首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted on the effect of nitrate (NO3) levels on nitrate uptake kinetics and nitrogen (N) metabolism in two rice varieties, Piaui (landrace) and IAC-47 (improved). At 27 days after germination (DAG) N supply was suspended for 72 h, and then restored as 0.2 or 2 mM nitrate. The nitrate uptake kinetics was determined by the depletion method. Plants were harvested at 0, 6, and 24 h. Plants of the Piaui variety under 0.2 mM nitrate showed higher Vmax and lower KM, indicating higher efficiency of nitrate uptake at low supply. In the sheaths of both varieties, there was a greater accumulation of nitrate and lower activities of nitrate reductase and glutamine synthetase. The V-H+-ATPase activity increased between 0 and 6 h accompanying the nitrate influx, suggesting that the activity of this proton pump is necessary for the antiport activity (H+/2NO? 3) involved in the accumulation of nitrate into vacuoles.  相似文献   

2.
ABSTRACT

Two rice varieties, ‘Piaui’ (a landrace) and ‘IAC-47’ (an improved variety), were grown in nutrient solution containing 20 mg nitrate (NO3 ?)-nitrogen (N) L? 1 up to 32 days after germination (DAG). After this, a group of plants received 200 mg NO3 ?NL? 1, while the other was kept at 20 mg NO3 ?NL? 1 up to 42 DAG. From 42 until 56 DAG, all plants received 5 mg NO3 ?NL? 1. Plants were collected at 42 and 56 DAG, soluble fractions, nitrate reductase (NR) and GS enzymatic activities were determined. The nutritional history of the plants affected significantly the uptake and use of nitrogen (N), and should be taken into consideration in the studies of N-use efficiency. The variety ‘Piaui’ was more efficient than ‘IAC-47’ in N-uptake use, accumulating more NO3 ? in its tissues at the initial phases of its cycle for subsequent utilization.  相似文献   

3.
Mineral regulation of two soybean varieties Jackson and Lee was investigated in long term water culture experiments using saline solutions. The effects of extreme K:Na ratios using chloride and sulfate as counterions were studied in the early stages of salinity.

The growth rates of both varieties were not affected by salinization. A K+ stimulated, intensive acropetal Cl translocation was observed in the salt sensitive variety Jackson. The varieties did not differ in Na+ translocation and in the suppression of Ca2+ and Mg2+ in the leaves. But the effect of the nature of salinization indicates already differences in Na uptake and translocation of the cultivars.

The avoidance of Cl, but also of Ha+, in connection with influences of the resulting ionic imbalance on metabolic pathways are probably the most causative factors for the different tolerance to salinity of the two soybean varieties.  相似文献   

4.
小麦不同品种吸收钾离子的动力学研究   总被引:14,自引:2,他引:14  
小麦不同品种吸收钾离子(K+)的动力学参数不同。米氏常数(Km)以绵阳11最大,红矮1最小;最大吸收速率(1max)繁6最高,红芒22最低。供试小麦各品种吸收K+的补偿点(Cmin)3.44.mol/L,远低于一般土壤溶液中的K+浓度,说明土壤溶液中K+浓度与小麦吸收K+的需要相适应。此外,硝酸根(NO3)、吲哚乙酸(IAA)和稀土显著促进小麦吸收K+;但铵离子(NH4+)显著抑制K+吸收;尿素对小麦吸收K+无显著影响。动力学参数的测定表明,NH4+抑制K+吸收的原因是提高了小麦吸收K+的Km;而NO3和稀土产生促进作用的原因分别是吸收K+的Imax增加和Km减少。IAA能促进H+分泌,导致小麦吸收K+的速率提高。  相似文献   

5.
In short‐term (24 h) nutrient solution experiments, the influence of different proton (pH 6.0 and pH 4.3) and aluminium (Al) (0, 20, and 50 μM) concentrations on root and coleoptile elongation, dry weight, and the uptake of selected mineral nutrients was studied in maize (Zea mays L.) varieties that differ in acid soil tolerance under field conditions. The acid‐soil‐tolerant maize varieties, Adour 250 and C525M, proved to be hydrogen (H+) ion sensitive, but Al tolerant, while the acid soil tolerant variety BR201F was H+ tolerant but Al sensitive. The acid soil sensitive variety HS 7777 was affected by both H+ and Al toxicity. The proton‐induced inhibition of root elongation was closely related to the proton‐induced decrease of the specific absorption rates (SAR) of boron (B), iron (Fe), magnesium (Mg), calcium (Ca), and phosphorus (P). In contrast, only the specific absorption rate of B (SARB) was significantly correlated to the Al‐induced inhibition of root elongation. It is concluded, that alterations of nutrient uptake may play an important role in H+ toxicity, while at least after short‐term exposure to Al, alterations of Ca, Fe, Mg, or P uptake do not seem to be responsible for Al‐induced inhibition of root elongation. Further attention deserves the Al‐B interaction, moreover taking into account that a highly significant correlation between Al‐induced increase of callose concentration in root tips and Al‐induced decrease of SARB could be established.  相似文献   

