首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Trace mineral concentrations of annual cool season pasture forages grazed by growing beef cattle during late fall-winter-spring grazing season were evaluated during two experimental cool season grazing studies, each lasting two years at the North Florida Research and Education Center (NFREC), Marianna, Florida. Eight 1.32 ha fenced pastures or paddocks were divided into two groups of pasture land preparation/planting methods, four pastures for the sod seeding treatments (SS) and four for the prepared seedbed treatments (PS). Two different pasture forages, small grains, (rye/oats mix) with or without ryegrass for the first two years (Study 1); and oats with ryegrass or ryegrass only for the last two years (Study 2) were planted in these pasture lands. Each of the four forage, type, and cultivation combination treatments was assigned to two pastures each year, thereby giving two replicates per pasture treatment per year. Forage samples were collected at the start of pasture grazing and twice monthly thereafter until the end of grazing season, pooled by month, and analyzed for copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), cobalt (Co), molybdenum (Mo), and selenium (Se). Liver biopsies and blood plasma samples were collected from the tester cattle only during the spring of year two of Study 2. Liver was analyzed for Cu, Fe, Mn, Co, Mo, and Se and plasma for Cu, Fe, Zn, and Se. Forage trace mineral concentrations were found to differ by month in Cu (P < 0.01), Fe and Zn (P < 0.0001) in both studies, and with Mn (P < 0.0001) in Study 2 only. Pasture forage type effects on Cu (P < 0.05), Fe and Zn (P < 0.01), and Se (P < 0.05) and forage type by month interactions on Cu and Mn (P < 0.0001), and Zn (P < 0.05) were observed in Study 2. Forage concentrations of Cu, Zn, Mn, and Mo in Study 1 and Mn, Mo, and Se in Study 2 were affected (P < 0.05) by pasture land preparation/planting methods in that these minerals were found to be lower from forages of sod-seeded treatments than from those of prepared seedbed treatments. Forage Cu concentrations were lower than the minimum requirements (10 ppm, DM) for beef cattle among months in both studies. Oats-ryegrass pastures of Study 2 had surprisingly low Fe concentrations (P < 0.01) in all months of the winter-spring grazing season. Cobalt, Mn, Mo, and Se did not vary much month to month during the winter-spring grazing months. All mean forage Se concentrations were lower than the requirements (0.10 ppm, DM) for grazing beef cattle. There were no differences (P > 0.05) in mean Se values between the two studies. Liver Cu, Fe, Co, and Se concentrations were sufficient to indicate adequate status of these minerals in tester animals from both forage types. Liver concentrations of Mn and Mo were slightly low, indicating a low status or these minerals. Plasma concentrations of Cu, Fe, Se, and Zn were all above the recommended concentrations for beef cattle. In conclusion, trace minerals deficient in North Florida during the cool season were Cu, Co, and Se, and a special consideration should be given to include adequate amounts while supplementing the mineral mixtures to growing beef cattle since forage samples reflected deficient concentrations of these minerals.  相似文献   

2.
Abstract

A two‐year experiment was conducted at a north Florida farm to evaluate the mineral status of bahiagrass forages and soils. Forage samples were collected every 28 d throughout the grazing season, and soils evaluated twice yearly. The minerals calcium (Ca), sodium (Na), copper (Cu), cobalt (Co), selenium (Se), and zinc (Zn) were uniformly below the dietary requirements for growing beef cattle in both years. Forage magnesium (Mg), phosphorus (P), potassium (K), crude protein (CP), and manganese (Mn) were generally adequate throughout the grazing season, with the exception of low P concentration at the end of the growing season for both years. Extractable soil concentrations of Ca, P, K, Mg and Zn were adequate but low in Cu. Although CP was adequate (>7.0%) throughout the grazing season, IVOMD values were relatively low. There was a general trend for forage P, K, and IVOMD to decrease (P<0.05) with time.  相似文献   

