首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold kiwifruit (Actinidia chinensis Planch. var. chinensis ‘Hort16A’) is an important crop for New Zealand. In this trial, all nutrients, except nitrogen (N), were applied at levels comparable to commercial practice. The control treatment received approximately 145 kg N/ha/y, a conservative rate of N application for kiwifruit. The zero-N treatment vines received all nutrients except N, and the high-N treatment received double the control levels of N. Carbohydrate concentrations in the leaves, fruit and canes of zero-N and high-N vines were determined periodically through the season for two years. There were lower total sugar concentrations in the leaves of the zero-N vines however total carbohydrate concentration content was higher in the zero-N fruit. Vegetative vigor was reduced in the zero-N vines when compared to the high-N vines. By reducing N, the partitioning of carbon to fruit appears favored. This effect may be due to modified sink strength under reduced N.  相似文献   

2.
Field experiments were conducted during 1994–1995 in seven apple (Malus spp.) orchards located in the southwest of Finland (the mainland and the Åland Islands). The cultivars were ‘Transparente Blanche’, ‘Samo’, ‘Melba’, ‘Raike’, ‘Red Atlas’, ‘Åkerö’, ‘Aroma’, and ‘Lobo’. Leaf samples from branches bearing fruits (BF) and not‐bearing fruits (BNF) were collected two times during the growing seasons. Fruit samples were picked about one week before commercial maturity. Macronutrient concentrations in fruits and leaves, fruit diameter and juice pH, titratable acidity (TA) and soluble solids concentrations (SSC) were determined. Leaf nitrogen (N), phosphorus (P), and potassium (K) were higher, but calcium (Ca) and magnesium (Mg) were lower in BNF. Branch types (BF and BNF) were closely related in leaf N, P, and Ca, but not in leaf K and Mg at the first sampling time. Fruit N, P, K, and Mg were closely related to each other but not to fruit Ca. Mean fruit N and Ca and leaf P and Mg were low compared with the recommended levels. Relationships between fruit and leaf nutrient concentrations were found only in P and Mg. Fruit diameter increased and juice SSC decreased with increasing leaf N concentration. Fruit P declined with increasing fruit diameter and juice TA increased and SSC/TA decreased with increasing leaf P and Ca concentrations.  相似文献   

3.
The majority of the citriculture in Brazil is located in the state of São Paulo, with a total production area of 700,000 ha. Trees are grafted mostly on ‘Rangpur’ lime (RL; Citrus limonia Osbeck) rootstock. Despite its good horticultural performance, use of other rootstocks has increased with the search for disease-tolerant varieties to improve grove productivity and longevity. Furthermore, there is a lack of information on young tree response to fertilization, and optimal nutrient requirements of different scion/rootstock combinations for maximum fruit yield. A network of field experiments was conducted to study the differential response of young sweet orange trees on selected rootstocks to nitrogen (N), phosphorus (P), and potassium (K) fertilization. The application of soil and leaf analyses to develop optimal fertilizer recommendations was evaluated. Experiments were conducted in three locations using fractional factorial design of one-half (4 × 4 × 4) type with four rates of N, P, or K calculated to be applied for five years after tree planting. Fruit yield response was evaluated during the last two years and correlated with soil and leaf analyses data. The trees on RL rootstock demonstrated increased efficiency of nutrient use and fruit production compared with those on ‘Cleopatra’ mandarin (CL; C. reshni hort. ex Tanaka) or ‘Swingle’ citrumelo [SW; Poncirus trifoliata (L.) Raf. × C. × paradisi Macfad.] rootstocks. The trees on SW rootstock appeared to require greater N and K rates than those on RL rootstock. Phosphorus requirement was greater for ‘Natal’ or ‘Valencia’ trees on CL than on RL rootstock. These results will become the basis for revising current fertilizer recommendation guidelines for young trees in Brazil.  相似文献   

