首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen and sulfur play an important role in maize production. The aim of this study was to evaluate the effect of nitrogen (N) and sulfur (S) levels applied in various ratios on maize hybrid Babar yield at Peshawar in 2011 and 2013. Four N levels (120, 160, 200 and 240 kg N ha?1) and four S levels (20, 25, 30 and 35 kg S ha?1) were applied in three splits: a, at sowing; b, V8 stage; c, VT stage in ratios of 10:50:40, 20:50:30 and 30:50:20. Grains ear?1, thousand grain weight, grain yield ha?1 and soil pH were significantly affected by years (Y), N, S and their ratios, while no effect of N, S and their ratios was noted on ears plant?1. Maximum grains ear?1 (390), thousand grain weight (230.1 g) and grain yield (4119 kg ha?1) were recorded in 2013. N increased grains ear?1 (438), thousand grain weight (252 g) and grain yield (5001 kg ha?1) up to 200 kg N ha?1. Each increment of S increased grains ear?1 and other parameters up to 35 kg S ha?1, producing maximum grains ear?1 (430), thousand grain weight (245 g) and grain yield (4752 kg ha?1), while soil pH decreased from 8.06 to 7.95 with the application of 35 kg S ha?1. In the case of N and S ratios, more grains ear?1 (432), heavier thousand grains (246.7 g) and higher grain yield (4806 kg ha?1) were observed at 30:50:20 where 30% of N and S were applied at sowing, 50% at V8 and 20% at VT stage. It is concluded that 200 kg N ha?1 and 35 kg S ha?1 applied in the ratio of 30% at sowing, 50% at V8 and 20% at VT stage is recommended for obtaining a higher yield of maize hybrid Babar.  相似文献   

2.
Best nitrogen (N) management practices are most important for increasing maize (Zea mays L.) productivity and profitability in Northwest Pakistan. Field experiments were performed at the New Developmental Research Farm of NWFP Agricultural University, Peshawar during summer 2002 and 2003. Factorial experimental treatments were two plant densities (D1 = 60,000 and D2 = 100,000 plants ha?1) and three N rates (N1 = 60, N2 = 120 and N3 = 180 kg N ha?1) as main plots, and six split N applications in different proportions at different growth stages of maize (cv. ‘Azam’) in two equal, three equal, three unequal, four equal, five equal and five unequal splits at sowing and with first, second, third, and fourth irrigation at two week intervals as subplots. Application of the higher N rate (180 kg ha?1) with 4 to 5 splits significantly increased leaf, stem, ear, and total plant dry weight at silking and physiological maturity as well as grain yield plant?1 at both low and high plant densities. Variation in dry matter partitioning and grain yield in maize due to fluctuation in the rainfall data of the two years suggests zonal specific effective N management practices for sustainable maize production in different agro-ecological zones of Northwest Pakistan.  相似文献   

3.
Maize (Zea mays L.) growth and yield are most sensitive to variations in plant density and nitrogen (N) in north-western Pakistan. This study was conducted on the Agricultural Research Farm of NWFP (North West Frontier Province) Agricultural University, Peshawar, from 2002–2004 to establish an accurate plant density and N management system aimed at high yield of maize. The 2 × 3 × 6 factorial experiment was designed having two plant densities (P1 = 60,000 and P2 = 100,000 plants ha?1) and three nitrogen rates (N1 = 60, N2 = 120 and N3 = 180 kg N ha?1) applied to the main plots, while six split application for N in different proportions were applied to subplots at different growth stages of maize in two equal (S1), three equal (S2), three unequal (S3), four equal (S4), five equal (S5) and five unequal splits (S6) at sowing and with 1st, 2nd, 3rd and 4th irrigation at two-week intervals. Growth rate and yield increased with elevated dose and number of N split applications. Improved endurance to high stands allowed maize to intercept and use solar radiation more efficiently, contributing to the remarkable increase in the crop growth rate and yield.  相似文献   

