NH_4~+-N的吸附性能。结果表明:吸附后生物炭表面附着颗粒或粉末物质,孔隙被填充,表面变得较为平坦。四种生物炭表面分布的-OH、-C=O、-C-O,以及花生壳生物炭与玉米秆生物炭表面的-CH_3、-CH_2、-O-参与了吸附;Langmuir方程可以较好地拟合四种生物炭对NH_4~+-N的等温吸附;吸附均在50 min内达到平衡,伪二级动力学方程均可以较好地描述生物炭对NH_4~+-N的动力学吸附过程;在溶液pH=7.00条件下,初始浓度为800 mg·L~(-1)的体系中,四种生物炭对NH_4~+-N的最大吸附量为9.5~15 mg·g~(-1),吸附能力大小为花生壳生物炭玉米秆生物炭竹屑生物炭杨木屑生物炭。研究表明,生物炭表面含氧官能团对吸附NH_4~+-N起到决定性作用,吸附为单分子层吸附,且由快速反应所控制,四种生物炭中吸附性最好的是花生壳生物炭。  相似文献   

9.
在600 ℃和无氧条件下热裂解制备山核桃木、苔藓和松针三种生物质炭,用于研究三种生物质炭吸附阴离子型染料刚果红及阳离子型染料亚甲基蓝的pH效应、吸附等温线和吸附动力学效应。结果表明,碱性条件下三种生物质炭对亚甲基蓝表现出较好的吸附绩效,而酸性条件更利于三种生物质炭对刚果红的吸附。染料的初始浓度效应研究表明,生物质炭能有效吸附亚甲基蓝、刚果红,且吸附等温线能较好地符合Freundlich方程。三种生物质炭对刚果红吸附容量均比对亚甲基蓝吸附容量高。三种生物质炭对亚甲基蓝和刚果红的吸附主要发生在1 h内,然后缓慢增加,经6 h左右达到吸附平衡,吸附过程均符合伪二级动力学模型。颗粒内扩散模型拟合结果表明,颗粒内扩散阶段是限制吸附速率的主要阶段。  相似文献   

10.
采用室内培养试验法对添加生物质炭的茶园土壤水溶性氟吸附特性进行了研究。结果表明,茶园土壤随生物质炭添加量增加对水溶性氟的吸附量和吸附率均逐渐降低,应用等温吸附Langmuir方程、Freundlich方程和Temkin方程均能够较好地描述其吸附规律,其中以Freundlich方程拟合曲线最佳。随生物质炭添加量的增加土壤氟净吸附量逐渐降低。各处理土壤的氟吸附动力学过程包含吸附快反应和慢反应阶段,平衡时间小于120 min区间为吸附量快速上升期,平衡时间达到1 440 min后0.25%和0.50%生物质炭添加量处理土壤基本达到平衡状态。从双常数方程、Elovich方程和一级动力学方程拟合方程计算得到的理论吸附量与试验实测吸附量之间的符合程度较高,可准确描述添加生物质炭土壤对水溶性氟的吸附过程。添加生物质炭使土壤pH值升高与茶园土壤对水溶性氟最大吸附量、吸附强度和净吸附量的降低密切相关。  相似文献   

11.
为研究老化秸秆生物炭的性质及对水中诺氟沙星的吸附特性,本研究将新鲜生物炭进行自然老化、冻融循环老化和高温老化,通过元素分析、扫描电镜和红外光谱分析老化前后生物炭的组成和结构特性变化,研究老化生物炭对诺氟沙星的吸附机理以及pH、离子类型和离子浓度对吸附效果的影响。结果表明:不同老化方式均使生物炭的C元素含量降低,O元素含量显著增加,极性增加,芳香性降低,其中高温老化影响最大。高温老化使生物炭表面的—OH和C=C明显减少,冻融循环老化使—OH数量增加,自然老化对生物炭表面官能团影响较小。老化使生物炭表面破损、孔道塌陷,生物炭上的吸附点位被阻塞,不利于对诺氟沙星的吸附。老化前后生物炭对诺氟沙星的吸附更符合准二级动力学模型,等温吸附拟合发现,Langmuir模型能更好地拟合诺氟沙星在生物炭上的吸附过程。自然老化、冻融循环老化和高温老化分别使生物炭的吸附量降低了5.50%、7.70%、14.80%;在背景液pH 3.0~11.0范围内,老化前后生物炭对诺氟沙星的吸附量随pH增大先升高再降低,当pH为7.0时,吸附量达到最大值。阳离子价态越高,离子浓度越大,老化后生物炭对诺氟沙星的吸附量越小。研究表明,老化对生物炭的理化性质和吸附抗生素的能力均有影响,因此在使用生物炭去除目标污染物时需要考虑环境因素的影响。  相似文献   

