首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The source of nitrogen (N) used in soil fertility practices affects plant growth, nutrient absorption, and the availability of nutrients. Consequently, the potential of plants to extract zinc (Zn) from soils may be increased by controlling the ratio of NH4 + to NO3 ? to maximize growth and Zn accumulation. The objectives of this research were to determine the effects of Zn supply and different molar ratios of NH4 + to NO3 ? on growth and Zn accumulation in Indian mustard (Brassica juncea Czern.). In a factorial experiment with solution culture, Indian mustard (accession 182921) was supplied with two concentrations of Zn (0.05 and 4.0 mg L?1) in combination with six N treatments with different molar percentage ratios of NH4 + to NO3 ? (0:100, 10:90, 20:80, 30:70, 40:60, and 50:50) for three weeks. Zinc supplied at 0.05 mg Zn L?1 represented a common concentration of Zn in solution culture, whereas 4.0 mg Zn L?1 was excessive for plant nutrition. If the supply of Zn in solution was excessive, plants developed symptoms of foliar chlorosis, which became severe if plants were supplied with 80% of N as NO3 ?. Supplying high proportions of NO3 ? in the nutrient medium stimulated Zn accumulation, whereas increasing proportions of NH4 + (up to 50% of the total N) enhanced shoot growth. The pH of nutrient solutions generally decreased with increasing proportion of NH4 + in solutions and with increased Zn supply. The Zn phytoextraction potential of Indian mustard was maximized, at about 15 mg Zn plant?1, if plants received 10% of the total N as NH4 + and 90% as NO3 ?.  相似文献   

2.
ABSTRACT

The ability to tolerate and accumulate arsenic (As) and cadmium (Cd) was compared between Brassica juncea (Indian mustard) and Crambe abyssinica (Hochst.) (Crambe or Abyssinian mustard). Plants were grown hydroponically and treated with 70 μM sodium arsenate or 50 μ M cadmium chloride for two weeks. When nutrients were omitted during the As treatment, leaves of C. abyssinica accumulated an average of 140 mg As kg?1, compared with 34 mg kg?1 for B. juncea. When quarter-strength Hoagland's nutrient solution was provided during As treatment, leaves of C. abyssinica accumulated an average of 270 mg As kg?1, compared with 13 mg kg?1 for B. juncea. Cadmium accumulation on a dry-weight basis was approximately two times greater in shoots of B. juncea. Shoot biomass production in the presence or absence of metals was greatest for C. abyssinica. Because of its larger biomass and more efficient accumulation of As, C. abyssinica should be considered for use in phytoremediation research.  相似文献   

3.
Abstract

This experiment evaluated the capacity of two species, Indian mustard (Brassica juncea Czern.) and tall fescue (Festuca arundinacea Schreb.) to extract zinc (Zn) from soils. Also, this experiment focused on using nitrogen (N) fertilizers to increase the phytoextraction of Zn. Two soils of the Hadley series (Typic Udifluvents) were studied. A treatment array of Zn concentrations in soils was supplied as zinc sulfate. Nitrogen was supplied at 200 mg N/kg of soil as calcium nitrate, urea, or compost. Two successive plantings of Indian mustard in the same media were grown until flowering and harvested. Fescue was grown from seeding to a height of 15 cm, harvested, grown again in the same media to a height of 15 cm, and harvested again. After the second harvests of Indian mustard and fescue, soil samples were taken for analysis of extracts with water and with Morgan's solution. Indian mustard was grown with Zn additions ranging from 0 to 100 mg/kg soil. The shoot mass of Indian mustard in both harvests increased to a soil‐Zn level of 25 mg/kg and then decreased. Although growth decreased as the soil‐Zn levels increased beyond 25 mg/kg, Zn concentration and total accumulation increased linearly as the soil‐Zn levels increased. Zinc concentration and accumulation in Indian mustard were highest in soils amended with urea and were lowest in soils with no fertilizer. Fescue was grown with Zn additions ranging from 0 to 1000 mg/kg soil. The shoot mass of fescue increased to a soil‐Zn level of 125 mg/kg (harvest 1) or 250 mg/kg (harvest 2) and then decreased as the soil‐Zn levels increased. Concentration and accumulation of Zn in fescue increased linearly as the soil‐Zn levels increased. Zinc concentration and accumulation were highest in fescue grown in soils amended with urea and lowest in soils with no fertilizer. The highest accumulation of Zn in fescue (3800 mg/pot) occurred at 1000 mg Zn/kg soil. Highest concentrations of soil Zn were extracted with Morgan's solution or water from soils amended with urea, regardless of the species grown in the soils. Lowest concentrations of Zn were extracted from soils with no fertilizer added, regardless of extract or species. In general, if fertilizers (calcium nitrate, urea, or compost) were added to the soils, the pH decreased. Fescue was easy to grow, tolerated much higher soil‐Zn levels than Indian mustard in this research, and could be a species useful for phytoextraction of Zn.  相似文献   