6.
The introduction of an active Na+ excretion system from salt-tolerant plants in salt-sensitive crop plants might necessitate enhancement of the robustness of K+ homeostasis and lead to improved plant growth under salt stress. To address this issue, we compared the acquisition and retention of K+ under excess Na+ concentrations in the common reed, which possesses excellent Na+ excretion ability, and low-Na+ excreting rice. Under excess Na+ concentrations, common reed maintained constant K+ content in all plant parts, whereas K+ content in rice decreased with increasing Na+ concentration. Preferential uptake of K+ against high Na+/K+ ratio in nutrient solution was approximately 10 times higher in common reed than in rice. The impact of excess Na+ on net K+ absorption rate of common reed was small. On the other hand, the net K+ absorption rate of rice was decreased by excess Na+ concentration. However, after the Na+ concentration in the nutrient solution was decreased from 50 to 1 mM, K+ absorption in rice recovered immediately. Thus, selectivity of K+ transporters or channels for K+ over Na+ in roots could be involved in the differences in K+ accumulation in rice and common reed.  相似文献   

7.
The experiments were focused on the question whether the plasmalemma ATPase activity (proton pump) has an influence on the efflux of major inorganic ion species. Efflux from roots of intact Trifolium pratense, Hordeum vulgare, Glycine max, and Zea mays was examined into a solution containing 100 μM CaCl2 and 500 μM NH4+ as sulfate in the control solution and 100 μM CaCl2 and 500 μM NH4+ as vanadate in the test solution. Vanadate being an inhibitor of the plasmalemma ATPase depressed significantly the H+ secretion of roots into the outer solution but had no major impact on the efflux of cation species. In the presence of vanadate significantly higher amounts of sulfate, phosphate, and nitrate were released into the outer solution by roots of soya and maize as compared with the control treatment (no vanadate). In the absence of vanadate, virtually no nitrate was released by all species examined whereas in the vanadate treatment significant amounts of NO3? were released. Vanadate inhibited the uptake of Cl? in barley and maize and increased the uptake of Ca2+ in soya. It is concluded that the plasmalemma ATPase activity plays a major rule in the “ionic stat” of cells in providing protons to the apoplast for the reabsorption of sulfate, phosphate, and particularly nitrate which have leaked out of the cytosol.  相似文献   

8.
ABSTRACT

To better understand the mechanisms responsible for differences in uptake and distribution of cadmium (Cd), nutrient-solution experiments were conducted with different varieties of rice (Oryza sativa), ‘Khitish’ and ‘CNRH3’. The plants were grown in a complete nutrient solution with different levels of pCd (-log free Cd+2 activity) and pFe [-log free iron (Fe+2) activity]. The required concentrations of chelating agent and metals were determined using a computerized chemical equilibrium model such as Geochem-PC. Experimental treatments included a combination of four pCd activity levels (0, 7.9, 8.2, and 8.5) applied as Cd (NO3)2 4H2O, and two pFe activity levels (17.0 and 17.8) applied as FeCl3. The application of both Cd and Fe in solution culture significantly affected plant growth, yield, and Cd accumulation in plant tissue. In general, yield of rice was decreased by an increase in amount of solution Cd; however, yield response varied among the cultivars. At the 7.9 pCd level, yields of rice cultivars ‘Khitish’ and ‘CNRH3’ were reduced to 69% and 65%, respectively, compared with control plants. Root Cd concentrations ranged from 2.6 mg kg?1 (control plants) to 505.7 mg kg?1 and were directly related to solution Cd concentrations. In rice plants, Cd toxicity symptoms resembled Fe chlorosis. Differential tolerance of varieties to phytotoxicity was not readily visible, but a significant interaction of substrate Cd and variety was obtained from dry-matter yields. Significant interactions indicated that response of tissue Cd concentration, plant Cd uptake, and translocation of Cd to the aerial parts were dependent on variety as well as substrate Cd. Uptake of Cd by roots was significantly higher than by shoots. Higher Cd uptake by rice plants decreased the uptake of other beneficial metals.