3.
Abstract

The rationale for this experiment was to determine forage nutrient concentrations as affected by biosolids fertilization. We studied the effects of single applications of two exceptional quality biosolids to bahiagrass (Paspalum notatum) pasture with regard to satisfying beef cattle nutrient requirements. Twenty‐five 0.8‐ha pastures were divided into five blocks. Two biosolids were applied as normal and double agronomic rates. The control plot received NH4NO3. Forages were analyzed for calcium (Ca), phosphorus (P), magnesium (Mg), potassium (K), sodium (Na), crude protein (CP), and in vitro organic matter digestibility (IVOMD), and soils were analyzed for Mehlich I extractable Ca, P, Mg, and K. Single (agronomic or twice this) applications of biosolids to pastures had little effect on Ca, P, Na, and K forage concentrations, but forage Mg was elevated in several treatments late in the season. Crude protein concentrations were elevated above the control for all biosolids treatments late in the season, whereas only small differences were observed at early sampling times. Trends were similar for IVOMD. In general, all treatments were associated with soils with adequate Ca, P, and Mg concentrations, while soil K was uniformly low. In relation to grazing beef cattle requirements, all treatments resulted in generally adequate forage levels of Ca, P, Mg, K, CP, and IVOMD, however, Na (<0.06%) was deficient.  相似文献   

4.
Abstract

Seventy‐one forage samples were analyzed for their macromineral composition and forage in vitro organic matter digestibility (IVOMD) in three agricultural zones of Benue State, Nigeria. The zones consisted of Northern, Eastern, and Central zones, each of which were made up of four Local Government Areas. In each Local Government Area, grazing animals were monitored and forages corresponding to those consumed were collected during the peak of the wet season (June) and analyzed for their macromineral composition and IVOMD. Fewer number of forage samples were harvested from Northern and Eastern zones due to greater agricultural activities and infra‐structural land use which limited land space for grazing animals. Forage IVOMD ranged from 32% to 78.3% across all classes of forage and from 43.5% to 62.8% in the Local Government Areas. About 18% of total samples, exclusively from the Northern zone, showed forage IVOMD concentrations below 20%, probably resulting from grazing pressures and agricultural activities in the zone. Forages from the Northern zone were deficient in phosphorus (P), potassium (K), and sodium (Na) based on their criteria of adequacy. No deficiency levels were indicated in forage calcium (Ca) or magnesium (Mg). Northern and Eastern zones were in greatest need of mineral supplementation programs.  相似文献   

5.
Abstract

A two‐year study was conducted to determine the macromineral status of cattle grazed forages, mostly bahiagrass, and soils in central Florida. Soil and forage samples were collected every month for two years. Month differences (P < 0.01) were observed in all forage macrominerals and in crude protein (CP) for both years. No month effect (P > 0.05) was observed in IVOMD level during year 1. Year effects (P < 0.05) were observed in calcium (Ca), sodium (Na) and CP. Concentrations below the critical level were observed in all macrominerals studied. Higher forage macro‐mineral concentrations were found during spring‐summer months. In general, higher (P < 0.05) soil aluminum (Al), Ca, magnesium (Mg), phosphorus (P), and organic matter (OM) were observed during fall‐winter months, while Na was higher in winter. Soil Ca and Mg were adequate and potassium (K), Na and P were deficient. Year 2 showed higher (P < 0.05) soil macromineral concentrations. Correlation coefficients (r >|0.5|, P < 0.05) were present between forage K and forage CP (r = 0.557) and between forage P and forage CP (r = 0.554). Low correlations were found between soil and forage macrominerals. Percentages of total forage samples with macromineral and CP concentrations below critical levels (in parentheses) and suggestive of deficiency were as follow: in forage, Ca (0.30 ppm), 21%; Mg (0.18 ppm), 34%; K (0.60 ppm), 47%; Na (0.06 ppm), 89%; P (0.25 ppm), 85%; and CP (7%), 18%.  相似文献   

