首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
《Journal of plant nutrition》2013,36(11):1787-1798
High ammonium-nitrogen (NH4-N) concentration in solution may adversely affect greenhouse tomato (Lycopersicon esculentum Mill.) yield, but it has been reported that small NH4-N fractions improve yield and may increase vegetative growth and nutrient element uptake. The effects of short- or long-term supply of NH4-N to tomato plants is not clear, and further information is required to determine how it can affect fruit yield. The objective of this study was to determine the tomato yield response to 0:100, 10:90, 20:80, 30:70, and 40:60 NH4-N:NO3-N ratios supplied at the vegetative, vegetative plus flowering, flowering plus fruiting, and fruiting stages, and over the entire plant life cycle. Two experiments under greenhouse conditions were conducted with ambient light in which light intensity was 2,667 and 5,030 W h?1 m? 2 for the winter (1996–1997) and the spring (1997) experiments, respectively. In both experiments, neither the length of NH4-N supply nor the NH4-N concentration in solution affected tomato yield. Longer NH4-N supply increased the amount of fruit with blossom-end rot (BER) in the winter (1996–1997) experiment, but BER incidence was unaffected in the spring (1997) experiment by duration of NH4-N supply. The number of fruit with BER was greatly increased by higher NH4-N concentrations in solution in the spring (1997) experiment. Plant height was not affected by NH4-N concentration in either the winter or spring experiments, and neither was fruit firmness measured for fruit at the mature green stage. Fresh and dry weights were unaffected by NH4-N concentration or length of supply, but in the spring (1997) experiment, fresh weight of leaves, as well as their proportion to the weight of the aerial parts, were affected by both NH4-N concentration and length of supply. High concentrations of NH4-N and long periods of NH4-N supply increased calcium (Ca) concentration in leaf tissue, but only for the spring (1997) experiment was there a significant relationship between Ca concentration in leaves and BER incidence.  相似文献   

2.
Higher greenhouse tomato (Lycopersicon esculentum Mill.) yield is obtained by using 25% of NH4‐N in solution compared to using NO3‐N as the sole nitrogen (N) source. However, blossom‐end rot (BER) may occur in tomato fruit when NH4‐N was present in nutrient solutions. High nutrient solution strengths improve tomato fruit quality, but can also increase BER. Two NH4‐N concentrations in solution (0 and 25%), and two nighttime solution strengths (NSS) (1X and 4X Steiner solution strength applied at 7 p.m.) were used to grow five indeterminate type greenhouse tomato cultivars: Caruso, Jumbo, Match, Max, and Trust. A significant interaction occurred between NH4‐N concentration and NSS factors: 0% NH4‐N and high NSS increased marketable yield and fruit:whole plant ratio, and reduced BER. In contrast, a concentration of 25% NH4‐N and high NSS reduced marketable yield and the fruit:whole plant ratio, and increased BER incidence. Max, Match, and Trust tomato cultivars produced high marketable yield and high dry weight of stem and leaves, but were susceptible to BER. Use of NH4‐N in solution reduced vegetative growth, and high NSS increased stem and leaf dry weight of the tomato plants. Fruit firmness was greater for the Max cultivar, and was unaffected by NH4‐N and NSS at the mature green, breaker, and red ripe fruit development stages. However, at the fully ripe stage, fruit firmness was higher with high NSS and with 25% NH4‐N.  相似文献   

3.
Zucchini squash (Cucurbita pepo L. cv. Green Magic) plants were grown hydroponically with nitrate (NO3):ammonium (NH4) ratio of 3:1 until the onset of flowering when the plants were assigned to four NO3:NH4 ratio (1:0, 1:1, 1:3, or 3:1) treatments. Changing the original nitrogen (N) form ratio significantly affected plant growth, fruit yield, nutrient element, and water uptake. Growth of plants was better when NO3‐N (1:0) was the sole form of N than when NH4‐N was part of the N treatment. Fruit yields for plants fertilized with 1:0 or 1:3 N‐form ratio were double those of plants grown continuously with 3:1 N ratio. The largest leaf area and plant water use were obtained with 1:0 N ratio treatment Total uptake of calcium (Ca), magnesium (Mg), and potassium (K) decreased with increasing NH4‐N proportion in the nutrient solution which suggest NH4‐N was competing with these cations for uptake. The results also demonstrated that growers may increase fruit yield by using a predominantly NO3‐N source fertilizer through the vegetative growth stage and by shifting the NO3:NH4 ratio during the reproductive phase.  相似文献   