4.
ABSTRACT

Phosphorus (P) fertilizer source and plant density are considered some of the most important factors affecting crop growth and yield. A field experiment was conducted to determine the impact of P source [zero-P control, DAP (diammonium phosphate), SSP (single super phosphate), and NP (nitrphos)] and plant density (D1 = 40,000, D2 = 60,000, D3 = 80,000, and D4 = 100,000 plants ha?1) on growth and yield of maize (Zea mays L cv. Azam) on a P-deficient soil (6.6 mg P kg?1) at New Developmental Agricultural Research Farm, North-West Frontier Province (NWFP) Agricultural University, Peshawar, Pakistan, during summer 2006 in wheat-maize cropping system. Physiological maturity was delayed, plant height was increased and leaf area was decreased significantly when maize was planted at highest (D4) than at lowest plant density (D1). Application of SSP resulted in earlier physiological maturity of maize than other P fertilizers. Grain and stover yield, harvest index, shelling percentage, thousand grain weight and grains ear?1 were maximized at D3 (80,000 plants ha?1) and with application of P fertilizer. Highest benefit in growth and grain yield was obtained with application of DAP to maize planted at D3. Application of DAP at D3 gave 15, 29, and 19% higher grain yield than its application at D1, D2, and D4, respectively. In conclusion, the findings suggest that growing maize at 80,000 plants ha?1 applied with DAP can maximize productivity of maize in the wheat-maize cropping system on P-deficient soils.  相似文献   

5.
On-farm research was conducted to investigate the effects of nitrogen (N) and compost (C) on yield and yield components of spring maize (Zea mays L.) under conventional and deep tillage system (T) at the research farm of the University of Agriculture, Peshawar, Pakistan, during spring 2013. The experiment was laid out in a randomized complete block design with split-plot arrangement, using three replications. Three compost levels (0, 1, and 2 t ha?1) and two tillage systems (conventional and deep tillage) were allotted to the main plot, whereas N levels (60, 90, 120, and 150 kg N ha?1) were allotted to subplots in the form of urea. Nitrogen and compost levels had significantly affected all the parameters. Plots treated with 150 kg N ha?1 increased ear length (31 cm), grains ear?1 (413), thousand-grain weight (240.2 g), grain yield (3097 kg ha?1), straw yield (9294 kg ha?1), harvest index (24.7 percent), and shelling percentage (81.7 percent). Compost applied at 2 t ha?1 increased ear length (32 cm), grains ear?1 (430), thousand-grain weight (242.3 g), grain yield (2974 kg ha?1), straw yield (8984 kg ha?1), harvest index (24.6 percent), and shelling percentage (83.2 percent). Tillage system had significant effect on all parameters except ear length and harvest index. Deep tillage system produced more grains ear?1 (365), thousand-grain weight (233.3 g), grain yield (2630 kg ha?1), straw yield (8549 kg ha?1), and shelling percentage (79.6 percent). It was concluded from the results that application of 120 kg N ha?1 + 2 C t ha?1 under a deep tillage system could improve spring maize yield and yield-contributing traits under semi-arid conditions.  相似文献   

6.
Field experiment was conducted to investigate the effects of BiozymeTM on soybean. Application of Biozyme granule and crop-plus spray with half of recommended nitrogen, phosphorus, and potassium (NPK) showed significant effects on all the growth and yield parameters of soybean. The greatest value for the number of trifoliate leaves (29.95 leaves plant?1), leaf area (1818.21 cm2 plant?1), leaf area index (5.946), total chlorophyll content (1.995 mg g?1 leaf fresh mass), number of nodules (35.086 plants?1), fresh and dry weight of nodules (0.664 and 0.1592 g plants?1), dry weight of root (8.564 g plants?1), pods plant?1 (69.0), seeds pods?1 (3.25), straw yield (3.122 t ha?1), biological yield (6.349 t ha?1), and grain yield (3.277 t ha?1) was observed with Biozyme crop-plus spray at 500 mL ha?1 plus half of recommended NPK and were significantly greater than control values. Biozyme crop-plus spray at 500 mL ha?1 plus half of recommended NPK performed better compared to other treatments.  相似文献   

