首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of soil aggregate size and mycorrhizal colonization on phosphorus (P) accumulation and root growth of Berseem clover (Trifolium alexandrinum L.) were studied. Root length and dry weight decreased with increasing aggregate diameter. Colonization of clover plants by arbuscular mycorrhizae (Glomus intraradices Schenck and Smith) improved root growth and P accumulation in all aggregate‐size classes. Although total root length of either mycorrhizal or nonmycorrhizal plants decreased with increasing aggregate diameter, the length of living external hyphae was not affected by aggregate size. Thus, colonized root length was improved by 20% as soil aggregate diameter increased. Total P accumulation per plant decreased with increasing aggregate size. However, total P accumulation per unit root length improved as the size of soil aggregate increased. In our study, mycorrhizal colonization improved total P accumulation and root growth in soil with large aggregates and compensated, in part, for the effect of soil strength.  相似文献   

2.
The effect of indigenous soil and selected mycorrhizal inoculation and phosphorus (P) applications on wheat yield, root infection and nutrient uptake was monitored for two successive years under field conditions. In addition, phosphorus efficiency and inoculation effectiveness (IE) were determined. Wheat (Triticum aestivum L.) plants were used as host plants in a Menzilat soil series (Typic Xerofluvents) in the Mediterranean coastal region of Turkey. Three levels of phosphorus were applied with Glomus mosseae to wheat plants over two successive years. Mycorrhizal inoculation significantly increased root colonization. G. mosseae-inoculated plants in both years exhibited a two-fold higher root colonization than the indigenous mycorrhizal colonization. Compared with non-inoculated plants, mycorrhizal inoculation increased wheat yield for both years. In addition, increasing P fertilizer levels enhanced the wheat grain yield. In both years, the inoculum efficiency (IE) decreased with increasing P level addition. Phosphorus efficiency is higher under low P application than the higher P application. However, with mycorrhizal inoculation P efficiency is higher than the non-inoculated treatment.

The effects of mycorrhizal inoculation on plant nutrient concentrations were determined: mycorrhiza-inoculated plants exhibited a higher zinc (Zn), manganese (Mn), copper (Cu), iron (Fe) nutrients concentration than non-inoculated plants. After two years of field experiments, it is concluded that mycorrhizal inoculation can be used in large arable areas; however, it is also very important to manage the indigenous mycorrhiza of arable land.  相似文献   


3.
ABSTRACT

This work was conducted to study phosphorus (P) efficiency of two maize genotypes (Zea mays, L.) in calcareous soil grown in potted soil with two levels of P in soil by adding 40 and 270 mg P/kg soil. Half of the pots were inoculated with arbuscular mycorrhizal fungi (AMF) (Rhizoglomus irregulare). The maize genotypes were harvested two times at 35 and 50 days after transplanting. The plant dry matter, root length and Plant P uptake of maize genotype Hagen 1 without mycorrhizal fungi (AMF) increased significantly compared with Hagen 9 at a low P level. In contrast, there was no significant difference between two maize genotypes inoculated with AMF under the same P level. The predicted value increased rapidly with increasing P levels from about 70% up to 97% in both maize genotypes with and without mycorrhizal fungi. At a low P level, the mycorrhizae hyphae contributed by about 31.6% and 30.2% of the predicted total P uptake in maize genotype Hagen 1 and Hagen 9, respectively. The results of this study suggested that the P-inefficient genotype Hagen 9 improved with inoculation with mycorrhizal fungi under a low P level at the same conditions of this experiment. Also, root growth system and mycorrhizal hyphae length would be a suitable plant parameter for studying P efficient maize genotypes, especially under limited P supply. The current study clearly pointed out that the mechanistic simulation model (NST 3.0) provides useful tools for studying the role of AMF in P uptake of plant.  相似文献   

4.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

5.
A glasshouse study was conducted to investigate the effects of soil temperatures of 20, 15 and 10°C on growth and phosphorus (P) uptake of barley (Hordeum vulgare L. cv. Galleon) inoculated with Glomus intraradices Schenck & Smith. Vesicular‐arbuscular (VA) mycorrhiza formation was significantly reduced as the soil temperature decreased. Plant growth depression due to temperature stress was more pronounced in mycorrhizal plants than in non‐mycorrhizal plants. The lower the soil temperature, the higher was the root‐shoot ratio. The ratio was also higher in non‐mycorrhizal plants than in mycorrhizal plants. Concentration of P in roots was influenced by mycorrhiza. Significant interaction between mycorrhiza and soil temperature was observed for root dry matter and specific P uptake (P uptake per unit weight of root). Compared to non‐mycorrhizal plants, specific P uptake in mycorrhizal plants was higher.  相似文献   