4.
The effect of suboptimal supply of nitrogen (N) and of replacing nitrate in the nutrient solution with ammonia on growth, yield, and nitrate concentration in green and red leaf lettuce was evaluated over two seasons (autumn and spring) using multiple regression analysis. The plants were grown in a greenhouse on a Nutrient Film Technique (NFT) system. Nitrogen concentrations in the nutrient solution were either 3?mM or 12?mM, and the form of N was varied as follows: 100% NO3, 50% NO3?+?50% NH4, and 100% NH4. In both seasons, the biomass (fresh weight) of lettuce heads increased with increasing NO3 concentrations and in autumn, NO3 even at 1.5?mM was sufficient for high yield. However, head dry weight was affected neither by the season nor by changes in the composition of the nutrient solution. The concentration of NO3 had no effect on root dry weight, but it decreased at higher concentrations of NH4. The number of leaves increased as the ratio of NO3 to NH4 in the nutrient solution increased and was higher in autumn because of the longer growth period. Increasing the concentration of NO3 in nutrient solution increased both total N and nitrate concentration in lettuce heads (dry weight) but decreased the concentration of total C. Also, leaf nitrate concentration was lower in spring than in autumn and decreased with increasing NH4 concentration. Nitrogen utilization efficiency was maximum when NH4 levels in the nutrient solution were either 0% or 50% irrespective of the season. Our results thus show that suboptimal N supply in autumn will not affect lettuce yield, and that nitrate concentration in leaves is lower when NH4 concentrations in nutrient solution are higher and also much lower in red lettuce than in green lettuce.  相似文献   

5.
Abstract

Fertilizer N recommendations for small grains are frequently based on soil test N but data is limited for irrigated spring wheat. The relative grain yield response of irrigated spring wheat to N as affected by inorganic soil N (NO3‐N and NH4‐N), yield potential and market class was evaluated in thirteen Southern Idaho field experiments involving N rates. Experiments were conducted on silt loam soils from 1978 to 1986. Preplant soil NO3‐N and NH4‐N to a depth of 60 cm and ranging from 27 to 142 kg/ha accounted for approximately 73% of the relative yield variability. NO3‐N and NH4‐N were significantly correlated (r=.72). NH4‐N with NO3‐N did not account for more of the relative yield variability than using NO3‐N alone.

Inorganic N in the first 30 cm and the second 30 cm were significantly correlated (r=.69) but N in the first depth increment accounted for more of the relative yield variability. The linear regression coefficient relating inorganic N in the first 30 cm to relative yield of unfertilized spring wheat was almost twice as high as the coefficient for the second 30 cm increment (.50 vs .27). Results indicate that inorganic N below 30 cm should be weighted differently than N in the first 30 cm when determining the N requirements of irrigated spring wheat.

Yield potential significantly affected the relative yield response to N. The response to N was not significantly affected by spring wheat market class (hard red vs soft white).

For estimating fertilizer N requirements, the results provide little justification for the current widespread practices of (1) using the combined NH4‐N and NO3‐N inorganic soil test N values when NO3‐N alone has as much predictive value and (2) assigning equal weight to inorganic soil N at all sampling depths.  相似文献   