7.
The dual-purpose use of Brassica cultivars means cutting or grazing the crop as fodder and then letting it to re-grow and produce grain with little or no yield penalty. A field experiment was conducted in randomized complete block design with split plot arrangement with three replications. Three Brassica cultivars, three nitrogen application timing, and cutting treatments were included in the experiment. The findings indicated that Brassica cultivar Abasin-95 produced higher fresh and dry fodder yields, seeds pod?1, seed, biological, and oil yields. However, NIFA Raya resulted in a higher number of pods and branches plant?1. Likewise, fresh and dry fodder yields were higher with nitrogen (N) application all at sowing. Nitrogen applied in two splits resulted in a higher number of pods plant?1 and grain yield. Cutting suppressed all parameters except 1000 grain weight. Uncut plots produced significantly higher branches plant?1, pods plant?1, seeds pod?1, seed, biological, and oil yields than cut plots.  相似文献   

8.
Field experiments were conducted to evaluate the effects of nitrogen (N) and sulfur (S) levels and their methods of application on canola. Branches plant?1, pods plant?1 and biological yield significantly increased with increase in nitrogen level and no significant increase in seed pod?1 and seed and oil yields occurred beyond 120 kg N ha?1. However, thousand seed weight consistently decreased with increasing level of nitrogen. Pods plant?1 and biological yield continually increased with increase in sulfur level. Alternatively, significant increase in branches plant?1, seed pod?1, seed weight, seed and oil yields was noted with increase in sulfur level up to 40 kg ha?1. Applications of sulfur and nitrogen in split significantly decreased seed yield as compared to sole applications. It is concluded that sulfur and nitrogen application as sole at the rate of 40 and 120 kg ha?1, respectively performed better than the rest of their levels and method of application.  相似文献   

9.
ABSTRACT

The feasibility of split (soil + foliar) applications of nitrogen (N) and phosphorus (P) and addition of a small quantity of sulfur (S) in the spray was tested for improving performance of rapeseed-mustard genotypes in a factorial randomized field experiment. Three genotypes (two erucic acid free, viz. Brassica napus L. cv. ‘Hyola PAC – 401’ and Brassica juncea L. Czern. and Coss. cv. ‘TERI (0E) M 21-Swarna’, and one best performing high yielding Brassica juncea L. cv. ‘Rohini’ as a check) were grown with four soil (B) plus foliar (F) applications of N, P, and S with uniform basal 30 kg potassium (K) ha? 1 (K30), viz. (i) the optimum soil-applied treatment supplemented with the spray of deionized water (BN90P30 + Fw) comprising control, (ii) BN70P30 + F N20, (iii) BN70P28 + FN20P2, and (iv) BN70P28 + FN20P2S2. Soil Plus foliar application of nutrients, particularly BN70P28 + FN20P2S2, improved their performance with respect to growth characteristics (shoot length plant? 1, leaf number plant? 1, area leaf? 1, leaf area index, fresh weight plant? 1, and dry weight plant? 1), physico-biochemical parameters (net photosynthetic rate, stomatal conductance, carboxylation efficiency, water use efficiency, carbonic anhydrase activity, leaf NPK content, and N use efficiency), yield attributes (pod number plant? 1, seed number pod? 1, 1000-seed weight, seed yield ha? 1, oil content, and oil yield ha? 1), and fatty acid composition in oil of these genotypes. The cultivar ‘Hyola PAC-401’ performed best particularly with BN70P28 + FN20P2S2. The improvement in the response of genotypes to the split application of nutrients may be attributed to their ready availability through foliar application.  相似文献   

10.
Abstract

Adequate plant nutrition is important to reduce costs and increase the crop yield. This study tried to verify the influence of Nitrogen (N) on plant biomass production and the yield of bell pepper grown in SLAB; quantify the N use efficiency (NUE), and to quantify the residual N concentration in the substrate after the end of the crop cycle. The experiment was carried out in a protected environment. Pepper seedlings were transplanted to SLAB bags containing 40?dm3 of substrate. The treatments consisted of six N rates (0, 1.5, 3.0, 4.5, 6.0, and 7.5?g plant?1) split into 10 fortnightly applications, in a randomized block design with four replications. The fruit yield was evaluated throughout the experiment and after the final harvest, the dry mass of leaves, stem, and root of the plant, the N content and accumulated, the residual nitrate and ammonium in the substrate, and the NUE were evaluated. The rate of 5.51?g plant?1 of N, corresponding to 355.5?kg ha?1, provided the maximum yield of commercial fruits of 1.57?kg plant?1 or 101.2 t ha?1. With increasing N rate, the residual nitrate concentration in the substrate increased and the NUE decreased.  相似文献   