4.
ABSTRACT

Indian mustard (Brassica juncea Czern) is a promising species for the phytoextraction of zinc (Zn), but the effectiveness of this plant can be limited by iron (Fe) deficiency under Zn-contaminated conditions. Our objectives were to determine the effects of root-applied Fe and Zn on plant growth, accumulation of Zn in plant tissues, and development of nutrient deficiencies for B. juncea. In the experiment, B. juncea was supplied 6 levels of iron ethylenediamine dihydroxyphenylacetic acid (Fe-EDDHA; 0.625 to 10.0 mg L?1) and two levels of Zn (2.0 and 4.0 mg L?1) for 3 weeks in a solution-culture experiment. Nutrient solution pH decreased with decreasing supply of Fe and increasing supply of Zn in solution, indicating that B. juncea may be an Fe-efficient plant. If plants were supplied 2.0 mg Zn L?1, plant growth was stimulated by increases in Fe supply, but plant growth was not influenced by Fe treatments if plants were supplied 4.0 mg Zn L?1. Zinc concentration in roots and shoots was suppressed by increasing levels of Fe in solution. Leaf concentrations of Cu, Mn, and P were suppressed also as Fe supply in solutions increased. Iron additions to the nutrient solution were not effective at increasing the Zn-accumulation potential of B. juncea unless plants were supplied the higher level of Zn in solution culture. Even under these conditions, Fe additions were effective only if supplied at low levels in solution culture (1.25 mg Fe L?1). Results suggest that Fe fertility has limited potential for enhancing Zn phytoextraction by B. juncea, even if plants suffer a suppression in growth from Fe deficiency.  相似文献   

5.
Laboratory batch and greenhouse pot experiments were conducted to determine the extraction efficiency of ethylenediaminetetraacetic acid (EDTA) for solubilizing lead (Pb) and cadmium (Cd) and to explore the natural and chemically induced Pb and Cd phytoextraction efficiencies of spinach and mustard after EDTA application. The EDTA was applied at 0, 1.25, 2.5, and 5.0 mM kg?1 soil in three replicates. Addition of EDTA increased significantly the soluble fraction Pb and Cd over the control and maximum increases for Pb (1.42- and 1.96-fold) and Cd (1.45- and 1.38-fold) were observed with the addition of 5.0 mM EDTA kg?1 in Gujranwala and Pacca soils, respectively. Similarly, addition of EDTA increased significantly the Pb and Cd concentrations in the plant shoots, soil solution, bioconcentration factor, and phytoextraction rate. Mustard exhibited better results than spinach when extracting Pb and Cd from both contaminated soils.  相似文献   