6.
Abstract

Macromineral composition of different forage species and soils and forage in vitro organic matter digestibility (IVOMD) and crude protein concentrations in three agricultural zones of Benue State were studied. The zones consisted of Tiv zone (Zone A), Igala zone (Zone B), and Idoma zone (Zone C), each of which was made up of three sites. Site I was Fulani cattle migration routes across the state, site II represented grazing sites within home proximity, and site III were grazing reserves. Grazing animals were followed and forages corresponding to that consumed by them, and the corresponding soil samples were collected during the peak of the dry season (December‐January) and analyzed for nutrient composition. Forage IVOMD ranged from 21% to 79%, with values obtained in grass being lowest due to pronounced overmaturity. Only 10% of forage samples (exclusively from grasses), showed protein levels below the critical value of 7%. Most forage samples, as well as their corresponding soil samples were sufficient in calcium (Ca), magnesium (Mg), and potassium (K) concentrations. Soil concentrations of Ca, Mg, and K were particularly high compared to critical requirements in all the zones studied. Approximately 94% and 76% of forages were deficient in phosphorus (P) and sodium (Na), respectively, and the deficiencies were similar in all classes of forage and sites of study for each of the zones investigated. Results of forage‐soil relationships indicated low and nonexisting correlations; therefore soil analyzes are not of great importance in the assessment of available macromineral supplies to grazing livestock. The macrominerals most needed for supplementation of grazing livestock during the dry season are P, Na, and K.  相似文献   

7.
A 68‐day study was conducted in North Florida to evaluate forage and beef cattle serum, liver, and urine mineral concentrations, emphasizing magnesium (Mg). Forty‐two Angus, Brangus, and Romosinuano cows in early lactation were divided into two groups and placed on ryegrass or oat pasture. Samples were collected every 2 weeks except for liver biopsies, which were collected only on day 68. Mineral concentrations were determined for forage, plasma, urine, and liver samples. All forage mineral concentrations except Mg, calcium (Ca), copper (Cu), cobalt (Co), selenium (Se), and zinc (Zn) were greater than critical levels for a beef cow in lactation. Forage Mg and Cu were severely deficient in both oats and ryegrass. All blood plasma mineral levels were greater than critical levels, but plasma Mg was borderline to slightly deficient. There should be special attention given to Mg supplementation because forages are deficient and contain excess potassium (K).  相似文献   

8.
Abstract

A study was carried out to determine the mineral status of grazing cattle as affected by the eruption of the Cerro Negro Volcano in northwestern Nicaragua. A total of 14 composite soil and forage samples and 30 blood samples were collected at each collection period, before (August 1991) and after (August 1992) the volcanic eruption. Higher soil levels of calcium (Ca), sodium (Na), manganese (Mn) (P<0.01), zinc (Zn) (P<0.05), and lower organic matter (OM) (P<0.01) were found after the volcanic eruption. Phosphorus (P) was the only macromineral found deficient with 93 and 71% of the samples below a critical level before and after volcanic eruption, respectively. Forage Ca, potassium (K), magnesium (Mg), P, Zn, copper (Cu), and selenium (Se) concentrations did not vary between collections. Forage crude protein (CP), in vitro organic matter digestibility [(IVOMD) P<0.05], cobalt (Co), Mn, and Na (P<0.01) were lower after the eruption. Iron (Fe) was the only mineral in forages that increased (P<0.01) after the volcanic eruption. Of the six minerals evaluated in serum only Ca and Mg concentrations were higher (P<0.05) after the volcanic eruption. The macrominerals more likely to be deficient in this area are P and Mg. Trace elements most likely to limit cattle productivity are Zn, Mn, Cu, Se, and Co. Special attention should be given to supplementation of Cu, since both plant and animal tissue samples reflected a deficiency of this mineral.  相似文献   