12.
通过批吸附动力学、等温吸附试验,并结合X射线光电子能谱(XPS)技术和衰减全反射-傅里叶变换红外光谱(ATRFTIR),揭示不同pH下左氧氟沙星(LEV)在铁氧化物表面的吸附机制。结果表明:溶液pH对LEV在针铁矿表面的吸附影响较大,不同pH下,其吸附动力学更符合准二级动力学模型(R2>0.98)。在pH为4时,3 h左右达到吸附平衡,而在pH为8时,12 h达到吸附平衡,并且pH为4的吸附量约是pH为8的2倍。XPS和ATR-FTIR的结果一致表明,静电作用和化学吸附是其主要吸附机制,在低pH(pH为4)时,LEV在针铁矿表面主要以单核双齿形态被吸附,在高pH(pH为8)时,主要以双核双齿形态被吸附。在中间pH(pH为6)时,由于静电排斥作用,导致其吸附量最大。  相似文献   

13.
冻融循环对牦牛粪生物炭吸附氨氮的影响   总被引:1,自引:2,他引:1  
为了解冻融循环(模拟物理老化过程)对不同热解温度下的牦牛粪生物炭吸附氨氮的影响,通过吸附实验,考查牦牛粪生物炭老化前后对氨氮的吸附特性,并采用元素分析、扫描电镜、FTIR、BET-N2等方法分析牦牛粪生物炭的组成及表面结构特性,探讨冻融循环对牦牛粪生物炭吸附氨氮的影响机理。结果表明,牦牛粪生物炭老化前后对氨氮的吸附动力学模型符合准二级动力学,吸附等温模型较符合Freundlich模型。不同热解温度的牦牛粪生物炭对氨氮的吸附作用存在显著性差异,冻融循环作用对热解温度较高的牦牛粪生物炭影响较显著(C020 mg·L~(-1)),氨氮初始浓度为5 mg·L~(-1)时,老化后的生物炭PBC450和PBC600(热解温度分别为450℃和600℃)的吸附量比老化前分别显著提高13.1%、12.4%,去除效率分别为62.6%、55%。PBC450和PBC600的阳离子交换量和比表面积比老化前显著增加,阳离子交换量分别增加9.1%和75.7%,pH值、Zeta电位显著降低,其中阳离子交换量和比表面积是影响牦牛粪生物炭吸附氨氮的主要因素。  相似文献   

14.
为探索热解稻壳生物炭对尿素态氮的吸附特性,采用自制的无轴螺旋连续热解装置制备了热解温度分别为350、450、550℃和650℃的稻壳生物炭(RHB),研究了热解温度对RHB各项理化特性的影响规律,及其对水溶液中尿素态氮的吸附能力,并用吸附动力学模型和吸附等温线模型对尿素态氮的吸附过程进行拟合,结合吸附前后RHB的微观形貌特征,探讨了RHB对尿素态氮的吸附机制。结果表明,RHB的BET比表面积及孔容均随着热解温度的升高而逐渐增大,而平均孔径则逐渐减小;与热解温度为550℃和650℃制得的RHB相比,350、450℃制得的RHB保留了更多数量的酸性含氧有机官能团。650℃制得的RHB对尿素态氮的吸附能力更强(350℃和650℃RHB的平衡吸附量分别为30.59 mg·g~(-1)和33.16 mg·g~(-1)),等温吸附模型拟合及吸附动力学拟合结果表明,RHB对尿素态氮的吸附过程可用Langmuir-Freundlich模型和Elovich模型描述,其对尿素态氮的吸附同时受到物理吸附和化学吸附的作用。RHB对尿素态氮的吸附过程为尿素分子首先通过自由扩散运动穿透液膜表面抵达RHB颗粒表面,并与RHB表面的官能团吸附位点发生化学吸附反应,然后尿素分子从RHB颗粒外表面进入到内部的复杂多孔结构中并被"封锁"于孔隙内部,之后逐渐趋于动态平衡。不同热解温度制得的RHB的吸附机制表现为低热解温度RHB通过表面含氧官能团与尿素分子形成氢键发生化学吸附,而高热解温度制得的RHB通过形成更多的复杂孔隙结构与尿素分子发生物理吸附。  相似文献   