6.
东南景天提取污染土壤中锌的潜力研究   总被引:6,自引:2,他引:6  
通过盆栽实验研究了两种生态型东南景天提取污染土壤中锌的能力,结果表明,超积累生态型东南景天具有很强的忍耐土壤中高浓度锌、铅和镉的能力,并能从土壤中吸收和转移大量锌到地上部,超积累生态型东南景天地上部的Zn含量为7062~9558mg/kg,非超积累生态型为256~407mg/kg,超积累生态型东南景天地上部的Zn总积累是非超积累生态型的4l~62倍。矿山土壤添加稻草后,促进了超积累生态型东南景天的生长,地上部生物量显著提高,且锌含量也明显增加。种植超积累生态型东南景天后土壤乙酸铵提取态锌有上升趋势,和种植前比较,在矿山土壤和污染土壤上分别增加了4.3%和9.4%,种植超积累生态型东南景天后土壤交换态锌和有机结合态锌明显增加,残渣态锌减少,而对非生态型,种植前后土壤中锌的化学形态没有什么变化。添加菜籽饼和稻草对两种土壤中Zn的化学形态转化均没有显著性影响,其原因有待进一步研究。这些研究结果表明,超积累生态型东南景天具有较强的修复锌污染土壤的潜力。  相似文献   

7.
A screen-house experiment was conducted to study cadmium (Cd) and lead (Pb) phytoextraction using mustard and fenugreek as test crops. Cadmium was applied at a rate of 20 mg kg?1 soil for both crops, and Pb was applied at 160 and 80 mg kg?1 soil for mustard and fenugreek, respectively. The disodium salt of ethylenediamine tetraacetic acid (EDTA) was applied at 0, 0.5, 1.0, and 1.5 g kg?1 soil. Dry-matter yield (DMY) of both crops decreased with increasing rates of EDTA application. Application of 1.5 g EDTA kg?1 soil caused 23% and 70% declines in DMY of mustard and fenugreek shoots, respectively, in the soils receiving 20 mg Cd kg?1 soil. Similarly, in soil with 160 mg Pb kg?1 soil, application of 1.5 g EDTA kg?1 resulted in 25.4% decrease in DMY of mustard shoot, whereas this decrease was 55.4% in fenugreek grown on a soil that had received 80 mg Pb kg?1 soil. The EDTA application increased the plant Cd and Pb concentrations as well as shoot/root ratios of these metals in both the crops. Application of 1.5 g kg?1 EDTA resulted in a 1.50-fold increase in Cd accumulation and a 3-fold increase in Pb accumulation by mustard compared to the control treatment. EDTA application caused mobilization of Cd and Pb from carbonate, manganese oxide, and amorphous iron oxide fractions, which was evident from decrease in these fractions in the presence of EDTA as compared to the control treatment (no EDTA).  相似文献   

8.
杨卓  陈婧  李博文 《农业环境保护》2011,(12):2428-2433
通过盆栽试验研究了印度芥菜对土壤Cd污染的耐性及其生理生化特性响应。结果表明,印度芥菜对Cd胁迫表现了较强的耐性,在Cd添加量为0~200mg·kg-1的情况下,印度芥菜能够顺利发芽、生长,其生物量出现了先增后降的"抛物线型"变化规律,Cd主要影响其生殖生长,大量的Cd使印度芥菜延迟进入生育期。植株体内Cd浓度随土壤Cd浓度增加而升高,地上部可达7.824~102.672mg·kg-1,地下部可达0.374~191.910mg·kg-1。地上部富集系数呈逐渐降低的趋势,而地下部富集系数呈逐渐升高的趋势。转移系数为20.920~0.535,呈逐渐降低趋势。随着土壤Cd胁迫浓度的增加,印度芥菜3种酶活性均呈先增后降的"抛物线型"变化趋势,并且出现抗性酶活性高峰所对应的土壤Cd浓度相同,均为120mg·kg-1,在Cd高浓度水平下酶活性普遍受到抑制,在最高浓度处理时的酶活性均明显低于对照。根区土壤中微生物数量为细菌〉放线菌〉霉菌,随着Cd添加量的增加,土体内微生物的数量也增加,但当Cd添加量〉160mg·kg-1时,微生物数量下降。  相似文献   