9.
Abstract

Forage intake with potassium/(calcium + magnesium) [K/(Mg + Ca)] values in excess of 2.2 are associated with grass tetany and Mg deficiencies in ruminants. This study was conducted to determine the degree to which forage K and Mg concentrations and K/(Ca + Mg) ratios could be predicted from soil bicarbonate (HCO3) extractable phosphate‐phosphorus (PO4‐P), and saturation extract Ca, Mg, K, sodium (Na), and nitrate‐nitrogen (NO3‐N) concentrations. Crested wheatgrass (Agropyron spp) strains and cultivars representing four ploidy levels were grown in the greenhouse on eight calcareous soils with different saturation extract Ca, Mg, K and K/Mg ratios. The plants were harvested three times. Soil solution K/(Ca + Mg) and K/Mg ratios were the only measured soil parameters that showed a consistent correlation with plant K/(Ca + Mg) ratios. Bicarbonate extractable soil P was positively related to plant P and K uptake in the first harvest, but was not related in the second and third harvests nor was soil P related to plant Ca or Mg content. There was a tendency for the higher ploidy level entries to have higher plant K/(Ca + Mg) ratios. It was concluded that soil K/(Ca + Mg) ratios can be used to predict relative forage K/(Ca + Mg) ratios for grasses grown under similar conditions.  相似文献   

10.
Abstract

An experiment was conducted on a commercial farm located in the western part of Venezuela (10.5°N and 72°W; mean annual rainfall of 1000 mm; mean annual temperature of 28°C; sandy‐loam Alfisol with pH of 5.5). The purpose of the experiment was to evaluate the in vitro organic matter digestibility (IVOMD), crude protein (CP) content and mineral composition of four Leucaena leucocephala (Lam.) De Wit accessions under rotational grazing by heifers over a 6‐month period covering dry and rainy seasons, using a split‐plot experimental design with two replications. Neither accessions nor the accession x season interaction affected (P>0.05) any of the variables. The mean IVOMD was 68.6%, whereas CP content during the rainy season (26.5%) was higher (P<0.05) than in the dry season (24.3%). Average mineral content of the accessions were adequate in relation to grazing ruminant requirements with the exception of phosphorus [(P) 0.13%], sodium [(Na) 0.038%], copper [(Cu) 6.9 ppm], and zinc [(Zn) 19.7 ppm]. Forage P concentration may have been influenced by the low soil P content of the experimental site. The mean forage Ca:P ratio (11.3:1) was considerably wider than desirable. During the dry season, ash content increased (P<0.05), Na, iron (Fe), and cobalt (Co) decreased (P<0.05), but Fe and Co still remained above the critical levels. Mean concentrations of other elements were not affected (P>0.05) by season. Forage molybdenum (Mo) concentrations were low and, therefore, would not result in conditioned Cu deficiency. The four L. leucocephala accessions had similar feeding value for grazing ruminants and their quality was not markedly reduced in the dry season. Mineral supplementation of ruminants grazing this legume may be needed to correct specific deficiencies and imbalances.  相似文献   

11.
Long‐term conservation tillage can modify vertical distribution of nutrients in soil profiles and alter nutrient availability and yields of crops. This study aimed to evaluate the effect of 14 yr of conventional (CT) and reduced tillage (RT) on soil macronutrient availability (0–5, 5–15, 15–30 cm) and uptake by Italian ryegrass and maize in a forage rotation under a temperate–humid climate (NW Spain). Soil contents of total C, plant available Ca, Mg, Na, K and P and their uptake by plants were evaluated over 2 yr. The three‐way ANOVA showed that tillage and its interactions with soil depth and sampling date have little influence on soil C and macronutrients contents (<13% of variance explained). In the topsoil layer, all studied variables (except K) increased in RT compared with CT, but they remained unchanged (C, Ca and Na) or decreased (Mg, K and P) in deeper layers. Crop yields were greater with RT than CT during the year with soil‐water‐deficit periods, while limited tillage effect was found in the other year. Whereas no differences were obtained for maize, nutrient concentration (Mg, Na, K and P) in ryegrass increased under RT. Conservation tillage improved surface soil fertility, maize yield and ryegrass nutrient content.  相似文献   

