首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
为探究磁化水浇灌对盐胁迫下黄瓜幼苗生长和生理特性的影响,采用人工气候室内进行的二因素二水平砂培试验,即2个磁化水水平(D:蒸馏水、M:磁化蒸馏水)和2个盐处理水平(Na0:0 mmol/L,Na1:100 mmol/L NaCl),共4个处理,研究了盐胁迫下磁化水浇灌对黄瓜幼苗生长、水分关系、光合气体交换、抗氧化能力、养分(N,P和K)及Na含量等的影响。结果表明:(1)无论在非盐胁迫和盐胁迫下,浇灌磁化水均具有改善黄瓜幼苗生长及/或生理活动的作用。磁化水在盐胁迫下改善黄瓜生长和生理活动的作用大于非盐胁迫下,且随盐胁迫或磁化水处理时间的延长,磁化水的效应增加。(2)盐胁迫下,磁化水浇灌改善黄瓜幼苗生长的主要生理机制在于:增加了黄瓜幼苗根系生长,改善了叶片水分关系,增加了叶片叶绿素含量、光合速率和水分利用效率,增强了叶保护酶活性从而降低了叶细胞膜受伤害程度,降低了根、茎和叶中的Na含量从而增加K+/Na+比。研究结果为磁化水用于次生盐渍化土壤上生长的黄瓜灌溉提供了理论依据。  相似文献   

2.
Salinity is a limiting factor for forage productivity in irrigated areas. The aim of this study was to evaluate the salt tolerance index (STI), the K/Na ratio, and the forage quality of several introduced cool season grass species in irrigated agriculture. Four irrigated water salinity concentrations were used (control, 4000, 8000, and 12000 ppm sodium chloride (NaCl)), and four grass cultivars belonging to three species were established under greenhouse conditions at the Qassim University Agricultural Research and Experimental Station during the 2012 and 2013 growing seasons (perennial ryegrass (Lolium perenne L., cvs. Aries and Quartet), endophyte-free tall fescue (Festuca arundinacea Schreb., cv. Fawn), and orchardgrass (Dactylis glomerata L., cv. Tekapo)). A randomized complete block design (RCBD) using three replications was used. Cultivars were evaluated based on their dry weights (g m?2) and forage quality. Additionally, the STI and potassium (K+) and sodium (Na+) concentrations in the studied grass cultivars were evaluated. The dry weights of the grasses decreased significantly as the salinity level of the irrigation water increased. At a salinity of 4000 ppm, the Aries perennial ryegrass had the highest dry weight at both sample cuttings. The Aries, Fawn, and Quartet grasses had the highest STI values. The percent of K+ and the K/Na ratio increased as the salinity of the irrigation water increased for the Fawn tall fescue and Quartet perennial ryegrass. In the previously cultivars, the percentage of Na+ decreased as the salinity level of the irrigation water increased, which was in contrast with the results observed for the Tekapo orchardgrass.  相似文献   

3.
Abstract

A salt-sensitive cucumber cultivar “Jinchun No. 2” (Cucumis sativus L.) was used to investigate the role of proline in alleviating salt stress in cucumber. Proline was applied twice (day 0 and day 4 after salt treatment) as a foliar spray, with a volume of 25?mL per plant at each time. Plant dry weight, leaf relative water content, proline, malondialdehyde (MDA), Na+, K+ and Cl? contents, as well as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities in the plants were determined at day 8 after salt treatment. The results showed that 100?mmol?L–1 NaCl stress significantly decreased plant dry weight, leaf relative water and K+ contents, and increased leaf MDA, Na+ and Cl? contents and SOD, POD, CAT and APX activities. However, leaf proline accumulation was not affected by salinity. The exogenous application of proline significantly alleviated the growth inhibition of plants induced by NaCl, and was accompanied by higher leaf relative water content and POD activity, higher proline and Cl? contents, and lower MDA content and SOD activity. However, there was no significant difference in Na+ and K+ contents or in CAT and APX activities between proline-treated and untreated plants under salt stress. Taken together, these results suggested that the foliar application of proline was an effective way to improve the salt tolerance of cucumber. The enhanced salt tolerance could be partially attributed to the improved water status and peroxidase enzyme activity in the leaf.  相似文献   

4.
A salt-sensitive cucumber cultivar "Jinchun No. 2" ( Cucumis sativus L.) was used to investigate the role of proline in alleviating salt stress in cucumber. Proline was applied twice (day 0 and day 4 after salt treatment) as a foliar spray, with a volume of 25 mL per plant at each time. Plant dry weight, leaf relative water content, proline, malondialdehyde (MDA), Na+, K+ and Cl contents, as well as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities in the plants were determined at day 8 after salt treatment. The results showed that 100 mmol L–1 NaCl stress significantly decreased plant dry weight, leaf relative water and K+ contents, and increased leaf MDA, Na+ and Cl contents and SOD, POD, CAT and APX activities. However, leaf proline accumulation was not affected by salinity. The exogenous application of proline significantly alleviated the growth inhibition of plants induced by NaCl, and was accompanied by higher leaf relative water content and POD activity, higher proline and Cl contents, and lower MDA content and SOD activity. However, there was no significant difference in Na+ and K+ contents or in CAT and APX activities between proline-treated and untreated plants under salt stress. Taken together, these results suggested that the foliar application of proline was an effective way to improve the salt tolerance of cucumber. The enhanced salt tolerance could be partially attributed to the improved water status and peroxidase enzyme activity in the leaf.  相似文献   