6.
ABSTRACT

A pot experiment was conducted out to investigate the yield and pungency of spring onion (Allium fistulosum L.) as affected by inoculation with arbuscular mycorrhizal (AM) fungi and addition of nitrogen (N) and sulfur (S) fertilizers. Plants were inoculated with either Glomus mosseae or Glomus intraradices or grown as uninoculated controls. Two levels of N and S were applied to the soil in factorial combinations of 50 and 250 mg N kg?1 soil and 0 and 60 mg S kg?1 soil. Plants were grown in a greenhouse for 25 weeks and then harvested. Mycorrhizal colonization resulted in increased shoot dry weight, shoot-to-root ratio, shoot length, sheath diameter, and phosphorus (P) concentrations. Shoot dry-matter yield was significantly affected by added N, but not by S. Shoot dry weight increased with increasing N supply (except for non-mycorrhizal controls without additional S fertilizer). Shoot total S concentration (TSC), enzyme-produced pyruvate (EPY), and organic sulfur concentration (OSC) in plants inoculated with Glomus mosseae were significantly lower than those of non-mycorrhizal controls, while these parameters in plants inoculated with Glomus intraradices were comparable to or higher than in the controls. Neither N nor S supply affected shoot EPY or OSC, whereas shoot TSC (except in plants inoculated with Glomus mosseae) and SO4 2? concentrations were usually significantly increased by S supply. In soil of high S and low P availability, mycorrhizal colonization had a profound influence on both the yield and the pungency of spring onion.  相似文献   

7.
Effects of inoculation with three different arbuscular mycorrhizal (AM) fungi (Glomus etunicatum, Glomus constrictum, and Glomus mosseae) on arsenic (As) accumulation by maize were investigated by using soil spiked with As at rates of 0, 25, 50, and 100 mg kg?1. The root colonization rates by the three fungi were significantly different (G. mosseae > G. etunicatum > G. constrictum) and decreased markedly with increasing As concentration in the soil. Inoculation with G. etunicatum or G. mosseae increased maize biomass and phosphorus (P) accumulation (G. mosseae > G. etunicatum) and reduced As accumulation in shoots (G. mosseae ≈ G. etunicatum), whereas inoculation with G. constrictum had little effect on these parameters. Inoculation with G. mosseae produced greater biomass and P uptake and less shoot As accumulation, and therefore it may be a promising approach to reduce As translocation from contaminated soils to plants.  相似文献   

8.
Performance of three vesicular arbuscular mycorrhizal (VAM) fungi cultures and a phosphate-solubilizing bacteria (PSB) culture alone or in combination with or without 75% of the recommended P2O5 dose based on soil-test crop response model was examined in maize in a phosphorus (P)-deficient acidic Alfisol in a glasshouse pot experiment. Sole application of VAM besides co-inoculation with PSB (Pseudomonas striata) and inorganic P stimulated mycorrhizal root colonization. Sole application of PSB, VAMT (Glomus intraradices), and VAMI (Glomus mosseae) as well as co-inoculation of VAM with PSB significantly improved crop productivity besides grain protein content, thus indicating a synergistic interaction between VAM and PSB. Application of VAMT or VAMI + PSB + 75% P2O5 remained at par with sole application of 100% P2O5 dose with regard to productivity, nutrient uptake, and soil fertility status (particularly P), thus indicating economization of fertilizer P to the tune of about 25% without compromising crop productivity and soil fertility in an acidic Alfisol.  相似文献   