6.
Abstract

Combinations of NH4‐N:NO3‐N usually result in higher tomato (Lycopersicon esculentum Mill.) yields than when either form of nitrogen (N) was used alone. Leaf chlorophyll content is closely related to leaf N content, but the effect of the NH4‐N:NO3‐N ratio on leaf greenness was not clear. The objective of this study was to determine the influence of NH4‐N:NO3‐N ratios on chlorophyll meter (SPAD) readings, and evaluate the meter as a N status estimator and tomato yield predictor in greenhouse production systems. Fruit yield and SPAD readings increased as the amount of NH4‐N in solution increased up to 25%, while higher ratios of NH4‐N resulted in a decline in both. The N concentration in tomato leaves increased as concentration of NH4‐N in solution increased. Fruit yield increased as chlorophyll readings increased. SPAD readings, total N in leaves, fresh weight of shoots, and fruit yield all showed a quadratic response to NH4‐N, reaching a peak at 25 or 50% of N as NH4‐N. SPAD readings taken at the vegetative and flowering stages of growth had the highest correlation (r2=0.54) with N concentration in leaves, but this could not be used as a reliable estimate of N status and fruit yield. Lack of correspondence between high N concentration values and fruit yield indicated a detrimental effect of NH4‐N on chlorophyll molecules or chloroplast structure. The SPAD readings, however, may be used to determine the optimum NH4‐N concentration in solution to maximize fruit yield.  相似文献   

7.
The effect of ammonium:nitrate (NH4:NO3) ratio in nutrient solution on growth, photosynthesis (Pn), yield, and fruit quality attributes in hydroponically grown strawberry (Fragaria × ananassa Duch) cvs. ‘Camarosa’ and ‘Selva’ was evaluated. There were four nutrient solutions of differing NH4:NO3 ratios as follows: 0:100, 25:75, 50:50, and 75:25. Plants grown in solution with 75% NH4 had lower leaf fresh and dry weights and leaf area than those with 25% NH4 in both cultivars. High ratios of NH4 and NO3 in the solution always reduced the yield. The yield was increased by 38% and 84% in ‘Camarosa’ and ‘Selva,’ respectively, when the plants were grown in the 25NH4:75NO3 solution compared with plants grown in a higher NH4 ratio solution. The increased yield at the 25 NH4:75NO3 ratio was the result of the increase in fruit size, i.e., length and fresh weight of fruits. Plants grown in the 25NH4:75NO3 solution had the highest rate of Pn, while those grown in 75NH4:25NO3 solution had the lowest Pn rates in both cultivars. Increasing the NH4 ratio in the solution from 0 to 75% significantly reduced the calcium (Ca) concentration and postharvest life of the fruits in both cultivars. Both higher leaf area and Pn rate appeared to be the reason for the increased yield and plant growth in the 25:75 ratios of nitrogen (N). The results indicate the preference of strawberry plant growth toward a greater nitrate N form in a hydroponic solution. Therefore, a combination of two forms of N in an appropriate ratio (25NH4:75NO3) appears to be beneficial to plant growth, yield, and quality of strawberry fruits.  相似文献   

8.
Calcium uptake by bell pepper (Capsicum annuum L. cv. ‘California Wonder') varied by stage of plant development and N form supplied (NO3 NH4 + ratios: 1:0, 3:1, 1:1, 1:3, and 0:1) in a hydroponic study. Uptake of Ca++ was highest at bloom and during fruit expansion, making the fruit development stage the highest demand period. Calcium uptake declined with each increasing increment of NH4 + relative to NO3 supplied, although fruit yield was not significantly reduced until the ratio of NH4 + to NO3 exceeded 50%. Tissue Ca++ levels in the blossom‐end of the fruit were reduced whenever NH4 + was included with N supplied. Vegetative yield of plants followed the same trend as that observed for total fruit dry weights. Our results indicate that pepper yields are higher when NO3 is the predominant form of N. Also, these results strongly suggest that Ca++ fertilizer applications should precede the bloom period and continue during fruit development to ensure adequate Ca++ availability for fruit development.  相似文献   

9.
Abstract

Chlorophyll meter leaf readings were compared to grain yield, leaf N concentration and soil NH4‐N plus NO3‐N levels from N rate studies for dryland winter wheat Soil N tests and wheat leaf N concentrations have been taken in the spring at the late tillering stage (Feekes 5) to document a crop N deficiency and to make fertilizer N recommendations. The chlorophyll meter offers another possible technique to estimate crop N status and determine the need for additional N fertilizer. Results with the chlorophyll meter indicate a positive association between chlorophyll meter readings and grain yield, leaf N concentration and soil NH4‐N plus NO3‐N. Additional tests are needed to evaluate other factors such as differences among locations, cultivars, soil moisture and profile N status.  相似文献   