5.
为了解干旱对冬小麦光能利用与耗散机制的影响,研究了花后水分胁迫对冬小麦光合作用参数、叶绿素荧光参数及保护酶与光合作用相关酶活性的影响.结果表明,水分胁迫增加了旗叶可溶性糖和丙二醛含量,提高了叶片的渗透调节和抗氧化能力.中度水分胁迫下旗叶的光合速率和蒸腾速率与充分供水处理的相近,而重度胁迫处理的光合速率和蒸腾速率则降低较为明显.适度的水分胁迫可诱导叶片保护酶活性升高,从而减轻干旱伤害.适度的水分胁迫可增强PSⅡ反应中心的电子捕获效率,增强光呼吸作用,较好的保护光合机构.水分胁迫促进了冬小麦灌浆前期的蔗糖合成能力,但同时也导致灌浆中后期旗叶衰老的加剧,使得叶片的蔗糖合成能力急剧下降.水分胁迫降低了旗叶的RuBP羧化酶活性,除非受旱严重,否则RuBP羧化酶活性的降低不会限制叶片的光合作用.  相似文献   

6.
用不同浓度的NaCl溶液(0,50,100,200,300 mmol/L)模拟盐胁迫,研究盐胁迫对二色补血草幼苗生长特性及保护酶系统的影响.结果表明:(1)100和200 mmol/L盐胁迫下,根长和叶片数分别为对照的1.3,1.67倍,根(叶)鲜重、干重显著高于对照;根鲜重和叶干重在100 mmol/L盐胁迫下最高,分别为对照的1.35,1.6倍;300 mmol/L盐胁迫下,根长和叶片数均为对照的0.78倍,根(叶)鲜重、干重分别为对照的0.67(0.79)和0.85(0.69).地上、地下生物量受盐胁迫的抑制程度大小不明显.(2)随着盐胁迫的增加,二色补血草叶片中SOD,POD,CAT 3种保护酶活性均呈上升趋势,在盐浓度为300 mmol/L时活性最大,分别为对照的2.12,1.83,2.57倍;MDA含量在盐浓度300 mmol/L下,才显著高于对照,为对照的1.6倍.(3)从研究结果初步判定,二色补血草具有较强的耐盐性,可以在盐浓度300 mmol/L以下的环境中生长.  相似文献   

7.
为探讨自然水盐胁迫下土壤重金属对酶活性的影响,对艾比湖国家级自然保护区内3种典型植被群落水盐胁迫下土壤Cd,Cr,Cu等5种重金属和过氧化氢酶、磷酸酶、脲酶等4种酶活性进行了研究。结果表明:不同群落类型土壤水盐、酶活性和重金属含量方面具有各自特征,典型群落中土壤重金属含量对过氧化氢酶活性的影响更为强烈,而这种现象在耐旱植物梭梭中尤为明显,土壤水分受限情况下,以Cd,Cr和Zn为代表的土壤重金属对土壤酶活性有一定影响。在水盐环境较好、重金属含量较少的自然土壤中,土壤重金属对酶活性具有较高的促进作用;重金属含量较少,盐胁迫对酶活性抑制作用明显;水分胁迫对酶活性限制较小,土壤重金属对酶活性的影响小于土壤可溶性总盐,说明自然条件下土壤盐胁迫对土壤酶活性具有强烈的抑制作用;研究区Cd和Cr对土壤酶表现出激活作用,Cu对土壤酶活性的影响不明显,Mn和Zn对土壤酶则多表现出抑制效应。  相似文献   

8.
Abstract

The concentrations of K+, Na+, and proline and the ratio of K+ to Na+ (K+ / Na+) were analyzed in NaCl-unadapted and NaCl-adapted tobacco (Nicotiana tabacum) cells in suspension culture. At 3 to 5 d after inoculation, the NaCl-unadapted cells cultured in 100 mmol L?1 NaCl saline culture medium (Na100 medium) accumulated 28.7 mmol L?1 proline with a low ratio of K+ to Na+ (= 2.8) and the NaCl-adapted cells cultured in the Na100 medium contained 6.28 mmol L?1 proline with a high K+ / Na+ ratio (≧ 7.5). The contents of amino acids for the NaCl-adapted cells in the Na100 medium were similar to those for the NaCl-unadapted cells in a modified LS medium (standard medium). At 14 d after inoculation, the NaCl-unadapted cells in the Na100 medium contained 4.77 mmol L?1 proline and restored the K+ / Na+ ratio from 2.8 to 6.2. These results indicate the presence of a negative correlation between the K+ / Na+ ratio and proline accumulation and suggest that a balance between the K+ / Na+ ratio and proline accumulation may be the factor involved in determining the salt tolerance of plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号