9.
微生物对土壤Cd Pb和Zn生物有效性的影响研究   总被引:1,自引:0,他引:1  
采用土壤盆栽模拟试验方法,研究了接种不同微生物对重金属富集植物——印度芥菜修复土壤中Cd、Pb、Zn的作用效果。结果表明,接入菌株JA27、JC55、JC40不仅显著促进植物的生长,提高印度芥菜的生物量,降低了土壤pH,并且对土壤Cd、Pb、Zn产生活化作用,使土壤Cd、Pb、Zn有效态含量显著增加,增强印度芥菜对土壤Cd、Pb、Zn吸收量,显著提高了富集植物的修复效果。以上3个处理使印度芥菜地上部Cd、Pb、Zn吸收量分别提高了117%~137%、37%~62%、9%~15.1%。接种JB37对土壤Cd、Pb、Zn产生钝化作用,并且抑制印度芥菜对土壤Cd、Pb、Zn的吸收。JB37处理印度芥菜地上部Pb、Zn吸收量分别降低了72.5%、27%,对Cd吸收量无显著影响。  相似文献   

10.
The soil areas affected by salts have increased in recent years. Searching intensively for management and recovery strategies should help minimize these problems. Studies related to the response of halophytes to fertilization can provide important information regarding the most adequate management for phytoremediation. The aim of this study was to evaluate dry matter production and sodium extraction capacity of atriplex plants, in response to nitrogen doses, with and without phosphorus application. The experiment was carried out in a greenhouse at the Federal Rural University of Pernambuco (UFRPE), in Recife, Pernambuco, Brazil and was set up in a randomized block design, with four replicates, in a 2 × 5 factorial scheme (0 and 134 mg dm?3 of P and 0, 20, 40, 60, and 80 mg dm?3 of N). The addition of nitrogen (N) and improved sodium (Na) uptake increased Na contents by 4.1, 3.6, and 1.8 times, for P0, and by 4.0, 8.4, and 2.1, for P134, in leaves, stems, and roots, respectively. There was a decrease in Na both in the saturation-paste extract and in the exchange complex with the increase in N in soil. N supply potentiates Na extraction by Atriplex nummularia, being a feasible technique to recover saline soils through phytoremediation.  相似文献   

11.
A study was carried out for the phytoextraction of metals by S. munja with the interventions of growth-promoting bacteria isolated from fly ash (FA). It was observed that when a consortium of Bacillus endophyticus NBRFT4, Paenibacillus macerans NBRFT5, and Bacillus pumilus NBRFT9 was inoculated in the rhizospheric zone of S. munja, it not only enhanced metal uptake through mobilization but also promoted the plant growth. A combined effect of both factors accelerated the phytoextraction of nickel (Ni), zinc (Zn), and iron (Fe) by two- or three-fold. Plant growth and metal bioavailability both were promoted by the synthesis of siderophore (ACC), indole acetic acid (IAA), gibberellic acid, and cytokinins by bacteria. In addition, bacteria might also change the speciation of metals to make it more water soluble for plant uptake. Hence, a microbe-based phytoextraction of metals from contaminated sites may be recommended for use as an environmentally sound technology in place of conventional methods.  相似文献   

12.
通过温室土培和砂培盆栽对比试验,研究了外源Cd、Pb、Zn复合污染对印度芥菜富集重金属的效果。结果表明,印度芥菜Cd、Pb和Zn的富集量分别与土培和砂培Cd、Pb、Zn的添加量呈极显著正相关。砂培印度芥菜Cd、Pb和Zn的富集量分别远大于土培,前者印度芥菜地上部Cd、Pb、Zn的最高富集量分别达311.3,248.0,2760mg/kg,分别为土培的10.4,12.9,4.67倍;砂培条件下印度芥菜地上部Cd、Pb、Zn的提取量均大于土培,分别为土培的1.29~8.96倍、1.02~8.58倍和1.68~5.62倍;印度芥菜Cd、Pb、Zn的富集系数砂培较土培明显增大,其中富集系数的变化为CdZnPb,对Pb的富集系数除个别处理外均小于1,说明印度芥菜对Cd、Zn具有很强的富集能力,对Pb的富集能力较弱。研究表明,土培条件下Cd、Pb、Zn的生物有效性较低,直接制约着印度芥菜对土壤重金属污染的修复效果。  相似文献   