12.
Bermuda grass [Cynodon dactylon (L.) Pers.] is a major forage for grazing and hay production in the southern United States. The objectives of this study were to determine effects of nitrogen (N) fertilization rate (0, 112, 224, 336, and 448 kg ha?1), split spring and summer applications of N at the 224 and 448 kg ha?1 rates, and harvest periods (spring and summer) on forage yield, crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrients (TDN), and concentrations of phosphorus (P), potassium (K), magnesium (Mg), and calcium (Ca in Midland Bermuda grass. Data were collected from 2002 to 2008 as part of an ongoing, long-term soil fertility experiment in southern Oklahoma. Repeated measures analysis of these long-term data showed that forage yield responses to N rate varied with year and harvest time with up to 2.5-fold yield differences among years. Nitrogen fertilization increased CP, TDN, and macronutrient P and Mg and decreased ADF and NDF. Crude protein was increased by ≥50%, and ADF and NDF dropped by up to 25% with the greatest N rate. In general, split N applications did not affect forage yield but produced low-quality forage compared to single N application in spring. Split application of 448 kg N ha?1 gave forage with CP, TDN, ADF, and NDF similar to the Bermuda grass receiving 336 or 448 kg N ha?1 as a single application. Spring forage had better forage quality than summer harvests. While N fertilization increased forage Mg and P concentrations by more than 50% during both spring and summer, it had no effect or slight increased K and Ca concentrations. In the southern Great Plains, despite the weather-dependent variability in forage yield of Bermuda grass, N application increase forage quality.  相似文献   

13.
Fertilizer application, particularly nitrogen (N), is important in cool‐season grass forage production. Subsurface (knife) placement of N often has resulted in higher forage yield and N uptake of tall fescue (Festuca arundinacea Schreb.) compared to surface‐broadcast fertilization, but further studies were needed to indicate whether soil pH, phosphorus (P), or potassium (K) modifies the response. Experiment I tested responses of forage yield and N and P concentration to N, P, and K amount and placement. Two types of fertilizer placement ‐ broadcast and knife ‐ were used with 13, 112, or 168 kg N; 0 or 19 kg P; and 0 or 37 kg K/ha in a factorial arrangement. Yields increased by 53% as N fertilization went from 13 to 112 kg/ha and by 69% as N increased from 13 to 168 kg N/ha. Forage yield was increased 26% from knife compared to broadcast fertilizer placement. P application increased forage production by 13%, but K application had no effect on yield. Forage N concentrations increased by 25% as N fertilization went from 13 to 112 kg/ha and by 38% as N increased from 13 to 168 kg N/ha. Effects of added P and fertilizer placement on N concentration often resulted in interactions among factors. Forage P generally was increased by added P, with some effects of interactions among N rate, P rate, and placement. In Experiment II, fescue responses to N placement were tested where different soil characteristics had been established by previous lime and fertility treatments. Forage yield, N concentration, and N uptake were highest where 9.36 Mg/ha of lime were applied as compared to the control. Previous fertility treatments had no significant (P<0.05) effect. When N was knifed, forage yield was related positively to available soil P but not to pH or K. Yield and forage N concentration and uptake were increased by 20, 11, and 33%, respectively, as a result of knife versus broadcast N application.  相似文献   

14.
An investigation was conducted to determine the trace- mineral concentrations of forages in relation to requirements of ruminants grazing in natural pastures in the province of Punjab, Pakistan during two different seasons. Animals were closely followed during grazing and forages corresponding to those consumed by the animals were taken and analyzed for copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), and cobalt (Co) concentrations. The data on the trace- mineral concentrations showed that most of these minerals varied greatly as a function of seasons and sampling periods. The forage Cu, Fe, and Zn concentrations were affected by seasonal changes but no influence of season was observed on the concentrations of forage Mn and Co concentration. Forage Zn and Co, during both seasons and at some sampling intervals, and forage Mn during summer were at marginal deficient levels, and in contrast, all other forage trace-minerals were within the required range for ruminants during both seasons. Based on these results, the supplementation of Zn, Co, and Mn would seem most important to support optimum livestock productivity.  相似文献   