10.
ABSTRACT

This article presents the effects of nitrate/ammonium (NO3 ?/NH4 +), applied at different proportions to the root media with or without 5 mmol bicarbonate (HCO3 ?), on the yield and chemical composition of tomato fruit. Tomato plants were grown hydroponically (pH 6.9) in glasshouse conditions. The yield of fruit fresh matter from four clusters obtained from plants grown on the medium with NH4 + was about 25% lower than from the plants grown on the medium containing NO3 ? as the nitrogen (N) source. Supplying NO3 ?/NH4 + at a ratio of 4:1 increased the fruit yield by about 20% in comparison with the value recorded for NO3 ??plants. The enrichment of the medium with HCO3 ? stimulated the bearing, while the result depended on the ratio of NO3 ?/NH4 +. A combined treatment of HCO3 ? with NO3 ? or NH4 + in the medium increased yields by about 28% and 11%, respectively, in comparison to plants cultivated without HCO3 ?. The application of NO3 ?/NH4 + at ratios of 4:1 and 1:1 with HCO3 ? increased the respective yields by about 16% and 10% in comparison with plants grown without HCO3 ?. Modifications in the composition of the media affected the accumulation of organic solutions in the fruit. The NH4 + nutrition effected a 20% decrease in the accumulation of reducing sugars in the fruit in comparison to the fruit of plants grown in media with NO3 ?. In the cultivation of plants in media with various NO3 ?/NH4 + proportions the intermediate values of the reduced sugar concentrations were recorded in comparison with the values obtained for NO3 ??plants and NH4 +?plants. The enrichment of media with HCO3 ? increased the concentration of sugars in fruit from about 28% (for NO3 ??plants) to about 10% (for NH4 +?plants).

Malate and citrate are the main constituents of carboxylates in tomato fruit. The form of nitrogen applied to the medium did not significantly affect the concentration of carboxylates in fruit. Significant differences in carboxylate concentrations appeared in fruit grown on media enriched with HCO3 ? ions. In comparison with the cultivation without HCO3 ?, increases in the accumulation of carboxylates varied from about 22% to 30% depending on the form of the applied nitrogen. The concentration of amino acids in the fruit of plants grown with NH4 + exceeded that in NO3 ??plants by about 55%. In the plants grown on media of modified NO3 ?/NH4 + proportions, the concentration of amino acids in fruits were positively correlated with the level of NH4 + in the medium. The enrichment of media with HCO3 ? stimulated a further increase in amino acid concentration in fruit by about 9% in NO3 ? plants and about 21% in NH4 + plants compared with the respective control (without HCO3 ?).  相似文献   

11.
When grown with mixtures of nitrate‐nitrogen (NO3‐N) and ammonium‐nitrogen (NH4‐N) (mixed N) spring wheat (Triticum aestivum L.) plants develop higher order tillers and produce more grain than when grown with only NO3. Because similar work is lacking for winter wheat, the objective of this study was to examine the effect of N form on tillering, nutrient acquisition, partitioning, and yield of winter wheat. Plants of three cultivars were grown to maturity hydroponically with nutrient solutions containing N as either all NO3, all NH4, or an equal mixture of both forms. At maturity, plants were harvested; separated into shoots, roots, and grain; and each part analyzed for dry matter and chemical composition. While the three cultivars varied in all parameters, mixed N plants always produced more tillers (by a range of 16 to 35%), accumulated more N (28 to 61%), phosphorus (P) (22 to 80%), and potassium (K) (11 to 89%) and produced more grain (33 to 60%) than those grown with either form alone. Although mixed N‐induced yield increases were mainly the result of an increase in grain bearing tillers, there was cultivar specific variation in individual yield components (i.e., tiller number, kernels per tiller, and kernel weight) which responded to N form. The presence of NH4 (either alone or in the mixed N treatment), increased the concentration of reduced N in the shoots, roots, and grain of all cultivars. The effect of NH4 in either treatment on the concentrations of P and K was variable and depended on the cultivar and plant part. In most cases, partitioning of dry matter, P, and K to the root decreased when NH4 was present, while partitioning of N was relatively unaffected. Changes in partitioning between the shoot and grain were affected by N treatment, but varied according to cultivar. Based on these data, the changes in partitioning induced by NH4 and the additional macronutrient accumulation with mixed N are at least partially responsible for mixed‐N‐induced increases in tillering and yield of winter wheat.  相似文献   