11.
Abstract

A two-year field experiment was conducted to study PGP bacteria on growth and yield productivity of sesame. Factors were control, Nitroxin, Biophosphor, and an equal combination of biofertilizers along with sesame capsule type. 1000-seed weight and oil content increased in the second year, but, seed yield reduced (-12.6?g m2), which represented a negative relationship between seed weight and yield. The effect of year on No. of single and multi-cap node plant?1 was reversed. Seed yield, chlorophyll, protein, and N increased in the multi-cap seed, whereas, 1000-seed weight and seed weight plant?1 was decreased. Maximum yield and yield components were achieved in the second and first year, respectively, along with the multi-cap seed. Nitroxin, after the equal combination, was approximately showed the maximum enhancement of growth and yield productivity of sesame. The most seed yield (4261 k ha?1) was performed in the first year, combined biofertilizers and multi-cap seed, whereas, the highest oil content was gained in the second year and single-cap that it was due to the higher N and P use efficiency in the first year. No. of node plant?1 and capsule No. plant?1 showed the most correlation with the other parameters. Seed yield was correlated with No. of node plant?1 (r?=?0.925) and leaf dry weight (r?=?0.885). The N and P use efficiency had been higher in the first year, multi-cap, and equal combination. Nitrogen Use efficiency was higher compared to phosphorous. The uptake of N and P by sesame increased with the integrated application of different bacteria.  相似文献   

12.
The effect of source reduction on yield and yield components of three maize hybrids at three plant densities was studied under agro-climatic conditions in southern Iran. Field experiments were conducted at the research farm of the College of Agriculture, Shiraz University, Shiraz, Iran, located at Bajgah (52° 35′ N and 39° 4′ E, 1810 masl) during the 2008 and 2009 growing seasons. The treatments included three hybrids, three plant densities and defoliation, arranged in the main, subplots and sub-subplots, respectively. Defoliation treatments, which consisted of removing all the leaves from one side of the maize plants, were imposed when plants were at the silking stage. Silking was taken as the time when 50% of the plants in a row presented visible silks. Partial defoliations included control, and 50% defoliation at 25 and 35 days after silking (defoliation treatments were applied to all plants in each plot). The experiments were conducted in a randomized complete block (RCB) design with three replications. Dry matter accumulation was assessed by sampling ears at 7-day intervals from the mid-silking stage to black layer formation. Defoliation treatments decreased grain yields significantly in both years. The highest grain yield in 2008 (19 t ha?1) was obtained from hybrid Maxima ‘524’ and in 2009 (14 t ha?1) from hybrid 704 at 95,000 plants ha?1 density. Defoliation treatments decreased grain yields due to a reduction in the number of kernels per ear, as well as mean kernel weight. Some other measured parameters including stalk, shank, husk and cob dry weights, and cob and ear lengths were also decreased under defoliation treatments. If 50% of the photosynthetic area after silking was removed, the quantity of retransferred assimilates from stalk to kernel was increased. Finally, partial defoliation, 25 days after silking, reduced all the yield components more than any other treatments.  相似文献   

13.
Field experiments were conducted to investigate impact of nitrogen (N) rate and time (splits) on partial factor productivity (PFP) and agronomic N use efficiency (NUEA) of maize (Zea mays L.) at the New Developmental Research Farm of The University of Agriculture Peshawar-Pakistan, during two consecutive years in summer 2002 and 2003 under low and high plant densities. The 2 × 3 × 6 factorial experiment having two plant densities (D1 = 60,000 and D2 = 100,000 plants ha?1) and three N levels (N1 = 60, N2 = 120 and N3 = 180 kg N ha?1) as main plots, and six ways of N applications (viz. two equal, three equal, three unequal, four equal, five equal, and five unequal splits) as sub-plots. The results indicated that both PFP and NUEA of maize were highest at high than at low plant density. Both PFP and NUEA showed negative relationship with increase in N rate. The highest PFP and NUEA were obtained when N was applied in five equal splits but these results were comparable with treatments receiving N in four equal and five unequal splits. These results suggest that application of N in four or five splits under high plant density increasing both PFP and NUEA as well as grain yield of maize under calcareous soils in Northwest Pakistan.  相似文献   