4.
During 1994–1995, field experiments were conducted in six apple orchards located in the southwest of Finland (the mainland and the Åland Islands). The cultivars were ‘Melba’, ‘Raike’, ‘Red Atlas’, ‘Lobo’, ‘Aroma’, and ‘Åkero’. Fruit samples were picked at about one week before commercial maturity and stored for three to six months at 2 to 4°C and 85–95% relative humidity. During storage the percentage of physiological disorders was visually recorded. Fruit nitrogen (N) and calcium (Ca), firmness, diameter, juice titratable acidity (TA), and soluble solids concentrations (SSC) were determined at harvest. Nitrogen and Ca in the soil and leaves collected during fruit development were determined. The ranges in fruit N were 296–624 and Ca 27–68 mg kg‐1 fresh weight, and in the leaves N 15–23 and Ca 9–19 g kg‐1 dry matter. The N/Ca ratio was 5 and 16 and 0.9 and 2.3 in fruit and leaves, respectively. There was more variation between years in N and Ca contents of leaves than that of fruit. Other fruit quality characteristics varied between seasons and cultivars. Leaf N correlated positively with fruit diameter and negatively with fruit dry matter. The incidence of physiological disorders on apples after three month storage was 2 to 13% and after six months 10 to 95%. Fruit with Ca content below 45 mg kg‐1 fresh weight were susceptible to bitter pit ('Aroma’ and ‘Åkero') and Jonathan spot ('Red Atlas'). The cultivar ‘Melba’ was susceptible to bruising damages and ‘Raike’ and ‘Red Atlas’ were affected more with internal breakdown and core browning.  相似文献   

5.
The pineapple cultivars ‘Moris’ (Queen cultivar), ‘N‐36’ (‘Sarawak’ × ‘Gandul’ hybrid), ‘Gandul’ (Singapore Spanish cultivars), and ‘Josapine’ (‘Singapore Spanish’ × ‘Smooth Cayenne’ hybrid) are mostly grown on peat soils in Malaysia, whereas ‘Sarawak’ (‘Smooth Cayenne’ cultivar) is more commonly grown on mineral soils. To obtain good yields of fruit of high quality, it is important to understand the differences in nutrient requirements for these cultivars in the different soils in which they are grown. Therefore, the objectives of the study were to determine the biomass and nutrient partitioning of the different pineapple cultivars and to determine the plant variables affecting fruit yield and quality. Plants of each of the pineapple cultivars were randomly sampled from different locations of the major pineapple‐growing areas in Malaysia. Only plants having A‐grade fruit of marketable quality at harvest were selected. The cultivars and respective field sites were as follows: ‘Sarawak,’ Bukit Tandak farm, Kelantan (5° 55.274′ N, 102° 00.608′ E); ‘Moris,’ ‘N‐36,’ and ‘Gandul,’ Peninsula Pineapple Plantations, Simpang Renggam, Johor (1° 49.909′ N, 103° 14.053′ E); and ‘Josapine,’ Goh Swee Eng Pineapple Farm, Simpang Renggam, Johor (1° 48.441′ N, 103° 11.935′ E). Plants were partitioned into roots, stem, leaves, peduncle, fruit, and crown, and fresh and dry weights were recorded. Total biomasses for the different cultivars were 733.46 ± 22.83 g for ‘Gandul,’ 842.34 ± 43.26 g for ‘N‐36,’ 927.38 ± 53.10 g for ‘Moris,’ 434.77 ± 16.82 g for ‘Josapine,’ and 2446.94 ± 156.00 g for ‘Sarawak.’ Leaves accounted for the greatest proportion of dry matter (48.5%), followed by fruit (22.9%) and stem (21.6%), and a smaller proportion (1.2–2.5%) was roots, peduncle, and crown. The proportions of the dry‐matter accumulation in leaves and stem for the cultivars were 53.5 ± 0.7 and 16.7 ± 0.9% for ‘Gandul’; 45.1 ± 0.5 and 17.7 ± 0.7% for ‘N‐36’; 51.9 ± 1.6 and 16.8 ± 0.6% for ‘Moris’; 56.5 ± 1.0 and 12.0 ± 0.9% for ‘Josapine’; and 54.2 ± 5.1 and 27.7 ± 4.4% for ‘Sarawak.’ The proportion of the macro‐ and micronutrients in pineapple parts differed widely between cultivars. Potassium (K) showed the greatest proportion (7.96 ± 0.6 to 29.73 ± 1.17%) in leaves and (4.46 ± 0.70 to 9.35 ± 0.28%) in fruit followed by nitrogen (N) and phosphorus (P) with lower proportions. Most pineapple cultivars grown showed variation in nutrient‐use efficiency (NUE) with respect to the elements measured with values of <1.0 g dry matter g?1 nutrient. The NUE values of >1.0 g dry matter g?1 nutrient were observed for magnesium (Mg) in ‘Gandul’ and ‘N‐36’ and for calcium (Ca) and copper (Cu) in ‘N‐36.’ Total nutrient accumulation in the plant components differed approximately according to their cultivar origins (‘Smooth Cayenne,’ ‘Queen,’ ‘Singapore Spanish’). It is interesting that the results for the ‘Singapore Spanish’ × ‘Smooth Cayenne’ hybrid Josapine were more similar to the ‘Singapore Spanish’ cultivars than being between the parents. Partitioning of biomass and nutrients in pineapple provides a means to categorize them and makes it possible to use a cultivar‐based fertilization program.  相似文献   