12.
Limited information is available on biological effects of various levels of nickel (Ni) (deficiency to toxicity levels) on growth and yield of certain crops, particularly vegetables. In this sand‐culture study, we investigated the effects of four levels of Ni (0, 50, 100, and 200 μM) on growth, yield, and fruit‐quality attributes of two cucumber cultivars (Cucumis sativus L. cvs. Super Dominus and Negin) supplied with urea or NH4NO3 as nitrogen source. Addition of 50 μM Ni to the nutrient solution resulted in a significant increase of shoot and root dry‐matter yield of cv. Negin although this increase was greater in the urea‐fed plants than those fed with NH4NO3. In both cultivars, addition of 50 μM Ni increased urease activity and thereby decreased the urea concentration in the urea treatment. Addition of 100 and 200 μM Ni caused a significant decrease in root and shoot growth of cucumber although this decrease was insignificant for cv. Super Dominus in the 100 μM treatment. The highest fruit yield, total soluble solids (TSS), and fruit firmness were achieved at the 50 μM Ni treatment. Regardless of nitrogen source, Ni addition proportional to the concentration used increased leaf Ni concentration and fruit acid ascorbic concentration. The concentration of Ni required for optimum growth and yield of cucumber varied with cultivars. The level of 50 μM was sufficient for optimum growth of cv. Negin in nutrient‐solution culture while lower concentration of Ni was required for cv. Super Dominus. While the beneficial effects of sufficient levels of Ni on growth and yield of urea‐fed plants was greater than with NH4NO3‐fed plants, the toxic effects of Ni in these plants were also greater.  相似文献   

13.
Low and moderate rates of ammonium nitrate (NH4NO3) fertilizer were applied in late winter or late summer to mature ‘d'Anjou’ pear (Pyrus communis, L.) trees (planted 1963, 1965) from 1976 to 1994. Data on cold tolerance, nutrition, yield and fruit quality in relation to nitrogen (N) fertilization were collected between 1980 and 1988. Early autumn cold tolerance was higher for trees receiving low N rates versus moderate N rates in either late winter or late summer. In late autumn and early winter, cold tolerance increased for all trees, and little difference in winter hardiness existed for any N treatment. By mid‐winter, cold tolerance was higher for trees receiving the moderate rate of N in late winter versus low N in late summer. Cold tolerance was relatively high throughout autumn and winter freeze‐test periods for trees fertilized with low N in late winter. Tree vigor, fruit size, leaf N, and fruit N were highest for trees receiving the late winter, moderate rate of N. Yield was lowest, but fruit firmness, fruit quality and fruit calcium (Ca) concentrations were highest for trees treated with the late winter, low rate of N. The incidence of cork spot was lower from trees with the late winter, low N treatment than for the late summer, moderate N‐treated trees.  相似文献   