14.
Abstract

Field experiments were conducted in 1992 on soils which have been classified as Alfisols ranging from Paleustalf to Oxic Paleustalf which represent three different ecological zones of West Africa. This research was conducted to determine the effect of density of planting on yield and yield components at 53,333, 66,666, and 79,999 plants‐ha‐1 and time of nitrogen (N) fertilizer application [50% at planting and 50% at four weeks after planting (4WAP), entire N application at two weeks after planting (2WAP), and 50% at planting and 50% at anthesis]. The experiment was a factorial arrangement fitted to randomized complete block design and replicated three times. The maize (Zea mays L.) varieties used in this study gave increased yields at population density up to 53,333 plants‐ha‐1 in Ikenne and Mokwa, while a response of 79,999 plants‐ha‐1 was obtained at Kaduna. The results also showed that a split application of N at planting and 4 WAP appeared to be the best for Ikenne, while the entire application at 2WAP appeared to be the best in savanna ecologies. The results indicate increase yield with increasing latitude suggesting that the higher solar radiation in the savanna ecologies increase the photosynthetic capacity of the maize plants used in the study. Maize genotypes used in this study did not respond to density beyond 53,333 plants‐ha‐1 at Ikenne and Mokwa, though a response was obtained up to 79,999 plants‐ha‐1 at Kaduna. Thus, it can be concluded that density response is location dependent and that farmers should plant maize at highest optimum plant population density as determined by experimental results in each ecological zone of West Africa. The results also showed that a split application of N at planting and 4WAP appeared to be the best for Ikenne, while the entire N application at 2WAP appeared to be the best for the savanna ecologies.  相似文献   

15.
This study was designed to observe physiological indices of a spring maize response with the integration of beneficial microorganism, organic and inorganic nitrogen (N) fertilizer, and N levels. Field experiments were conducted in three replications during 2014 and 2015 at Agronomy Research Farm, the University of Agriculture Peshawar, Pakistan. Different beneficial microbes (BM) (with BM and without BM), organic (farm yard manure, FYM) and inorganic (ammonium nitrate) N ratios (0:100, 25:75, 50:50, 75:25, and 100:0), and nitrogen levels (N) (100, 150, and 200 kg ha?1). Beneficial microorganism, 50:50 ratio of organic and inorganic N, and 200 kg N ha?1 seem better in terms of improving SPAD value, plant height (cm), leaf rea (cm2), and leaf area index (LAI) of spring maize. Therefore, the application of BM, 50:50 ratio of organic and inorganic N, and 200 kg N ha?1 were recommended for enhancing crop physiology in agro-climatic condition for Peshawar, Pakistan.  相似文献   

16.
Spring-sown crops are expected to have a higher risk of drought during summer in the next decades in Central Europe due to expected climate change. Therefore, a two-year experiment was conducted under Pannonian growing conditions in Eastern Austria to investigate the effect of autumn- and spring-sowing of facultative wheat. Autumn-sowing of facultative wheat enhanced crop development, soil coverage, crop stand height, crop growth rate, and nitrogen (N) utilization efficiency during the vegetation period compared to spring-sowing; duration of growth stages was prolonged and crops were earlier ripe. In contrast, spring-sowing resulted in higher relative growth rates, higher N concentrations of aboveground dry matter, higher relative N uptake rates, and more mineral N in the soil. At harvest, grain yield and yield components ears m?2 and thousand kernel weight (TKW) were higher in autumn-sown than in spring-sown wheat, resulting thereby in an increased seed yield. Spring-sown wheat had higher N concentrations in grain and in straw. Anyhow, N yield was slightly higher with autumn-sowing due to the higher grain and straw yields. Grain and straw yield, plant stand height, ears m?2, and TKW were impaired in the second experimental year by a severe drought for both sowing dates as well as N concentrations and N yields of grain and straw, partial factor N use efficiency and N utilization efficiency. But the yield components harvest index, grains m?2, and grains ear?1 were strongly impaired with spring-sowing under drought conditions. Thus, autumn-sowing of wheat resulted in higher yield stability across both years, based on these yield components highlighting possible benefits of autumn-sowing with expected summer drought under climate change.  相似文献   