6.
The objective of the study is to investigate the role of calcium (Ca) and boron (B) synergy in higher maintenance of Ca in fruit buds during senescence. To study the hypothesis, an experiment was conducted for two years in two ‘Starking Delicious’ apple (Malus domastica Borkh.) orchards established on seedling rootstocks in Banaz, Usak, Turkey. Treatments composed of postharvest foliar sprays of Ca at rate of 15.13 kg h?1, B at rate of 2.47 kg h?1 and their combination (Ca+B) compared with control trees sprayed with water. Fruiting spurs, flower ovaries, young and mature fruits were sampled and analyzed for their Ca, B, potassium (K) and magnesium (Mg) contents. Fruit were stored for six months and quality attributes were studied. Results put forth that Ca+B treatments significantly increase fruit Ca and B concentrations and firmness. The results displayed that postharvest B spray improves Ca nutrition of fruits through synergism of Ca+B on Ca translocation.  相似文献   

7.
Effects of controlled atmosphere (CA) conditions on physiological disorders and fungal fruit decay on apple ‘Aroma’ were investigated. Fruit from three growing seasons were stored at 1% or 2% O2 (both at 2% CO2) at either 1°C or 3°C in small research units; controls were kept in the same ventilated rooms at the two temperatures (ambient air). The fruit were removed from storage after four or six months and assessed for fruit decay immediately afterwards and after two weeks at 20°C. Fruit quality parameters were recorded at the end of storage. On a three-year average, fruit stored in CA was less ripe at the end of storage. After both four and six months storage, CA reduced total decay (physiological disorders and fungal decay) by on average 70% and 45%, respectively, compared to storage in ambient air. Senescent breakdown was lower after CA storage for four months, but not after six months and not after simulated shelf life. Soft scald was lower when stored in CA both after cold storage at 1°C and simulated shelf life. After storage at 3°C there was lower incidence of soft scald when stored in CA after four months, but not after six months. For fungal fruit decay in general, there was no effect of low oxygen, however, 2% O2 gave slightly less bitter rot (Colletotrichum acutatum) than 1% O2 and significantly less than ambient air after simulated shelf life. Averaged over all oxygen levels, 1°C gave significantly less bitter rot than 3°C. It may be concluded that use of CA for storage of ‘Aroma’ is a good way of reducing development of physiological disorders. However, development of bitter rot seemed to be more influenced by temperature and storage time than by low O2.  相似文献   

8.
Growth and N‐P‐K uptake in pumpkin (Curcubita moschata Poir.) cv ‘Libby‐Select’ were studied in dryland and irrigated culture. In both moisture regimes, maximum rates of dry matter accumulation occurred between the early and mid‐fruiting developmental stages. Higher total dry matter production with irrigated than dryland culture was primarily associated with increased shoot growth. Concentrations of N, P, and K in foliage generally decreased as pumpkin age increased. Irrigated pumpkins in conjunction with higher total vegetative dry matter accumulated more N, P, and K than dryland pumpkins. Up through early fruit development, N, P, and K accumulation was primarily in leaves and vines and by the late growth stages was almost entirely in the fruit. Total N, P, and K uptake at late fruiting was estimated at 219, 32, and 228 kg/ha in irrigated pumpkins and 180, 21, and 177 kg/ha in dryland pumpkins. Approximately 58% of the N, 52% of the K, and 68% of the P accumulated by late‐fruiting was absorbed by the plant after the early‐fruiting stage in both moisture regimes. Potassium redistribution from vegetative tissues during late fruit development decreased foliar K contents 32% in dryland pumpkins and 21% in irrigated pumpkins.  相似文献   