15.
A shift in oat (Avena sativa L.) production from grain to forage (hay and grazing) is occurring in the southeastern USA. However, most available cultivars were developed for improved grain production, rather than forage yield. We field tested several standard and new oat releases over 2 years, using repeated clippings to determine forage yield, nutrient uptake, and the potential to match plant nutrients with cattle mineral dietary needs. There were no differences in total annual forage yield among the tested cultivars within years but there was a difference between years. Forage tissue phosphorus (P), magnesium (Mg), and calcium (Ca) were sufficient, potassium (K), sulfur (S), and manganese (Mn) were excessive, and iron (Fe), copper (Cu), and zinc (Zn) were occasionally or frequently deficient to meet daily cattle dietary mineral needs. Sulfur, Cu, Fe, Zn, and Mn may be the most challenging to regulate in U.S. Coastal Plain soils at concentrations that satisfy both, oat and cattle nutritional requirements.  相似文献   

16.
Abstract

A two‐year study was conducted to determine the trace mineral status of cattle grazing forages (bahiagrass) and soils on a ranch in central Florida. Forage and soil samples were collected every month for two years. Month effect (P < 0.05) on soil trace mineral concentrations were observed in manganese (Mn) and zinc (Zn) in years 1 and 2, and in copper (Cu) and iron (Fe) only in year 2. All soil trace minerals studied showed higher (P < 0.05) concentrations in year 2. Month differences (P < 0.05) in forage trace mineral concentrations were found in cobalt (Co), Cu, Fe, Mn, molybdenum (Mo), selenium (Se), and Zn. The majority of forage trace minerals were higher in spring‐summer months. Year means were similar (P > 0.05) in forage trace mineral concentrations. Few and low correlation coefficients were observed between and within soil and forage trace minerals concentrations. Percentages of total forage collected with trace minerals below critical values (in parentheses) and suggestive of deficiency were as follows: in forage, Co (0.1 ppm), 93%; Cu (8 ppm), 98%; Fe (50 ppm), 75%; Mn (40 ppm), 41%; Mo (> 6 ppm), 0%; Se (0.2 ppm), 98%; and Zn (25 ppm), 84%; in soil, Cu (0.3 ppm), 77%; Fe (2.5 ppm), 7%; Mn (5 ppm), 91%; and Zn (1.5 ppm), 53%.  相似文献   

17.
Decreasing winter pasture productivity in unlimed Ultisols has been associated with increased soil acidity due to fertilizer N application. The susceptibility of cool season grasses to soil acidity and associated infertility factors that result in reduced forage yield are not well understood. This field study was undertaken to evaluate the effects of factorial combinations of limestone and P applications on annual ryegrass (Lolium multiflorum Lam. ‘Marshall') dry matter production and tissue mineral concentrations on a strongly acid (pH 4.7), sandy soil. Limestone was applied to a Lilbert loamy fine sand (loamy, siliceous, thermic, arenic Plinthic Paleudult) at rates of 0, 672, or 3808 kg ha‐1. Phosphorus was applied to split plots at rates of 0, 30, 60, 90, 120, 240, or 480 kg P ha‐1. Over three harvest years, ryegrass yields increased 90 to 750% and 25 to 80% at the highest lime and P rates, respectively. In the second year, yield response to applied P was significantly less at the high lime rate which indicated that liming made soil P more plant available. Lime and applied P increased plant tissue P, Ca, and Mg concentrations. Yield was positively correlated with soil pH, P, Ca, and Mg and negatively related to soil K and Al. Clear relationships between individual soil test levels and leaf mineral concentrations with yield fluctuations could not be established because these variables were inextricably related to the lime and P rates. Nevertheless, excessive soil Al, coupled with inadequate P, Ca, and Mg availability, were indicated as important nutritional factors limiting annual ryegrass growth in unlimed soil.  相似文献   