9.
Abstract

A phosphorus (P) greenhouse experiment was carried out with maize (Zea Mays L.) using surface horizons of three contrasted acid soils from southern Cameroon. The objectives were (i) to assess causal factors of maize differential growth and P uptake and (ii) to explore plant–soil interactions in acid soils under increasing P supply. Shoot and root dry‐matter yield and P uptake were significantly influenced by soil type and P rate (P<0.000), but the interaction was not significant. Soil properties that significantly (P<0.05) influenced maize growth variables were available P, soil pH, exchangeable bases [calcium (Ca), magnesium (Mg)], and exchangeable aluminium (Al). Data ordination through principal‐component analysis highlighted a four‐component model that accounted for 88.1% of total system variance (TSV) and summarized plant reaction in acid soil condition. The first component, associated with 36.1% of TSV, pointed at increasing root–shoot ratio with increasing soil acidity and exchangeable Al. The second component (24.6% of TSV) highlighted soil labile P pool increase as a function of P rate. The third and fourth components reflected nitrogen (N) accumulation in soils and soil texture variability, respectively.  相似文献   

10.
To overcome soil nutrient limitation, many plants have developed complex nutrient acquisition strategies including altering root morphology, root hair formation or colonization by arbuscular mycorrhizal fungi (AMF). The interactions of these strategies and their plasticity are, however, affected by soil nutrient status throughout plant growth. Such plasticity is decisive for plant phosphorus (P) acquisition in P‐limited soils. We investigated the P acquisition strategies and their plasticity of two maize genotypes characterized by the presence or absence of root hairs. We hypothesized that in the absence of root hairs plant growth is facilitated by traits with complementary functions, e.g., by higher root mycorrhizal colonization. This dependence on complementary traits will decrease in P fertilized soils. At early growth stages, root hairs are of little benefit for nutrient uptake. Regardless of the presence or absence of root hairs, plants produced average root biomass of 0.14 g per plant and exhibited 23% root mycorrhizal colonization. At later growth stages of maize, contrasting mechanisms with functional complementarity explained similar plant biomass production under P limitation: the presence of root hairs versus higher root mycorrhizal colonization (67%) favored by increased fine root diameter in absence of root hairs. P fertilization decreased the dependence of plant on specific root traits for nutrient acquisition. Through root trait plasticity, plants can minimize trade‐offs for developing and maintaining functional traits, while increasing the benefit in terms of nutrient acquisition and plant growth. The present study highlights the plasticity of functional root traits for efficient nutrient acquisition strategies in agricultural systems with low nutrient availability.  相似文献   

11.
Maize roots are colonized by arbuscular mycorrhizal fungi, but less mycorrhizal symbiosis is expected as the plant-available phosphorus (P) concentration of soil increases, based on greenhouse and growth bench experiments. The objective of this study was to evaluate maize root colonization by arbuscular mycorrhizal fungi in a sandy loam soil with a gradient of plant-available P concentrations resulting from P fertilizer inputs. The field experiment received inorganic and organic P fertilizers for 3 years, and this created a 20-fold difference in the plant-available P concentration, from 12 to 204 mg Mehlich-3 extractable P kg−1. The proportion of maize roots colonized with arbuscular mycorrhizal fungi increased from 26 ± 2% during vegetative growth (V8 and VT growth stages) to 46 ± 2% in the reproductive R2 and R6 stages. The P fertilizer input did not affect maize root colonization by arbuscular mycorrhizal fungi. More arbuscular mycorrhizal fungi colonization of maize roots occurred in soil with increasing plant-available P concentrations (r = .12, = .05, n = 237), and this was associated with greater P uptake in the maize shoots (r = .53, < .001, n = 240). We conclude that the root-mycorrhizal symbiosis was more strongly related to maize growth than the plant-available P concentration under field conditions.  相似文献   

12.
分室法研究不同磷况下两种接种丛枝菌根玉米   总被引:4,自引:1,他引:4  
A modified glass bead compartment cultivation system was used to compare some chemical and biolog-ical properties of the two arbuscular mycorrhizal (AM) fungi Glomus mosseae and Glomus versiforme usingmaize (Zea mays) as the host plant with four added levels of available phosphorus (P). The proportion of host plant root length infected was determined at harvest. Shoot and root yields and nutrient concentra-tions were determined, together with the nutrient concentrations in the AM fungal external mycelium. Themorphology of various mycorrhizal structures of the two AM fungi was also compared by microscopic obser-vation. Inoculation with G. mosseae gave higher plant yields than that with G. versghrme, and the two fungiresponded differently in infection rate to areilable phosphorus level. Root infection rate of mycorrhizal maizecolonized by G. mosseae decreased markedly with increasing P level, and there was very poor development of the extraradical mpcelium at the highest rate of P addition. In contrast, G. versiforme showed greater tolerance to increasing P level. Elemental analysis showed that phosphorus, copper and zinc concentrations in the external mycelium differed between the two fungi and were much higher than those in the host plant. Differences in the morphology of the two fungi were also observed.  相似文献   