9.
To evaluate the effects of different irrigation and nutrient concentration strategy on growth, yield, water use efficiency (WUE), fruit quality and substrate salt accumulation, tomatoes were grown with five different levels of water (W: 50%, 75%, 100%, 125% and 150%) and nutrient concentrations (N: 0.5, 0.75, 1.0, 1.5 and 2.0 times of Hoagland strength(X)). Fruit quality index was determined by normalization of fruit quality parameters. Deficit irrigation at standard concentration of nutrients reduced yields by 17.43% and 15.52% for T7 (W75%-N1.0x) and 49.54%–51.99% for T8 (W50%-N1.0x) during spring-summer (SS) and fall-winter (FW) seasons, respectively. Contents of total soluble solids (TSS), titrable acidity (TA) and sugar acid ratio (SAR) were all increased in water-deficit treatments. T8 was found to be highest in TSS, TA and SAR except SAR in FW. Over-irrigation with excessive and standard Hoagland nutrient concentration caused non-significant reduction in yield except T6 (W125%-N1.0x) in SS. T2 (W100%-N2.0x) and T4 (W100%-N1.5x) caused more substrate salt accumulation which resulted in significant decrease in yield and WUE. Through economic analysis, over-watering along with excessive nutrients caused profit reductions. Considering water saving, yield and fruit quality through economic analysis, T7 found to be optimal strategy.  相似文献   

10.
Early-season sprays of calcium chloride (CaCl2) have been reported to sometimes be more effective than later-season sprays for controlling bitter pit in apple (Malus × domestica Borkh.). We conducted a two-year study examining the influence of start-timing of CaCl2 spray programs on fruit Ca concentrations and at-harvest bitter pit incidence in ‘Braeburn’ and ‘Honeycrisp’ apples in Washington State, USA. Six biweekly sprays of CaCl2 were applied starting in mid-May (early-start), mid-June (mid-start, the normal commercial start timing), or mid-July (late-start) 2002 and 2003. Although leaf marginal necrosis occurred in all of the CaCl2-treated plots, no spray damage on fruit was observed. All of the CaCl2 spray treatments consistently reduced bitter pit incidence relative to the unsprayed control treatment and usually but not always increased the Ca concentration of subdermal cortical tissue at harvest. The early and mid-start spray programs produced lower bitter pit incidence than the late-start program in only one of four situations. Fruit Ca concentrations in the control and early-start spray program did not differ. Fruit Ca concentrations in the mid- and late-start spray programs were not different, and often were higher than that of the early-start spray program. Bitter pit incidence for each cultivar was inversely related to fruit Ca concentration. Substituting cortical Ca/potassium (K) or Ca/magnesium (Mg) concentration ratios for Ca concentration failed to substantially improve and usually degraded the correlations with bitter pit incidence. The results confirm that starting CaCl2 spray programs in June sometimes is more effective at controlling bitter pit that delaying the start of the spray program until July. The later season sprays tend to be more effective at increasing fruit Ca concentration. There appears to be no detectable advantage for starting spray programs earlier than June. Applying CaCl2 sprays throughout the growing season, starting sometime in June, appears to be the most economical and effective spray management practice for maximizing fruit Ca and minimizing risk of bitter pit development.  相似文献   

11.
The influence of foliar application of 1% urea and four rates of urea (100, 200, 300 and 400 g tree?1) as soil application (deep fertilizer placement) were studied on leaf nutrients concentrations, yield and fruit quality of ‘Malas e Torsh e Saveh’ pomegranate (Punica granatum L.) during 2010 and 2011 growing seasons. Trees that received 300 and 400 g urea as soil application showed positive significant response on fruit yield, average fruit weight, aril weight percent of fruit, 100 arils weight, fruit diameter and TSS. Foliar application of urea had also significant effects on average fruit weight, aril weight percent of fruit and 100 arils weight. Nitrogen concentration increased linearly in leaves with the increase in rate of urea-applied. According to results, deep soil application of urea under the conditions of this study was more effective on pomegranate fruit yield and quality characters than foliar application of urea.  相似文献   