15.
为研究不同生物炭对酸性土壤镁吸附-解吸特性的影响,采集南方典型酸性缺镁土壤,开展等温吸附、动力吸附、解吸等试验进行探究.结果表明:随着平衡液浓度的增加,土壤镁的吸附量与解吸量增加.施用生物炭后,随生物炭添加量的增加,土壤镁吸附量降低;外源镁浓度不同时,生物炭对土壤镁吸附的影响不同,当外源镁浓度在60~200 mg·L-1时,少量生物炭添加促进土壤镁的吸附;施用生物炭后吸附分配系数Kd降低,与CK对照处理相比,添加生物炭的T1-0.5%、T2-1%、T3-2%、T4-4%处理土壤对镁的吸附分配系数Kd平均值分别降低0.08、0.98、2.98、6.08 kg·L-1;对试验结果进行拟合,发现Langmuir和Freundlich方程均能较好的拟合不同生物炭添加量后土壤镁吸附热力过程,且各处理拟合方程回归系数R2均为0.99.采用的土壤对镁吸附速率较快,在10 min左右便基本达到平衡;对试验结果进行准一级动力方程、准二级动力方程以及颗粒内扩散方程拟合,发现3种动力方程的拟合效果均不理想.当平衡液浓度大于20 mg·L-1后,相较于对照处理,添加生物炭促进了土壤镁的解吸;随着生物炭施用量的增加,土壤镁解吸量减少,一定量的生物炭添加能够提高镁的解吸率,解吸率大小总体表现为:T4>T1>T2>T3>CK;T4处理镁的平均解吸率最高为14.70%,其次为T1处理11.02%,CK对照处理的平均解吸率最低为10.52%.施用生物炭后,土壤镁的吸附能力受到一定的抑制,解吸能力提高,镁释放量增加,镁的吸附能力与释放能力都随生物炭添加量的增加而下降.  相似文献   

16.
分别以猪骨和木材为原料热解制备骨炭和木炭,研究其对抗生素诺氟沙星(NOR)的吸附规律。采用元素分析、BET-N_2、红外、XRD等方法对生物炭进行了表征,发现骨炭以羟基磷酸钙成分为主,含少量元素碳,其孔隙大、比表面积小(142.37 m~2·g~(-1));而木炭主要成分为元素碳,以微孔结构为主,比表面积大(460.64 m~2·g~(-1))。在pH=2~12的范围内,骨炭对NOR的吸附能力强于木炭。鉴于纯羟基磷酸钙(HAP)对NOR的吸附可忽略,因此可以认为,在骨炭吸附中,元素碳反而发挥了主导作用。进一步以氟甲喹(FLU)和1-苯基哌嗪(PHP)为探针化合物,探索了吸附机理。PHP含有和NOR相似的哌嗪基,而FLU含有和NOR相似的氧代喹啉羧酸。研究发现,PHP探针在骨炭上的吸附小于NOR,更小于FLU,表明NOR分子上的氧代喹啉羧基在吸附中扮演着重要角色。而木炭对大分子NOR的吸附要小于小分子的PHP和FLU,这可能归结为NOR有着更强的空间位阻。动力学实验表明,木炭吸附NOR达到平衡的时间要长于骨炭,也从侧面佐证了这一观点。  相似文献   

17.
Biochar(BC) derived from waste products is a cost-effective sorbent for remediation of metal-contaminated soils.We studied the kinetics and adsorption mechanisms for removal of metal ions,such as lead(Pb~(2+)) and cadmium(Cd~(2+)) with biochar.The adsorption capacities of BC for Pb~(2+) and Cd~(2+) increased after alkaline treatment.The highest sorption capacities were 175.53 and 68.08 mg g~(–1),for Pb and Cd,respectively.The Langmuir adsorption isotherm and pseudo second kinetic equation could well fit the adsorption processes,revealing that the sorption mechanisms of Pb~(2+) and Cd~(2+) by BC are complex and predominantly controlled by chemisorption.BC has a higher affinity for Pb than Cd,due to easy hydrolysis of Pb at low pH.Furthermore,precipitation as carbonate minerals(2PbCO_3·Pb(OH)_2 and CdCO_3) and complexation with functional groups(carboxyl and hydroxyl) were also important for adsorption of Pb and Cd by BC.  相似文献   