14.
We performed a series of experiments in controlled conditions to assess the potential of hardwood‐derived biochar either as a source or as a removing additive of macronutrients [nitrate‐nitrogen (NO3‐N), ammonium‐N (NH4‐N), potassium (K), phosphorus (P), and magnesium (Mg)] in solution. In addition, a 3‐year field trial was carried out in a commercial nectarine orchard to evaluate the effect of increasing soil‐applied biochar rates on tree nutritional status, yield, fruit quality, soil pH, soil NO3‐N, and NH4‐N concentration and soil water content. In controlled conditions, the concentrations of K, P, Mg, and NH4‐N in solution were significantly increased and positively correlated with biochar rates. Biochar was ineffective in removing NO3‐N, K, P, and Mg from enriched solutions, while at the rate of 40 g L?1 biochar removed almost 52% of the initial NH4‐N concentration. In a mature, irrigated, fertilized, commercial nectarine orchard (Big Top/GF677) on a sandy‐loam soil in the Italian Po Valley, soil‐applied biochar at the rates of 5, 15, and 30 t ha?1 were effective in reducing the leached amount of NH4‐N in the top 0.25 m soil layer over 13 months, as estimated by ion exchange resin lysimeters. Nevertheless, independent of the rate, biochar did not affect soil pH, soil N mineral availability, soil moisture, tree nutritional status, yield, and fruit quality. We conclude that, unless an evident constraint is identified, in non‐limiting conditions (e.g., water availability and soil fertility), potential benefits from biochar application in commercial orchards are hidden or negligible.  相似文献   

15.
Most plants can use either nitrate (NO3) or ammonium (NH4) as a source of nitrogen. However, the degree of effectiveness of these two forms on plant growth and nutrient uptake is dependent on plant species and NH4.: NO3 ratio. The 77: 77 ppm NH4: NO3‐N concentration ratio in solution caused the most growth reduction for cabbage, melon, and corn, with corn being least affected. Bean seems to be well adapted to the use of NH4, and was unaffected by equal concentrations of NH4: NO3‐N. The presence of 28 ppm NH4‐N in the mixture reduced only cabbage growth, whereas growth of melon, bean and com was not affected. All of the species studied responded to the NH4 concentration increase by an increase in anion content in their leaf tissues. The K content in melon and corn leaf was increased with NH4‐N up to 28 ppm. The K content in tomato and cabbage tissue was reduced at 28 ppm NH4. The K content in all the species tested was reduced with 77: 77 ppm NH4: NO3‐N concentration treatment. Calcium composition reduction in all the plant species was affected at 28 ppm NH4‐N with reduction to 50% that of all NO3 nutrition at 77 ppm NH4‐N. Magnesium composition of corn tissue was most severely reduced by the 77: 77 ppm NH4: NO3‐N nutrition. Bean Mg composition was not affected by the NH4‐N concentration in the 14 to 77 ppm range. Magnesium was reduced in cabbage, melon, and corn by NH4‐N concentrations above 28 ppm.  相似文献   

16.
To evaluate chicory (Cichorium intybus L.) and rocket salad [Eruca vesicaria (L.) Cav.subsp. sativa (Mill.)] capability to use ammonium‐nitrogen (NH4‐N) even in the absence of nitrate‐nitrogen (NO3‐N) in the nutrient solution, and the chances they offer to reduce leaf NO3 content, cultivated rocket and two cultivars of chicory ('Frastagliata’, whose edible parts are leaves and stems, and ‘Clio’, a leaf hybrid) were hydroponically grown in a growth chamber. Three nutrient solutions with the same nitrogen (N) level (4 mM) but a different NH4‐N:NO3‐N (NH4:NO3) ratio (100:0, 50:50, and 0:100) were used. Rocket growth was inhibited by NH4 nutrition, while it reached the highest values with the NH4:NO3 ratio 50:50. Water and N‐use efficiencies increased in rocket with the increase of NO3‐N percentage in the nutrient solution. In the best conditions of N nutrition, however, rocket accumulated NO3 in leaves in a very high concentration (about 6,300 mg kg‐1 fresh mass). For all the morphological and yield features analyzed, chicory resulted to be quite unresponsive to N chemical forms, despite it took more NO3‐N than NH4‐N when N was administered in mixed form. By increasing NO3‐N percentage in the nutrient solution, NO3 leaf content increased (5,466 mg kg‐1 fresh mass with the ratio NH4:NO3 0:100). On average, both chicory cultivars accumulated 213 mg NO3 kg‐1 fresh mass with the ratio NH4:NO3 100:0 and, differently from rocket, they showed that by using NH4 produce can be obtained very low in NO3 content.  相似文献   