13.
Mineral nutrient uptake can be enhanced in plants inoculated with vesicular‐arbuscular mycorrhizal fungi (VAMF). The effects of the VAMF Glomus fasciculatum on uptake of P and other mineral nutrients in sorghum [Sorghum bicolor (L.) Moench] were determined in greenhouse experiments for plants grown on a low P (3.6 mg kg‐1) soil (Typic Argiudolls) with P added at 0, 12.5, 25.0, and 37.5 mg kg‐1 soil. Enhancements of growth and mineral nutrient uptake because of the VAMF association decreased as soil applications of P increased above 12.5 nig kg‐1 soil. Root colonization with VAMF without added soil P resulted in increased dry matter yield equivalent to 12.5 mg P kg‐1 soil (25 kg P ha‐1). Total root length colonized with VAMF decreased as soil P level increased. Regardless of P added to the soil, mycorrhizal plants had higher leaf P concentrations and contents than did nonmycorrhizal plants. Enhanced contents, but not necessarily concentrations, of the other mineral nutrients were noted in shoots of mycorrhizal compared to nonmycorrhizal plants. Mycorrhizal plants had enhanced shoot contents of P, K, Zn, and Cu which could not be accounted for by increased growth. The VAMF associations with sorghum roots enhanced mineral nutrient uptake when P was sufficiently low in the soil.  相似文献   

14.
To be sustainable, production in the traditional yam cropping system, faced with declining soil fertility, could benefit from yam–arbuscular mycorrhizal (AM) symbiosis, which can improve nutrient uptake, disease resistance, and drought tolerance in plants. However, only limited information exists about AM colonization of yam. A pot experiment was conducted to collect information on the response of two genotypes (Dioscorea rotundata accession TDr 97/00903 and D. alata accession TDa 297) to AM inoculation (with and without) and phosphorus (P) (0, 0.05, 0.5, and 5 mg P kg–1 soil). Factorial combinations of the treatments were arranged in a completely randomized design with four replicates. The percentage of AM colonization was significantly lowered at 5 mg P kg–1 soil rate in mycorrhizal plants of both genotypes. TDr 97/00903 showed more responsiveness to AM inoculation than TDa 297. The greatest AM responsiveness for tuber yield (52%) was obtained at 0.5 mg P kg–1 soil rate for TDr 97/00903. Mycorrhizal inoculation significantly increased root dry weight and tuber yield of TDr 97/00903 with the greatest values obtained at the 0.5 mg P kg–1 soil rate. Arbuscular mycorrhizal inoculation did not lead to significant (P < 0.05) changes in root length and area. Phosphorus application significantly increased the shoot dry weight and root diameter of TDa 297. Uptake of P was greatest at 0.5 mg P kg–1 soil in both genotypes and was significantly influenced by AM inoculation. Nitrogen (N) and potassium (K) uptake were greatest in mycorrhizal plants at 0.05 mg P kg–1 soil for TDr 97/00903 but at 0.5 mg P kg–1 soil of nonmycorrhizal plants of TDa 297. The increased tuber yield and nutrient uptake observed in the mycorrhizal plants indicate the potential for the improvement of nutrient acquisition and tuber yield through AM symbiosis.  相似文献   