17.
ABSTRACT

We studied the effect of integrated nutrient management (INM) combinations on supplement of plant nutrient for quantitative and qualitative fruit production in sapota. Thus, 17 combinations of INM practices were evaluated on fruit yield of sapota and nutrient availability in a Vertisol of Chambal region, India. The results demonstrated that almost all treatment combinations comprised of recommended dose of fertilizer (RDF), i.e. 1,000:500:500 g NPK plant?1 with application of organic and inorganic sources of nutrients had a significant effect on the fruit yield of sapota, soil microbial biomass, NPK content of leaf, fruit and soil over control (T1). Among different treatments, application of 2/3rd part of RDF + 50 kg FYM + 250 g Azospirillum + 250 g Azotobacter plant?1 (T11) significantly enhanced the number of fruits plant?1 (327.88), yield plant?1 (29.03 kg) and yield ha?1 (4.52 t). However, the soil microbial count of fungi (8.89 cfu g?1 soil), bacteria (11.19 cfu g?1 soil) and actinomycetes (5.60 cfu g?1 soil) at fruit harvest was higher under the 2/3 of RDF +10 kg vermicompost + 250 g Azospirillum + 250 g Azotobacter plant?1 (T15). The leaf nitrogen content (N, 2.03%) was higher in T15, while phosphorus (P, 0.28%) and potassium (K, 1.80%) content were higher in T11. It is evident that treatment T11 increased fruit yield by 32% in Sapota cv. Kalipatti compared to control. Therefore, combined application of nutrient sources proved not only beneficial for enhancing fruit yield of sapota but also sustaining soil health in Chambal region of south-eastern Rajasthan.  相似文献   

18.
A field experiment has been conducted to determine the effects of different irrigation water and AMF (Arbuscular Mycorrhizal Fungi) biofertilizer, photosynthesis activator and traditional fertilizer dry bean (Phaseolus vulgaris L.) on yield and growth parameters in Nevsehir Province of Turkey in 2015. The experiment has been carried out using three replications in a split plot design with three different irrigation types as main plots and AMF biofertilizer (ERS), photosynthesis activator (Multigreen-Mg), traditional fertilization (TF-Control), ERS + Mg, ERS + TF and TF + Mg applied as subplots. The number of pods per plant, the length of pods, the number of grains per pod, the weight of grains per plant, the yield of grains, 1000 seed weight, the number of grains per plant, protein yield, arbuscular mycorrhizal fungi rate have been evaluated as yield and growth criteria in the study. In the experiment, as well as the treatment x irrigation interaction, the plant height, pod number per plant, pod lenght, grain number per pod, grain weight per plant, grain yield, 1000 seed weight, grain number per plant, protein rate/grain, protein yield, root weight and AMF colonization parameters, were the other studied properties that were found to be significant. The results obtained were 877.6 mm for I100 irrigation treatment, 512.2 mm for I50 irrigation treatment and 40.19 mm water for I30 irrigation treatment. Regarding the growth parameters of dry bean, the highest PH was in ERS + Mg (67.66 cm), the lowest PH was in ERS (54.33 cm); In I50, the highest Plant Height (PH) was in ERS + Mg (65.66 cm), the lowest PH was in TF-Control (53.00 cm); and in I30, the highest PH was in TF-Control (50.66 cm), and the lowest PH was again in ERS + Mg (44.33 cm). For protein yield (PY) value, ERS + Mg, ERS + TF, TF + Mg have been placed in the same group, in I100 and I50 irrigation treatment. The highest value was ERS + TF (34.90 kg da?1) in I100, The lowest value was TF-control (19.90 kg da?1) in I30 irrigation treatment. In terms of mycorrhiza colonization ratio, ERS has been ranked first in all irrigation treatments, while the highest mycorrhiza colonization has been observed in I30 irrigation treatment (26.30%). ERS was followed by ERS + Mg (23.33%). As expected, the lowest mycorrhiza colonization ratio in all irrigation treatments have been observed in TF-control treatment, while the highest mycorrhiza colonization ratio has been respectively observed in I30 and I50 irrigation topics. The highest root weight (RW) in I100 irrigation treatment was observed in ERS (15.06 g plant?1) and it was observed in ERS (19.05 g plant?1; 26.30 g plant?1) in I50 and I30 irrigation treatments. The lowest RW in all irrigation treatments has been observed in TF + Mg (4.43 g plant?1, 6.40 g plant?1, 10.26 g plant?1), respectively.  相似文献   