13.
In China, great efforts are being made to remediate farmlands polluted by heavy metals. In this study, a soil pot experiment was conducted to examine the effects of a new-type cleaning agent, methylglycinediacetic acid(MGDA), and a plant growth regulator(PGR), diethl aminoethyl hexanoate(DA-6), on plant growth and extraction and detoxification of cadmium(Cd) by ryegrass. The results showed that foliar spray of DA-6 alone improved plant growth, with root length and shoot dry biomass increased by 38.5%–58.6% and 71.1%–89.3%, respectively, whereas addition of MGDA alone decreased root length and shoot dry biomass by 10.3%–18.6%and 9.1%–21.8%, respectively. Diethl aminoethyl hexanoate promoted the binding of Cd to cell walls and thus alleviated the toxicity of Cd and/or MGDA to plants. Applications of DA-6 and/or MGDA resulted in a significant increase in Cd extraction efficiency(P 0.05), and the efficiency decreased in the order of MGDA + DA-6 DA-6 MGDA. The treatment of MGDA + DA-6 achieved 2.2%, 1.7%, and 0.8% Cd extraction efficiency by ryegrass in soils spiked with 25, 50, 100 mg Cd kg~(-1), respectively. Therefore,treatment of MGDA + DA-6 could be an efficient method for enhancing phytoremediation of Cd-contaminated soil by ryegrass.  相似文献   

14.

Plant growth and mineral element accumulation in Brassica juncea var. crispifolia (crisped-leaf mustard) under exposure to lanthanum (La) and cadmium (Cd) were studied by employing a hydroponic experiment with a complete two-factorial design. Four levels of La (0.05–5.0 mg L?1) and two levels of Cd (1.0 and 10.0 mg L?1) were used in this experiment. Lanthanum did not improve plant growth in this experiment. Addition of La (≥ 1.0 mg L?1) or Cd (≥ 10 mg L?1) to the solution inhibited root elongation. Lanthanum treatments reduced accumulations of iron (Fe), manganese (Mn), and zinc (Zn) in roots, and Mn in shoots. Lanthanum at ≥ 1.0 mg L?1 limited the Cd translocation from roots to shoots and thus decreased the accumulation of Cd in shoots. Cadmium had no influence on La accumulations in roots, but inhibited the accumulation of La in shoots. The study results suggest that applications of rare earth elements in vegetables would be potentially risky to human health.  相似文献   

15.
To our knowledge there has been no research on Aeluropus littoralis as a halophyte plant, when grown in soil contaminated with cadmium (Cd). Hence, the ability of A. littoralis to take up Cd and some nutrients was investigated in a pot experiment. Five levels of soil Cd concentration were tested (15, 30, 60, 120 and 240 mg Cd kg?1 soil). Plants were harvested at three different times and analyzed for Cd, N, P, K, Mg, Mn, Cu, Fe and Zn concentrations. Plant biomass decreased as a result of excess Cd. Cadmium concentration in plant shoots increased with increasing Cd supply, significantly affecting the plant nutrient content. An excess Cd supply increased macronutrient and decreased micronutrient concentrations in the plant. Although, the research process will become more complicated, this new approach may help to investigate the tolerance of A. littoralis to Cd stress for use in phytoremediation.  相似文献   

16.
Leaf mustard (Brassica juncea Coss) is widely used for both fresh and processed markets in southern China. It contains high nutritional and medicinal compounds, which are important for maintaining optimum health. The objective of this study was to determine the influence of nitrogen (N) and sulfur (S) nutrition on total phenolics and antioxidant activity in two genotypes of leaf mustard (cvs. ‘Xuelihong’ and ‘Zhujie’). Plants were greenhouse-grown using nutrient solutions with two levels of nitrogen (10 and 25 mM) and three levels of sulfur (0.5, 1, and 2 mM). Total phenolic concentrations were considerably decreased by increasing nitrogen supply, whereas increased by increasing sulfur supply. Total phenolic concentrations in cv ‘Zhujie’ was higher than in cv ‘Xuelihong’. Three assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, β -carotene bleaching (BCB), and ferric reducing antioxidant power (FRAP) were used to evaluate antioxidant activity. Increasing nitrogen supply reduced DPPH radical scavenging activity and FRAP value, but increased antioxidant activity using BCB assay. Increasing sulfur supply increased antioxidant activity with all three tests. The effects of genotype on DPPH radical scavenging activity and FRAP value were not significant, however, antioxidant activity using BCB assay was significantly higher in cv ‘Zhujie’ than in cv ‘Xuelihong’. A significantly positive correlation was found between DPPH radical scavenging activity and total phenolic concentrations in two genotypes, FRAP value and total phenolic concentrations in cv ‘Xuelihong’.  相似文献   