12.
Seasonal changes in nutrient concentrations of leaf and fruit structural parts (rind and pulp) from ‘Newhall’ (Citrus. sinensis Osbeck) and ‘Skagg's Bonanza’ (C. sinensis Osbeck) navel oranges were investigated during fruit development in two successive years. Leaf calcium (Ca), manganese (Mn), and potassium (K) concentrations were relatively constant throughout the whole season with the exception of an increase of K at stage 1, the period of fruitlet growth [before 80 days after full bloom (DAFB)], whereas the magnesium (Mg), boron (B), iron (Fe), and zinc (Zn) concentrations declined distinctly during stage 2 (80–180 DAFB), the period of fruit rapid enlargement. In rind, Ca, B, Fe, and Mn concentrations reached the greatest levels at stage 2, different from K and Mg, which increased at stage 1 and decreased thereafter. In pulp, concentrations of Ca, K, Mg, and Mn declined gradually with time, whereas a small rise in B toward the end of sampling and a clear increase of Fe at stage 2 were observed. It was suggested that ‘Newhall’ required greater B inherently in fruits as the cultivar had greater B concentrations in fruit parts and had greater rind/leaf B concentration ratios than ‘Skagg's Bonanza.’ ‘Newhall’ had relatively greater rind Ca content and exhibited Ca distribution more uniformly within its fruit parts, which probably enhanced the crack resistance.  相似文献   

13.
The aim of the study was to examine effect of preharvest sprays of calcium (Ca) in the form of Ca-chloride (CaCl2), Ca-nitrate [Ca(NO3)2], or a mixture of Ca-formate, Ca-acetate, CaCl2, and Ca(NO3)2 on cracking and quality of ‘Schattenmorelle’ sour cherry fruit harvested mechanically. The experiment was conducted in 2008–2009 at a commercial orchard in central Poland. Mature trees grew on a coarse-textured soil poor in organic matter, at a spacing of 4.0 × 1.5 m. The spray treatments of Ca were performed at 7-day intervals, starting 28 days before harvest, at the rates of 5.0–5.6 kg Ca ha?1 per season. The trees sprayed with water were treated as the control. Fruit were harvested mechanically when peduncle-fruit detachment force dropped below 3 N. The results showed that preharvest Ca sprays caused no leaf damage. This measure did not affect yield, mean fruit weight, soluble solids concentration and titratable acidity of fruit, and weight loss of fruit during 24 h after harvest. Fruit sprayed with Ca had improved status of this nutrient, and were less liable to juicy leakage from the stem scar, rain-induced cracking, and preharvest decay caused by Glomerella cingulata. The above effects of Ca sprays did not depend on the tested material. It was concluded that preharvest sprays of Ca as CaCl2 and/or Ca(NO3)2 should be recommended in ‘Schattenmorelle’ sour cherry orchards to reduce fruit losses resulting from rain-induced cracking, leakage of juice, and the incidence of cherry bitter rot.  相似文献   

14.
Quality and elemental content of fruit from internal tree canopies were compared with those from external canopy positions in 4 citrus varieties: ‘Kinnow’ mandarin; ‘Redblush’ grapefruit; ‘Valencia’ orange; and ‘Lisbon’ lemon. Fruit weight, total juice per fruit, peel fresh and dry weight, and rind thickness of fruit from internal canopies of all 4 varieties were significantly higher compared with external fruit. Mandarin, grapefruit, and orange fruit from external canopies had higher soluble solids and specific gravity. Fruit from internal canopies of all varieties had generally higher peel concentrations (% dry weight) of N, P and K due to a dilution effect, while the opposite condition existed in mandarin when these elements were expressed on a percent fresh weight basis. Peel Mg and S from external fruit were higher in all varieties, expressed as percentages of either dry weight or fresh weight. Nitrogen content of mandarin and orange juice and Ca content of grapefruit and lemon juice from external fruit were significantly higher compared to those from internal canopy fruit. Elimination of fruit quality and mineral variations as a result of canopy positions is recommended by the means of cultural practices.  相似文献   