19.
Abstract

Available soil mineral nitrogen (N) varies both temporally and spatially. These variations affect field‐scale N‐use efficiency. A field study was conducted for three years to investigate spatial variability in available soil mineral N within uniform research plots in relation to leaf greenness or chlorophyll content (plant N sufficiency) and yield. Variations within the plot in available soil mineral N sampled at the 6‐ligule stage was related to N fertility: the higher the fertilizer N levels, the higher the variability. The standard deviation for the 200 kg N ha‐1 treatment was up to five times higher than the unfertilized control treatment. The nitrate (NO3)‐N accounted for 70 to 80% of soil mineral N in fertilized plots compared to 50 to 60% in unfertilized control plots. The variability in grain yield of individual maize (Zea mays L.) plants within a plot was inversely related to soil N fertility: the higher the fertilizer N levels, the lower the yield variability (at 100 or 200 kg N ha‐1, yield ranged from 97 to 148 g plant1, or 10% CV within ayear compared to ranges from 0 to 82, or 50% CV in the same year at 0 kg N ha‐1). On an individual plant basis, chlorophyll content from the 6‐ligule stage through the growing season generally showed much smaller CV's, but had a similar trend to variations in yield. Leaf greenness from 6‐ligule stage to silking was significantly correlated with harvest yield (r>0.60, P<0.01), and both also correlated with available soil mineral N, though to a lesser degree (r>0.36). The number of fully expanded leaves prior to silking differentiated N treatments better than did single leaf chlorophyll measurements with higher yields associated with more rapid vegetative development. Our data suggest that multiple core samples are required to estimate available soil mineral N, particularly in fertilized plots that have greater spatial variability. Variability of plant‐based measures, such as chlorophyll content, could be used as an indicator of relative plant N sufficiency at early growth stages as spatial variability declined with higher soil N fertility.  相似文献   

20.
Abstract

Nitrogen (N) and potassium (K) fertility management of maize (Zea mays L.) in the humid subtropical Mississippi Delta may differ from a temperate climate because of its use in rotation with cotton (Gossypium hirsutum L.), soil temperatures rarely falling to 0°C, and heavy winter rains that facilitate nutrient losses. An experiment to determine the [N] (concentration=[ ]), phosphorus [P], [K], calcium [Ca], magnesium [Mg], iron [Fe], manganese [Mn], zinc [Zn], and copper [Cu] and their total contents plant?1 of maize grown in rotation with cotton, using N fertility levels of (134, 179, 224, 269, and 314 kg N ha?1) in combination with K fertility levels of (0, 45, 90, and 134 kg K ha?1) was conducted in 2000 and 2001 at Tribbett, MS. Ear leaves, immature ears, and husks collected at growth stage R2 and grain and stover collected 21 days after R6 were dried, weighed, and analyzed for nutrient concentration. Plots were also harvested for yield, kernel weight, grain bulk density, and harvest index (HI). Increased [N] values of about 1.3 mg g?1 occurred in all organs except the stover between 134 and 314 kg N ha?1 N fertility. Stover [N] increased approximately 3.0 mg g?1 within the same N fertility range. Total N content of ear leaves, grain, and stover increased by about 11.0, 550.0, and 730.0 mg plant?1, respectively, with N fertility increased from 134 to 314 kg N ha?1. Yields, kernel weights, grain bulk densities, and harvest indices also increased with added N fertility. Several micronutrient concentrations and contents increased as N fertility increased. Increased K fertility had only limited influence on concentrations of most nutrient elements. The nutrient contents of most elements in the stover increased with added K fertility compared with plots that received no supplemental K fertilizer. These data showed between 139 and 265 kg N ha?1 was permanently removed by grain harvest and suggest that N fertility recommendations for the Mississippi Delta may be low for maize yield goals above 10 Mg ha?1. Added K fertilizer has minimal benefit to maize when soil test levels are adequate but are important to succeeding cotton crops where K uptake during fruiting can exceed the soil's ability to release K for uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号