15.
Vesicular arbuscular mycorrhizal (VAM) fungi symbiosis confers benefits directly to the host plant's growth and yield through acquisition of phosphorus and other macro- and micronutrients, especially from phosphorus (P)–deficient acidic soils. The inoculation of three VAM cultures [viz., local culture (Glomus mosseae), VAM culture from Indian Agricultural Research Institute (IARI), New Delhi (Glomus mosseae), and a culture from the Centre for Mycorrhizal Research, Energy Research Institute (TERI), New Delhi (Glomus intraradices)] along with P fertilization in wheat in a P-deficient acidic alfisol improved the root colonization by 16–24% while grain and straw yields increased by 12.6–15.7% and 13.4–15.4%, respectively, over the control. Uptake of nitrogen (N), P, potassium (K), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) was also improved with VAM inoculation over control, but the magnitude of uptake was significantly greater only in the cases of P, Fe, Zn, and Cu. Inoculation of wheat with three VAM cultures in combination with increasing inorganic P application from 50% to 75% of the recommended P2O5 dose to wheat through the targeted yield concept following the soil-test crop response (STCR) precision model resulted in consistent and significant improvement in grain and straw yield, macronutrient (NPK) uptake, and micronutrient (Fe, Mn, Zn, Cu) uptake in wheat though root colonization did not improve at P2O5 doses beyond 50% of the recommended dose. The VAM cultures alone or in combination with increasing P levels from 50% to 75% P2O5 dose resulted in reduction of diethylenetriaminepentaacetic acid (DTPA)–extractable micronutrient (Fe, Mn, Zn, Cu) contents in P-deficient acidic soil over the control and initial fertility status, although micronutrient contents were relatively greater in VAM-supplied plots alone or in combination with 50% to 75% P2O5 dose over sole application of 100% P2O5 dose, thereby indicating the positive role of VAM in nutrient mobilization and nutrient dynamics in the soil–plant system. There was significant improvement in available N and P status in soil with VAM inoculation coupled with increasing P levels upto 75% P2O5 dose, although the greatest P buildup was obtained with sole application of 100% P2O5 dose. The TERI VAM culture (Glomus intraradices) showed its superiority over the other two cultures (Glomus mosseae) in terms of crop yield and nutrient uptake in wheat though the differences were nonsignificant among the VAM cultures alone or at each P level. Overall, it was inferred that use of VA-mycorrhizal fungi is beneficial under low soil P or in low input (nutrient)–intensive agroecosystems.  相似文献   

16.
Arsenic (As)-contaminated irrigation water is responsible for high As levels in soils and crops in many parts of the world, particularly in the Bengal Delta, Bangladesh and West Bengal, India. While arbuscular mycorrhizal (AM) fungi markedly improve phosphorus (P) uptake, they can also alleviate metal toxicity. In this study, the effects of superphosphate and inoculation with the AM fungus Glomus mosseae on P and As uptake of lentil were investigated. Plant height, shoot dry weight, shoot/root P concentration, and shoot P content increased due to mycorrhizal inoculation. However, As concentration in roots/shoots and root As content were reduced, plant height, shoot dry weight, shoot/root P concentration/content, and root As concentration and content increased due to superphosphate application. Root P concentration decreased with increasing As concentration. It was apparent that As concentration and content in shoots/roots increased with increasing As concentration in irrigation water. Superphosphate interaction with G. mosseae reduced the role of mycorrhizal infection in terms of enhancing P nutrition and reducing uptake of potentially toxic As into plant parts. The role and relationship of mycorrhizal in respect of P nutrition and As remediation efficiency in plant parts was established. In conclusion, it was worth alluding to that lentil with AM fungal inoculation can reduce As uptake and improve P nutrition. However, in retrospect superphosphate increased P and As uptake and decreased the role of the mycorrhizal association. This resulted in stimulating increased P uptake while decreasing As uptake in lentil.  相似文献   

17.
To assess the effect of five vesicular arbuscular mycorrhizae (VAM) isolates of Glomus mosseae screened out from different farming situations, two pot experiments were conducted on maize and soybean in a phosphorus (P)–deficient Himalayan acid Alfisol. There was variation in VAM spore populations of Glomus mosseae isolates screened out from maize harvested fields, soybean fields, vegetable fields, tea orchard, and citrus orchard. Glomus mosseae isolate from vegetable-based cropping system exhibited maximum root colonization at flowering in maize (32%) and soybean (28%), followed by Glomus mosseae isolate from soybean fields, and exhibited the lowest in Glomus mosseae isolate from tea farm. Glomus mosseae isolate from vegetable-dominated fields was at par with Glomus mosseae isolate from soybean-based cropping system, again resulting in significantly high root biomass, nitrogen (N)–P–potassium (K) uptake, and grain and straw productivity both in maize and soybean crops besides the greatest Rhizobium root nodule biomass in soybean. There was a considerable reduction in soil fertility with respect to NPK status over initial status in pot soils inoculated with Glomus mosseae isolate from vegetable-dominated ecosystem, thereby indicating greater nutrient dynamics by this efficient VAM strain in the plant–soil system and greater productivity in a P-deficient acidic Alfisol. Overall, VAM isolates from different cropping systems and farming situations with variable size and composition of VAM mycoflora resulted in differential effects on growth, productivity, and nutrient dynamics in field crops. Overall, Glomus mosseae isolates from vegetable and soybean fields proved to be superiormost in terms of root colonization, growth, and crop productivity as well as nutrient dynamics in above study. Thus, isolation, identification, and selection of efficient VAM strains may prove as a boon in low-input intensive agriculture in P-deficient Himalayan acidic Alfisol.  相似文献   