18.
In a series of preliminary experiments, the effect of varying solution concentrations of several nutrients on yield in ryegrass (Lolium perenne L. cv Grasslands Nui) or white clover (Trifolium repens cv Grasslands Huia) were investigated using a still low ionic strength (2.7 x 10‐3M) nutrient solution culture technique. The concentration of the nutrients in the basal solution was (μM): 500 calcium (Ca); 100 magnesium (Mg); 300 potassium (K); 600 nitrogen (N) [150 ammonium (NH4), 450 nitrate (NO3)]; 2.5 phosphorus (P); 600 sulfur (S); 3 boron (B); 2.5 iron (Fe); 0.5 zinc (Zn); 0.5 manganese (Mn), and 0.1 copper (Cu) at pH 4.7. The solution concentrations required for 95% maximum yield in ryegrass (μM) were: < 240 for total N, 2 for P, < 240 for S, < 40 for Mg, < 200 for Ca, and < 100 for K. The < symbol indicates that yield did not decrease nor increase, suggesting that the lowest solution concentration used (shown after < symbol) was adequate for 95% maximum yield. In white clover, solution concentrations required for 95% maximum yield (μM) were: < 38 for NH4, 10 for P,< 150 for S, 150 for Mg, < 125 for Ca, and 300 for K. Yield also declined for white clover when additional trace nutrients [Mn, Zn, Cu, iron (Fe), and boron (B)] were added, although the trace nutrient that was toxic could not be determined.  相似文献   

19.
There are substantial areas of dallisgrass (Paspalum dilatatum Poir.)‐common bermudagrass (Cynodon dactylon (L). Pers.) summer‐type pastures in the Southeastern Central Plain, but little information is available on their response to P and K fertilization. The purpose of this study was to measure the response of dallisgrass‐common bermudagrass pastures to P and K fertilization with and with‐ out N. Phosphorus and K were applied to two soils in May each year for three years. Yield data were collected by clipping a swath through the length of the plots when the minimum forage height was approximately 30 cm. Responses to P and K applications were obtained when the soil test levels were low to very low, but not when they were medium as determined by the Mississippi Soil Test (MST). Forage P concentration of the control in the medium P and K soil was within the adequate range of 2.8 to 3.4 g/kg, but forage K concentration was below the critical range of 16 to 18 g/kg. Forage P and K concentrations of the controls in the low P and K soil were below critical levels. At both locations forage P and K concentrations were increased by P and K fertilization. Available soil P increased with rate of P application but soil extractable K was unaffected by K application. No yield response to P and K are likely at medium soil test levels (MST) even at high rates of N. There was no response to P and K application without N.  相似文献   

20.
Abstract

We studied the effects of liming on dry matter production, nutrient composition, and grain yields of wheat in field experiments conducted on two soil types at three locations during the 1976–77 and 1977–78 growing seasons. Lime sources were commercial agricultural lime, finely divided stack dust, and dolomitic limestone (which contained 10.6% Mg). Lime applied at 2,800 kg/ha in the 1976–77 and 10,750 kg/ha in the 1977–78 experiments provided Mg from the dolomite at rates of 300 and 1,140 kg/ha, respectively.

Soil pH was significantly increased by liming, but Mg saturation percentages were significantly greater only at the 1,140 kg/ha rate. Forage dry matter and grain yields were not increased by lime applied at the lower rate, but significant increases were found in dry‐matter production in the late fall and spring samplings of the 1977–78 experiment. Those increases in plant growth and dry matter production were probably due to reductions in the soluble Mn and Al concentrations in the soil. Forage N and P concentrations were generally not influenced by liming. Potassium concentrations in forage from the limed plots were usually equal to or greater than those in forage from unlimed plots. Calcitic limestone sources generally increased forage Ca concentrations, but liming with dolomite more often than not depressed Ca concentrations below levels found in the check plots. Dolomite, when applied at the 1,140 kg/ha rate, effectively increased the forage Mg concentration, although the concentration exceeded 0.2% only during the early growth stages. Liming generally showed no significant reduction in the tetany potential of the wheat forage as predicted by the equivalent ratio K/(Ca + Mg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号