The effect of Cd and Fe on the rate of phytometallophore release was also studied in the nutrient solution. Among the rice genotypes, ‘Khitish’ was the most sensitive to Cd toxicity. In both genotypes, with the onset of visual Cd-toxicity symptoms, the release of phytometallophore (PM) was enhanced. Among the rice varieties, ‘Khitish’ had the highest rate of PM release. Treatments with the metal ions studied produced a decrease in chlorophyll and enzyme activity. A decrease in concentrations of chlorophyll pigments in the third leaf was observed due to the highest activity level of Cd (pCd 7.9). Activities of enzymes such as peroxidase (POD) and superoxide dismutase (SOD) are altered by toxic amounts of Cd. Changes in enzyme activities occurred at the lowest activity of Cd (pCd 8.5) in solution. Peroxidase activity increased in the third leaf. Results showed that in contrast with growth parameters, the measurements of enzyme activities may be included as early biomarkers in a plant bioassay to assess the phytotoxicity of Cd-contaminated solution on rice plants. Evidence that Cd uptake and translocation are genetically controlled warrants the selection of varieties that assimilate the least Cd and that translocate the least metal to the plant part to be used for human and animal consumption.  相似文献   

9.
Accurate estimation of the available potassium (K+) supplied by calcareous soils in arid and semi‐arid regions is becoming more important. Exchangeable K+, determined by ammonium acetate (NH4OAc), might not be the best predictor of the soil K+ available to crops in soils containing micaceous minerals. The effectiveness of different extraction methods for the prediction of K‐supplying capacities and quantity–intensity relationships was studied in 10 calcareous soils in western Iran. Total K+ uptake by wheat grown in the greenhouse was used to measure plant‐available soil K+. The following methods extracted increasingly higher average amounts of soil K+: 0.025 M H2SO4 (45 mg K+ kg?1), 1 M NaCl (92 mg K+ kg?1), 0.01 M CaCl2 (104 mg K+ kg?1), 0.1 M BaCl2 (126 mg K+ kg?1), and 1 M NH4OAc (312 mg K+ kg?1). Potassium extracted by 0.01 M CaCl2, 1 M NaCl, 0.1 M BaCl2, and 0.025 M H2SO4 showed higher correlation with K+ uptake by the crop (P < 0.01) than did NH4OAc (P < 0.05), which is used to extract K+ in the soils of the studied area. There were significant correlations among exchangeable K+ adsorbed on the planar surfaces of soils (labile K+) and K+ plant uptake and K+ extracted by all extractants. It would appear that both 0.01 M CaCl2 and 1 M NaCl extractants and labile K+ may provide the most useful prediction of K+ uptake by plants in these calcareous soils containing micaceous minerals.  相似文献   

10.
Screening of potassium efficient genotypes will be one of the best ways to solve the low potassium content of flue-cured tobacco. The study was conducted to determine whether the potassium efficient genotypes could be screening with high K+ uptake efficiency. The K+ uptake characteristics of a high K+ content line (GK8) and the conventional cultivated variety (K326) of flue-cured tobacco were compared at the seedling stage. Km, Cmin, and Imax values were higher in young seedlings (4?~?5 versus 6?~?7 leaf stage) and cultures with high initial K+ concentration (0.35 versus 0.25?mmol?L?1). Culture solutions with a high K+ concentration (2.0 versus 0.6?mmol?L?1) showed a high Km, and Cmin, but the Imax was lower as compared with the young seedlings and the solution with high initial K+ concentration. In conclusion, the GK8?line had a stronger ability for limited K+ uptake than K.  相似文献   