18.
Effect of arbuscular mycorrhizal (AM) fungus on cadmium (Cd) concentration in flax was investigated in a pot experiment. Flax inoculated with Glomus intraradices and uninoculated controls were grown in a pasteurized soil that received Cd (0, 2.5, and 10 mg kg?1) and phosphorus (P; 10 and 50 mg kg?1) additions. Root colonization was not affected by Cd addition but was reduced by high P addition. Effect of G. intraradices on Cd was evident only at low P supply. Inoculation with G. intraradices decreased shoot Cd at no or low Cd addition, which was attributed to reduced root-to-shoot Cd translocation. In contrast, G. intraradices inoculation increased shoot Cd at high Cd addition, which might be associated with the greater absorption of Cd by extraradical hyphae and lower rhizosphere pH. Our results indicate that a benefit of AM fungus in reducing Cd in crops is achievable at Cd and P concentrations commonly in agricultural soils.  相似文献   

19.
Thirty three‐day‐old seedlings of nonmycorrhizal Sauropus androgynus were transplanted into pots containing a subsurface Oxisol uninoculated or inoculated with Glomus aggregation at three target soil solution phosphorus (P) concentrations. While no evidence of vesicular‐arbuscular mycorrhizal fungal (VAMF) colonization was noticed in the uninoculated soil, sauropus roots were colonized to the extent of 54%, 60% and 38% in the inoculated soil if target soil P concentrations were 0.014, 0.02 and 0.2 mg/L. VAMF colonization led to significant increases in tissue P and shoot dry matter accumulation at the first two soil P concentrations but not at the highest concentration. Root dry matter yield of mycorrhizal sauropus was greater than that of nonmycorrhizal sauropus at all soil P concentrations tested. Although mycorrhizal inoculation effects at soil P concentrations of 0.014 and 0.02 mg/L were comparable, growth of mycorrhizal plants was greater at the latter P concentration than at the former. Growth of mycorrhizal sauropus at this P concentration was also comparable to non‐mycorrhizal growth of the plant at soil P concentration of 0.2 mg/L. Based on the growth responses observed sauropus was classified as a highly mycorrhizal dependent species.  相似文献   

20.
Responses of three multipurpose fruit tree species, Parkia biglobosa (Jacq.) Benth, Tamarindus indica L. and Zizyphus mauritiana Lam., to inoculation with five species of arbuscular mycorrhizal fungi, Acaulospora spinosa Walker and Trappe, Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, Glomus intraradices Schenck and Smith, Glomus aggregatum Schenck and Smith emend. Koske and Glomus manihotis Howeler, Sieverding and Schenck, differed markedly with respect to functional compatibility. This was measured as root colonization, mycorrhizal dependence (MD) and phosphorus concentrations in shoots of plants. Root colonization of fruit trees by A. spinosa, G. aggregatum and G. manihotis was high and tree growth increased significantly as a consequence. G. intraradices also colonized well, but provided little growth benefit. G. mosseae colonized poorly and did not stimulate plant growth. The MD of P. biglobosa and T. indica was similar, reaching no more than 36%, while Z. mauritiana showed the highest MD values, reaching a maximum of 78%. The Z. mauritiana A. spinosa combination was the most responsive with respect to total biomass production; phosphorus (P) absorption probably contributed to this more than the absorption of sodium, potassium, magnesium or calcium. The density and length of root hairs were positively correlated with MD, suggesting that root hairs are not indicative of MD. Received: 20 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号