18.
两种秸秆生物炭对Cd的吸附特征研究   总被引:1,自引:0,他引:1  
为探究两种作物秸秆生物炭对废水中镉的吸附,利用系统的吸附试验,分析稻秸秆与麦秸秆在不同温度下热解制得的生物炭对废水中镉的吸附性能和作用机理.结果 显示,600℃热解得到的稻秸秆生物炭对镉的吸附效果最好,理论最大单层吸附量可达250mg·g-i,吸附动力学研究显示在60m in内可将溶液镉浓度由101.60mg·L-1降低至2.65 mg·L-1,去除率达到97.39%.600℃下制得的稻秸秆生物炭对镉污染废水的快速净化主要是通过生物炭表面的物理吸附和化学作用共同完成的.  相似文献   

19.
生物炭对噻虫胺在土壤中吸附和降解的影响   总被引:1,自引:1,他引:1  
为探究由不同热解温度和原材料制备的生物炭对噻虫胺在黑土中吸附和降解的影响,以玉米秸秆和猪粪为原材料,分别在300、500℃和700℃下限氧热解制备了六种生物炭,并将其添加到黑土中,研究生物炭对土壤理化性质与噻虫胺在土壤中吸附-降解的影响。结果表明:添加生物炭可显著提高土壤的pH、有效态磷和有机碳含量,降低土壤的H/C。噻虫胺在土壤及生物炭-土壤混合体系中的吸附过程符合Freundlich模型。添加生物炭显著提高了土壤对噻虫胺的吸附,且吸附量随生物炭热解温度的升高而增大。不同热解温度的生物炭对噻虫胺在土壤中降解的影响不同。高温生物炭-土壤混合体系的强吸附能力降低了噻虫胺被微生物降解的速率,但噻虫胺在低温生物炭-土壤混合体系中具有相对较高的微生物降解速率。因此,在利用生物炭修复农药污染土壤时应该充分考虑生物炭的类型和性质。  相似文献   

20.
【目的】探究金属离子改性生物炭对黑土氮素吸附和迁移特性的影响。【方法】以玉米秸秆为原材料,在450 ℃煅烧1.5 h条件下制备生物炭(BC),分别用KCl、ZnCl2、FeCl3溶液对其进行金属离子负载改性(分别命名为K-BC、Zn-BC和Fe-BC),并进行表征分析和氮素吸附试验,筛选出最佳改性生物炭;然后在黑土中添加质量分数0.3%的最佳改性生物炭(TB),以黑土作为对照(CK),探究这2个吸附体系的氮素吸附和迁移特性。【结果】Fe-BC对NO-3N和NH+4-N的吸附量分别为24 632.79和5 253.68 mg/kg,确定Fe-BC为最佳金属离子改性生物炭。Fe-BC的比表面积和平均孔径较BC提升了9.35和6.67倍。CK和TB在pH为3时对NO-3-N的吸附量最大,CK在pH为9时对NH+4-N的吸附量最大,TB在pH为5时对NH+4-N的吸附量最大。相较于准二级动力学方程,Elovich方程均能更好地描述CK、TB对NO-3-N和NH+4-N的吸附动力学特征;相较于Freundlich方程,Langmuir方程均能更好地描述CK、TB对NO-3-N和NH+4-N的吸附等温线;CK、TB对NO-3-N的吸附反应是自发、放热且无序的,对NH+4-N的吸附反应是自发、吸热且无序的。在氮素迁移试验中,TB对NO-3-N和NH+4-N的累积淋失量分别比CK减少53.19%和30.54%。【结论】黑土中添加Fe-BC可以有效增加对NO-3-N和NH+4-N的吸附量,降低黑土中NO-3-N和NH+4-N的淋失量,从而有效减少黑土中氮素的流失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号