15.
Using two drought resistant wheat (Triticum aestivum L.) cultivars, ‘Changwu134’ and ‘Changhan58,’ a field experiment was conducted in ChangWu Agro-ecological Experiment Station on China's Loess Plateau during 2008 and 2009 to compare the effects of different fertilizer and tillage treatments on the fructan contents as well as fructan exo-hydrolase (FEH) activity in relation to wheat yield. We found that ‘Changhan58’ had greater yield and fructan content in the penultimate internode and higher FEH activity than did ‘Changwu134.’ For ‘Changhan58.’ applying 195 kg·ha?1(120 +75) N plus 45000 kg·ha?1 of pig manure and 120 kg·ha?1 phosphate under conservation tillage produced the highest yield (6769 ka/ha), fructan content in penultimate internode, water use efficiency (WUE), as well as FEH activity among the fertilizer and tillage treatments. Therefore, routine soil management for wheat should focus on combined use of manures and inorganic fertilizer to enhance the amount and transportation efficiency of WSC and ultimately ensure greater yield.  相似文献   

16.
>Quality and mineral content of fruit from internal tree canopies were compared with those from external canopy positions in 4 citrus varities: ‘Kinnow’ mandarin; ‘Redblush’ grapefruit; ‘Valencia’ orange; and ‘Lisbon’ lemon. Fruit weight, total juice per fruit, peel fresh and dry weight, and rind thickness of fruit from internal canopies of all 4 varieties were significantly higher compared with external fruit. Mandarin, grapefruit, and orange fruit from external canopies had higher soluble solids and specific gravity. Fruit from internal canopies of all varieties had generally higher peel concentrations (% dry weight) of N, P and K due to a dilution effect, while the opposite condition existed in mandarin when these elements were expressed on a percent fresh weight basis. Peel Mg and S from external fruit were higher in all varieties, expressed as percentages of either dry weight or fresh weight. Nitrogen content of mandarin and orange juice and Ca content of grapefruit and lemon juice from external fruit were significantly higher compared to those from internal canopy fruit. Elimination of fruit quality and mineral variations as a result of canopy positions is recommended by the means of cultural practices.  相似文献   

17.
The chronic impact of ring nematode (Mesocriconema xenoplax) feeding on grapevine (Vitis vinifera) was studied under controlled conditions. ‘Pinot noir’ grapevines were exposed to ring nematode or kept nematode-free for three growing seasons and vines were either grown in full sunlight, 15% of full sun, or partially defoliated to manipulate vine carbohydrate status. Whole plants were destructively sampled to assess the impact of ring nematode on whole plant biomass, carbohydrate, and mineral nutrient accumulation. Vine shoot growth and total biomass was unaffected by ring nematode in the first growing season, although reserves of nonstructural carbohydrates (NSC), P, K, and Ca in the roots and wood were reduced in all canopy management treatments. Vine shoot growth and total biomass were reduced by ring nematode in Year 2, and greater declines in reserve NSC and most mineral nutrients had occurred. Reserves of NSC were affected more than biomass or nutrients during the second year. During the third year of exposure to ring nematode, vines in the 15% sun treatment were dying (prompting an earlier destructive harvest), even though these vines had similar biomass and NSC reserves as the partially defoliated vines at the end of the second year. The demise of the 15% sun vines was associated with higher ring nematodes per unit of root mass, as compared to either full sun or defoliated vines. Therefore, predicting plant response to this nematode requires an understanding of nematode density per quantity of roots, not nematodes per unit of soil which is how plant parasitic nematodes are currently enumerated.  相似文献   