17.
The old mined ecotype (OME) was more tolerant to high zinc (Zn) and lead (Pb) levels than the nonmined ecotype (NME) of Sedum alfredii H. The greatest stem values of Zn and Pb of the OME at Zn/Pb of 2.0/0.1 mM reached 19.9 and 0.460 g kg?1 respectively, which was 15 times greater for Zn but similar for Pb as compared with the MNE. The greatest leaf values of Zn and Pb for the OME were about 67 and 400 times more than for the NME. At Zn/Pb level of 1.0/0.2 mM, the OME shoots achieved the maximum Zn and Pb accumulation. No antagonistic effect of Zn and Pb was noted in the OME grown below tolerable metal levels, and Zn addition could enhance Pb uptake by the roots. The extraordinary ability to tolerate and accumulate both Zn and Pb by the mined ecotype of Sedum alfredii H. could be valuable for phytoremediation of multimetal‐contaminated soils.  相似文献   

18.
19.
Phytoremediation is a remediation technique that involves the use of plants to extract, sequester, and/or detoxify pollutants through physical, chemical, and biological processes. The use of phytoremediation is expanding due to its cost-effectiveness compared with conventional methods. This study was conducted to investigate the effects of autumn and spring application of plant growth-promoting rhizobacteria (PGPR, 108 cfu mL?1 Bacillus megaterium var. phosphaticum sprayed at 250 mL plot?1) and phosphorus (P) fertilizer (0, 11, 22, 33, 44 kg P ha?1) on dry matter yield and heavy metal uptake by plants in soils contaminated with heavy metals. Field experiments were conducted using a randomized complete block design with four replications between 2004 and 2007. The results of the study indicated that P fertilization, but not PGPR application, significantly affected dry matter yield. Application of PGPR increased heavy metal availability in soils and the heavy metal uptake of meadow plants. The heavy metal content of the meadow plants resulting from PGPR application was 4–6 times higher for the spring application than the autumn application. Approximately 16, 30, 10, 10, and 3 growing seasons without PGPR are necessary to remove all lead (Pb), nickel (Ni), boron (B), manganese (Mn), and zinc (Zn), respectively, from polluted soil. The time required for Pb, Ni, B, Mn, and Zn removal could be further decreased to approximately 4, 6, 3, 3, and 1 growing seasons, respectively, with 33 kg phosphorus pentoxide (P2O5) ha?1 and 108 cfu mL?1 PGPR applications at rates of 250 mL plot?1 in the spring season.  相似文献   

20.
水生观赏植物对城市污水的修复研究   总被引:2,自引:0,他引:2  
将黄花鸢尾、石菖蒲、菖蒲、千屈菜、泽泻、玉带草6种水生观赏植物种植于模拟人工湿地系统中,对城市污水进行绿色修复研究。分别在第5天、第10天、第15天测定污水中总氮(TN)、总磷(TP)、化学需氧量(COD)、生化需氧量(BOD5)、重金属元素(Cr,Pb,Cd)的含量,研究水生观赏植物对城市污水的处理效果和修复能力。结果表明:各植物系统对TN,TP,COD,BOD5以及重金属Cr,Pb,Cd去除效率随时间的推移逐渐上升,至第15天去除效率分别达88.1%,95.9%,90.6%,86.7%,78.1%,83.2%,91.4%以上。各植物系统对各种污染物的去除效率呈现一定差异,处理时间的不同对植物的修复效果也存在一定影响。6种水生观赏植物中,综合净化能力以黄花鸢尾和石菖蒲最为突出,是值得推荐的城市污水修复植物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号