11.
采用营养液培养法研究了不同氮源和钾水平对杂交稻及其亲本和常规稻生长、叶绿素含量、养分吸收的影响。结果表明 ,水稻生长、叶绿素的含量及养分吸收与氮源供应密切相关。在供钾充足的条件下 ,杂交稻上位叶的干物质产量以硝态氮营养的最高 ,其次为硝态氮与铵态氮混合营养 ;保持系与杂交稻的趋势一致。杂交稻下位叶和根系干物质积累量受 3种氮源的影响与恢复系相一致 ,即 :硝 +铵混合 硝态氮 铵态氮。硝态氮营养比硝 +铵混合及铵态氮更有效地提高杂交稻功能叶片中的叶绿素含量。杂交稻与其亲本植株地上部全氮含量受 3种氮源的影响为 :硝 +铵混合 硝态氮 铵态氮 ;然而杂交稻地上部的吸氮量受氮源的影响为硝态氮硝 +铵混合 铵态氮 ,与保持系的规律一致。杂交稻地上部钾含量及吸收量在 3种氮源处理间有差异 ,表现为硝态氮 硝 +铵混合 铵态氮 ,保持系的趋势一致 ,但与恢复系不同。研究结果还表明 ,杂交稻对硝态氮的营养特性具有明显杂种优势。 3种氮源对水稻生长、营养吸收的影响程度与钾营养状况及水稻品种有关 ;杂交水稻及其亲本较常规稻受影响更大。在高钾供应时 ,各项指标受到氮源影响的程度都明显高于低钾处理 ,其中以硝态氮为氮源更有利于杂交水稻生理及营养优势特性的发挥。  相似文献   

12.
Net release and net uptake of sugars by roots of intact maize (Zea mays cv. Blizzard) and field bean (Vicia faba L. cv. Alfred) were studied at micromolar external sugar concentrations that are relevant to the rhizosphere. Besides various sugars not further characterized there was net release of glucose, fructose, sucrose, arabinose, ribose, and galactose. The net release of these sugars into the root medium (0.1 mM CaSO4) was stimulated by the protonophore CCCP (10 μM), the sulfhydryl reagent NEM (300 μM), the specific inhibitor of plasmalemma H+ ATPase vanadate (0.5 mM), and by the inhibitor of the glucose carrier phlorizin (2 mM). Net uptake of glucose, fructose, and arabinose from 10 μM external concentrations was inhibited by these substances. Stimulation of net release and inhibition of net uptake was most pronounced for glucose. Sucrose added to the root medium was hydrolyzed by invertase activity leading to glucose and fructose uptake by roots. It is concluded that the retention of sugars by plant roots is not only determined by plasmalemma permeability but is also controlled by the H+ electrochemical gradient established by ATPase activity (retrieval mechanism). The proton gradient drives a sugar/H+ cotransport system that is selective for glucose but may also transport other sugars, particularly in the absence of glucose.  相似文献   

13.
Ammonium uptake across the plasma membranes of seedling roots of intact rice plants is thermodynamically active at low external concentrations, and consequently, electrogenic uniport is an unlikely mechanism for influx. At higher NH4+ concentrations uptake is passive and electrogenic uniport is a possibility. While passive permeation of NH3 is also possible at high external [NH4+], influx measurements at 10 mM NH4+ demonstrated a pH dependence which was inconsistent with significant NH3 permeation. Kinetic studies using 13NH4+ established that influx at low external [H4+] occurred via high affinity transport systems (HATS) in rice and spruce, while at higher [NH4+], influx was mediated by low affinity transport systems (LATS), that showed linear concentration dependence. Ammonium influx via the HATS was shown to be up-regulated or down-regulated in response to changes of N status, whereas influx in the LATS was insensitive to N status. The identity or identities of the regulatory signals responsible for controlling influx are discussed.  相似文献   

14.
A pot experiment with two rice (Oriza sativa L.) genotypes differing in internal potassium use efficiency (IKUE) was conducted under different sodium (Na) and potassium (K) levels. Adding NaCl at a proper level enhanced rice vegetative growth and increased grain yield and IKUE under low potassium. Addition of higher rate of NaCl had a negative effect on the growth of the K-efficient rice genotype, but did not for the K-inefficient genotype. Under low-K stress, higher NaCl decreased IKUE of the K-efficient rice genotype but increased IKUE for the K-inefficient genotype. At tillering stage and under low-K stress, adding NaCl increased K and Na contents and decreased the ratio of K/Na for both genotypes. At harvesting stage under low-K stress, adding NaCl increased K and Na contents and K/Na ratio for the K-efficient genotype but decreased the K/Na ratio for the K-inefficient genotype. The accumulated Na was mostly deposited in the roots and sheaths. At tillering stage, the K and Na contents and the K/Na ratios in different parts for both genotypes decreased in the following sequence: K+ in sheaths > K+ in blades > K+ in roots; Na+ in roots > Na+ in sheaths > Na+ in blades; and K/Na in sheaths >> K/Na in roots. The K-efficient genotype had a lower K/Na ratio in roots and sheaths than the K-inefficient genotype under low-K stress. At harvesting stage, K and Na contents in grains were not affected, whereas K/Na ratio in the rice straws was increased for the K-efficient genotype but decreased for the K-inefficient genotype by Na addition. However, this was not the case under K sufficient condition.  相似文献   