18.
To investigate the effects of embryo abortion on fruit size and weight, stone weight, and fruit quality, including total soluble solids (TSS), acidity, TSS/acid ratio, sugars, and concentrations of macro and micronutrients in skin and pulp, nubbins (seedless fruit) and seeded fruit of mango (Mangifera indica L.) cultivars ‘Glenn,’ ‘Irwin,’ ‘Haden,’ ‘Kent,’ and ‘Kensington Pride’ were compared at the ripe stage. Nubbins had significantly smaller fruit size and lower fruit weight than in seeded fruit in all the cultivars. Mean stone weight was also significantly lower in nubbins (9.04 g) than in seeded fruit (30.27 g) and the trend was similar in all the cultivars. Percent dry pulp weight was significantly higher in nubbins than in seeded fruit in all five cultivars. Nubbins exhibited significantly lower acidity and higher TSS and TSS/acid ratio than did seeded fruit in all of the cultivars. The concentrations of nitrogen (N), potassium (K), magnesium (Mg), iron (Fe), and copper (Cu) in the skin and N, phosphorus (P), K, calcium (Ca), Mg, sulfur (S), Fe, zinc (Zn), and Cu in the pulp of nubbins did not differ significantly from those in the skin and pulp of seeded fruit in all of the cultivars. However, mean concentrations of P, Ca, and S were significantly higher in the skin of nubbins than in the skin of seeded fruit. Mean concentrations of manganese (Mn) and boron (B) in both skin and pulp of nubbins were significantly higher than in the skin and pulp of seeded fruit. The experimental results suggest that embryo abortion at early stages of fruit development, although it reduces fruit size and weight, does not affect the concentrations of these elements in the pulp and skin of mature fruit. In conclusion, embryo abortion in mango fruit substantially reduced fruit size, weight, and stone weight and improved TSS, TSS/acid ratio, total sugars, and non-reducing sugars compared with seeded fruit in all the cultivars and led to minor changes in the concentrations of most of macro and micronutrients in skin and pulp of the fruit.  相似文献   

19.
Four rates of ammonium nitrate (NH4NO3) (0, 151, 454, and 908 g actual N/tree) were applied each spring for 6 years to ‘Golden Delicious’ (Malus domestica) apple trees. High rates of nitrogen (N) increased N concentration of Orchardgrass (Dactylis glomerata) blades and increased cover-grass growth whereas various legume species were prevalent at the low rates. Leaf N in spur or mid-terminal leaves increased yearly, and was related to leaf color by visual comparison and reflectance. Fruit from the higher N rates had greener peel and lower firmness, soluble solids content and titratable acidity. In vitro freeze tests indicated trees fertilized with lower rates of N were more cold hardy during the fall, winter and spring than those receiving the higher rates. In a similar long-term study on ‘Delicious,’ cold hardiness was related not only to seasonal temperature cycles and shoot dry matter, but to total sugars and sorbitol content in wood or sap.  相似文献   

20.
Soil fertility is declining in most agro‐ecosystems in sub‐Saharan Africa, and incorporation of forage legumes into production systems to utilize the nitrogen fixed by the legumes could alleviate the problem, if efficient nitrogen‐fixing legumes are used. The amounts of nitrogen fixed by Lablab, Medicago, Trifolium, and Vicia species and their contribution to the following wheat crop were estimated in field experiments on an Alfisol at Debre Zeit in the Ethiopian highlands. The amounts of nitrogen (N) fixed ranged from 40 kg N ha‐1 for T. steudneri to 215 kg N ha‐1 for L. purpureus. The increase in grain yields of wheat following the legumes ranged from 16% for T. steudneri to 71% for M. tranculata where no N fertilizer was applied to the wheat. Additional N fertilizer applied to wheat at 60 kg N ha‐1 had no significant effects on wheat grain or straw DM andN yields. In another experiment, eight lablab treatments consisting of factorial combinations of two cultivars (Rongai and Highworth), two Rhizobium inoculation treatments (inoculated and uninoculated) and two times of harvest (for hay at 50% flowering and for seed at seed maturity), were compared on lablab forage production and N yield, and residual effects on two succeeding wheat crops. Inoculation had no significant effects on nodulation, shoot DM or N yields. Rongai had significantly higher shoot DM and N yields than Highworth. Lablab harvested at flowering had significantly higher shoot DM and N yields than lablab harvested at seed maturity. Grain yields of the first wheat crop following the various lablab crops were 93–125% higher than grain yields of the wheat following wheat (continuous wheat) where no N fertilizer was applied. Therefore, lablab is a potential forage crop for incorporation into cereal production systems to improve feed quality and to reduce dependence on N fertilizers for cereal production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号