17.
Abstract

Rate and source of nitrogen application significantly increased total yields from Micmac strawberry plants, but only in the first of 3 successive cropping seasons. Early harvest yields of marketable and total fruit from control plots were equal to or higher than those from the nitrogen treatments in all seasons, but these differences were not reflected in significant total yield responses in the 2— and 3— cropping seasons. Early season soil NO3‐N and NH4‐N values, in the planting year, reflected nitrogen application but the effect decreased as the season progressed and there was no consistent effect of any subsequent nitrogen treatment on soil or leaf N levels, marketable or total yields. A leaf N range of 1.5–2.0% at full bloom and spring soil NH4‐N, NO3‐N and mineralizable N levels of 4, 10 and 25 ppm, respectively, were adequate for optimum yields.  相似文献   

18.
Ammonium nitrate is a fertilizer and an explosive. Encapsulation of ammonium nitrate (NH4NO3) with coal combustion byproducts (fly ash or flue gas desulfurization gypsum) reduces the explosiveness of NH4NO3. A field study was conducted to determine the effects of encapsulated NH4NO3 on corn (Zea mays L.) and rye (Secale cereal L.) yield and accumulation of nitrogen (N), arsenic (As), cadmium (Cd), iron (Pb), copper (Cu), manganese (Mn), and zinc (Zn). Nitrogen rates were 56 and 112 kg ha?1. Yields and concentrations of N and metals in corn grain, ear-leaf, and stover and in rye shoots were not affected by N source. Increased N rate resulted in increased corn ear-leaf, grain, and stover N, ear-leaf Cu, Mn, and Zn, and rye shoot yield, Cu, and Zn. For both species, metal levels did not exceed normal ranges. Coal byproduct-encapsulated NH4NO3 is as effective as non-encapsulated NH4NO3 for corn or rye production, without increasing plant metal concentrations above normal levels.  相似文献   

19.
Evaluations of fruit quality and nitrogen, potassium, and calcium concentration of apple (Malus domestica Borkh. cvs. Gala and Golab) grown with five treatments of NO3?:NH4+ ratios were made in pot culture. The concentrations of NO3?:NH4+ ratios were 2.5:0.1, 6:1, 6:0.7, 6:0.5, 6:0.3 meq L?1. Fruit size, percent dry matter, total dissolved solids, total acidity, or juice pH was not affected by increased ammonium in the ratio. Firmness decreased as the proportion of NH4+ increased. Gala and Golab differed in some of these parameters. Concentrations of N and K increased as NH4+ increased, whereas Ca had no trend or decreased. Generally, the treatment of 2.5:0.1 produced fruits with lower N but higher K and Ca concentrations than the other treatments. This research showed that some parameters such as fruit weight, length, and diameter, juice pH, and dry matter were not affected significantly by NH4+ concentration whereas composition was affected.  相似文献   

20.
Tomato plants (Lycopersicon esculentum Mill. cv. Momotaro) were cultured in nutrient solution supplying 35 meq or 50 meq of nitrate (NO3) per plant weekly from the flowering stage of the first truss in two cropping seasons. The effects of NO3 supply levels and cropping season on fruit growth of tomato were investigated. Furthermore, the relationship between the results of the plant sap analysis and fruit growth of tomato was analyzed. In the spring to summer cropping, NO3 supplied was almost all absorbed and high productivity of tomato fruits was obtained in each treatment. In the fall to winter cropping, however, high NO3 supply did not increase the uptake of NO3, but tended to decrease the rate of fruit set and marketable yield. Accumulation of NO3 in the petiole sap was found with high NO3 supply in the fall to winter cropping. Cropping season greatly influenced not only fruit growth but also the concentration of NO3 in the petiole sap in relation to the ability of tomato plants to use available nitrogen (N). Furthermore, reduction in the rate of fruit set and weight of tomato fruit were found to relate to the low concentration of NO3 in the petiole sap of the leaf just below this fruit truss. High NO3 supply tended to increase potassium (K) concentration and electrical conductivity (EC) value, and to decrease phosphate (P), calcium (Ca), and magnesium (Mg) concentrations in the petiole sap. On the whole, concentrations of these elements in the petiole sap consistently reflected their uptake rates in two cropping seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号