15.
Nitrogen (N), ammonium (NH4+) and nitrate (NO3?), is one of the key determinants for plant growth. The interaction of both ions displays a significant effect on their uptake in some species. In the current study, net fluxes of NH4+ and NO3? along the roots of Picea asperata were determined using a Non-invasive Micro-test Technology (NMT). Besides, we examined the interaction of NH4+ and NO3? on the fluxes of both ions, and the plasma membrane (PM) H+-ATPases and nitrate reductase (NR) were taken into account as well. The results demonstrated that the maximal net NH4+ and NO3? influxes were detected at 13–15?mm and 8–10.5?mm from the root apex, respectively. Net NH4+ influx was significantly stimulated with the presence of NO3?, whereas NH4+ exhibited a markedly negative effect on NO3? uptake in the roots of P. asperata. Also, our results indicated that PM H+-ATPases and NR play a key role in the control of N uptake.  相似文献   

16.
Summary The dynamics of basally applied 15N-labeled ammonium sulfate in inorganic and organic soil fractions of five wetland rice soils of the Philippines was studied in a greenhouse experiment. Soil and plant samples were collected and analyzed for 15N at various growth stages. Exchangeable NH4 + depletion continued after 40 days after transplanting (DAT) and corresponded with increased nitrogen uptake by rice plants. Part of the applied fertilizer was fixed by 2:1 clay minerals, especially in Maligaya silty clay loam, which contained beidellite as the dominant clay mineral. After the initial fixation, nonexchangeable 15N was released from 20 DAT in Maligaya silty clay loam, but fixation delayed fertilizer N uptake from the soil. Part of the applied N was immobilized into the organic fraction. In Guadalupe clay and Maligaya silty clay loam, immobilization increased with time while the three other soils showed significant release of fertilizer N from the organic fraction during crop growth. Most of the immobilized fertilizer N was recovered in the nondistillable acid soluble (alpha-amino acid + hydrolyzable unknown-N) fraction at crop maturity. Between 61% and 66% of applied N was recovered from the plant in four soils while 52% of fertilizer N was recovered from the plant in Maligaya silty loam. Only 20% – 30% of the total N uptake at maturity was derived from fertilizer N. Nmin (mineral N) content of the soil before transplanting significantly correlated with N uptake. Twenty-two to 34% of applied N was unaccounted for possibly due to denitrification and ammonia volatilization.  相似文献   

17.
Uptake and assimilation of inorganic N in young rice plants has been studied with labelled N (N-15). Depletion of the plants' carbohydrate content, obtained by a preceding dark period, resulted in a drastic reduction of NH4 +-N uptake. Plants exposed to low light intensity showed diminishing NH4 +-N uptake rates as compared with plants exposed to full light intensity, the latter showing constant NH4 +-N uptake rates during the whole experimental period. The percentage of labelled insoluble N in total labelled N was not significantly affected by a preceding dark period, whereas the low light intensity resulted in a lower proportion of insoluble N in roots and shoots. The incorporation of labelled N into the insoluble fraction (proteins, nucleic acids) was higher in plants fed with NH4 +-N than in those fed with NO3 -.

The uptake of NH4 +-N was not significantly affected by NO3 -, whereas the NO3- uptake rate was considerably reduced in the presence of NH4 +-N. Low energy status of plants affected the nitrate uptake more than the uptake of NH4 +-N. The results show that uptake and assimilation of inorganic N depend much on the energetic status of plants. Nitrate uptake and assimilation is more sensitive to low energy conditions than NH4 +-N.  相似文献   

18.
Nutrient concentrations in the soil and crop uptake from incorporated green manure and urea in flooded rice was studied in field experiments. Release of plant-available nitrogen (NH4 +-N) from green manure was slightly delayed compared with that from prilled urea (PU) because Sesbania rostrata L. and Aeschynomene afraspera L. released the N gradually after their decomposition, whereas N became available immediately after PU application. Exchangeable NH4 +-N concentration in soil peaked at 163 mg kg–1 in the transplanted rice (TPR) and 198 mg kg—1 in broadcast-seeded rice (BSR) at 0 and 1 week after PU application. Broadcast-seeded rice depleted NH4 +-N faster than did TPR because of the crop‘s vigorous growth in the former during the early stage. Soil solution NH4 +-N followed a similar trend to that of soil NH4 +-N. Incorporation of S. rostrata and A. afraspera increased the concentration of P, K+, Fe2+ and Mn2+ in soil solution more than did the application of PU. However, zinc concentration decreased in all treatments. Both PU and green manure increased the N status of the rice plants and enhanced the uptake of P, K, Fe, Mn and Zn by the rice crop. This suggests that application of green manures improves the uptake of these nutrients by the crop. The highest apparent N recovery was obtained with PU followed by green manure. Received: 11 November 1996  相似文献   

19.
Rice (Oryza sativa L. cv. Yamabiko) and tomato (Lycopersicon esculentum Mill cv. Saturn) plants subjected to Na-salinization (NA: 80 mmol( + ) kg-1 Na) in hydroponics were grown after the addition of K at five concentrations (K1: 10, K2: 20, K3: 30, K4: 40, K5: 50 mmol( + ) kg-1). The effect of K on their growth was analyzed in terms of transpiration, cation uptake, and transport. A similar tendency for the above parameters was obtained in both species. The addition of 10 mmol( + ) kg-1 K improved the growth by decreasing the content of Na and increasing the K content of the plants. The growth of the plants, however, was reduced along with the increase of the K concentration and became comparable to that of NA at K5. The total cation content increased with the increase of the K concentration, which was due to the increase of the K content.

A close relationship was observed among the osmotic potential of the solution, cumulative transpiration, and dry weight for both species among the K treatments.

Addition of K suppressed the uptake of other cations by rice and tomato in the order of Na>Mg>Ca, with a very small suppression for Ca and Mg. The depression of Na uptake by K could be due to the antagonism between the two cations.

In rice, the addition of K resulted in a decrease of the uptake concentration (UC) of Na and an increase of that of K, but did not bring about any changes in the UC of Ca and Mg. It was worth noting that K1 and K2 led to a higher UC of Na than NA in tomato, while the trend of the UC of K, Ca, and Mg was similar to that in rice. The transport of Na and Ca to the tops of rice was not affected by the addition of K, while that of Mg increased by K addition. In tomato, the transport of all the cations was promoted by the increase of the K concentration.  相似文献   

20.
陈沂岭  赵学强  张玲玉  沈仁芳 《土壤》2019,51(2):243-250
NH_4~+和NO_3~–是对植物有效的两种主要无机氮源。水稻一般被认为是偏好NH_4~+的植物,但是在NO_3~–条件下,水稻也能良好地生长。大多数关于水稻铵硝营养的报道是在pH 6.0左右的水培条件下开展的,但是对于酸性条件下水稻铵硝营养研究很少。随着土壤酸化的加重及一些边际酸性土壤被用作水稻种植,研究酸性条件下水稻的铵硝营养具有重要意义。本文采用水培试验,在pH 5.0的条件下,通过添加和不添加pH缓冲剂MES(2-(N-吗啡啉)乙磺酸),研究了NH_4~+和NO_3~–对水稻生长、氮效率和矿质养分(N、P、K、Ca、Mg、Fe、Zn、Cu、Mn)吸收的影响。结果表明,在不添加MES的条件下,水稻地上部生长(株高、叶绿素含量、干重)在NH_4~+和NO_3~–之间没有显著差异,而添加MES后,NH_4~+处理的水稻地上部生长优于NO_3~–。不管是否添加MES,NO_3~–处理的水稻地下部生长(根长、根表面积和根物质量)优于NH_4~+。水稻含氮量和氮利用效率在不同NH_4~+和NO_3~–处理之间没有显著差异,但是NH_4~+处理的水稻氮吸收效率高于NO_3~–。与NO_3~–相比,NH_4~+增加了水稻地上部P和Fe含量,而降低了水稻地上部Ca、Mg、Zn、Cu和Mn含量,对K含量影响较小。上述结果表明,NH_4~+有利于改善水稻地上部生长,提高氮吸收效率、地上部P和Fe含量,而NO_3~–则有利于水稻发根,提高地上部Ca、Mg、Zn、Cu和Mn含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号