首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Soil nutrient contents were determined in 802 surface soil samples (0–15 cm deep) collected from farmers' fields that support extensive cultivation of soybean (Glycine max L.) and finger millet (Eleusine coracana G.), spread across three districts, in the semi-arid regions of Karnataka, India. Following soil analysis, on-farm crop trials were conducted during 2005–2007 to study the crop response to the soil application of nitrogen (N), phosphorus (P), sulfur (S), boron (B), and zinc (Zn) fertilizers. Analyses of soil samples revealed that 4–83% fields were deficient in N, 34–65% in P, 83–93% in extractable S, 53–96% in B, and 34–88% of farmers' fields were deficient in Zn. On-farm trials conducted during the three rainy seasons (2005, 2006, and 2007) significantly (P ≤ 0.05) enhanced crop productivity indices such as yields of grain, stover, and total biomass in soybean and finger millet crops. Integrated management of deficient nutrients in finger millet and soybean crops significantly enhanced the grain and straw uptake of N, P, K, S, and Zn.  相似文献   

2.
Rainfed agriculture in the semi‐arid tropical (SAT) regions of India is greatly influenced by water shortages caused by low, highly variable, and erratic rainfall. However, apart from water shortages, crop productivity in these regions is also affected by low fertility. Little effort has been devoted to diagnosing and managing the nutrient‐related problems in farmers' fields in the SAT regions of India. The ongoing integrated watershed management program by the International Crops Research Institute for the Semi‐arid Tropics and its partners provided the opportunity to diagnose the soil infertility‐related problems by soil testing, develop nutrient management protocols, and determine on‐farm crop responses to fertilization in the SAT zone of India. This article discusses examples from recent research on the diagnosis of multinutrient deficiencies and on‐farm crop responses to fertilization. Results of analyses of soil samples from farmers' fields in several districts of Andhra Pradesh, Karnataka, Tamil Nadu, Rajasthan, and Madhya Pradesh states and Junagarh district, Gujarat, showed that almost all farmers' fields had low organic carbon (C), low to moderate available phosphorus (P), and generally adequate extractable potassium (K). However, the widespread deficiencies of sulfur (S), boron (B), and zinc (Zn) were most revealing; their deficiencies varied with nutrient, district, and state. On‐farm trials conducted during three seasons (2002–2004) in three districts of Andhra Pradesh showed significant yield responses of maize, castor, groundnut, and mung bean to the applications of S, B, and Zn over farmer's input treatment, and the yield responses were larger when these nutrients were added along with nitrogen (N) and P. It is concluded that the deficiencies of nutrients such as S, B, and Zn are widespread and are holding back the potential of rainfed production systems. Clearly, nutrient deficiencies can be diagnosed by soil testing.  相似文献   

3.
Rainfed agriculture in the dry regions is affected by water shortages. Our earlier research showed that the deficiencies not only of major nutrients but also those of sulfur (S) and micronutrients are holding back the potential of agricultural production systems. The objectives of this article are to discuss the efficacy of soil testing to diagnose nutrient deficiencies using 28,270 diverse soil samples collected from farmers' fields in the semi-arid tropical (SAT) regions of India and to confirm the efficacy of the soil test-based balanced nutrient management in enhancing productivity of a range of crops in on-farm farmer participatory trials under rainfed conditions. Results of a large numbers of on-farm trials demonstrated that soil testing is indeed an effective tool for on-farm fertility management, a prerequisite for sustainably enhancing the productivity in rainfed areas in the SAT regions of India. The need to strengthen the soil-testing infrastructure in the country is emphasized.  相似文献   

4.
Experiments were conducted on-farm during two seasons (2003–2004) to determine the effects of sulfur (S), boron (B), and zinc (Zn) fertilization on the grain and straw quality of sorghum and maize grown under rainfed conditions in the semi-arid zone of India. The farmers' fields were deficient in S, B, and Zn; in addition the soils were low in organic matter and extractable phosphorus (P), but adequate in extractable potassium (K). Results showed that the applications of S, B, and Zn (SBZn) with nitrogen (N) and P (SBZn + NP) significantly increased the grain N, S, and Zn concentrations in maize and sorghum compared to farmer inputs (FI) and SBZn treatments; the results relative to P and B composition of the grain of the crops were not consistent and did not show any definite trend. The application of SBZn + NP over FI generally increased N, S, and Zn concentration in sorghum and maize straw compared to FI and SBZn treatments. The straw composition of the crops relative to P and B did not show a consistent trend. The results of this study along with the results of our earlier research demonstrate that balanced nutrition of rainfed crops not only increases yields but also enhances N, S, and Zn contents in grain and straw of these crops.  相似文献   

5.
Soil degradation in the semi-arid tropics (SAT) is mainly responsible for low crop and water productivity. In Madhya Pradesh and Rajasthan states in India, the soil analyses of farmers’ fields revealed widespread deficiencies of S (9–96%), B (17–100%) and Zn (22–97%) along with that of P (25–92%). Soil organic C was deficient in 7–84% fields indicating specifically N deficiencies and poor soil health in general. During on-farm evaluations in rainy seasons 2010 and 2011, the soil test based addition of deficient nutrient fertilizers as balanced nutrition (BN) increased crop yields by 6–40% (benefit to cost ratios of 0.81–4.28) through enhanced rainwater use efficiency. The integrated nutrient management (INM), however, decreased the use of chemical fertilizers in BN by up to 50% through on-farm produced vermicompost and recorded yields at par or more than BN with far better benefit to cost ratios (2.26–10.2). Soybean grain S and Zn contents improved with INM. Applied S, B, Zn and vermicompost showed residual benefits as increased crop yields for succeeding three seasons. Hence, results showed INM/BN was economically beneficial for producing more food, while leading to resilience building of SAT production systems.  相似文献   

6.
Soil sampling is an integral component of fertility evaluation and nutrient recommendation for efficient use of nutrients in crop production. Little attention has been devoted to evaluating methodology for sampling watersheds under dryland agriculture. A stratified random sampling methodology for sampling the Appayapally watershed in Mahabubnagar district of Andhra Pradesh state in the semi‐arid tropical region of India was adopted and evaluated. The watershed has an area of about 500 ha, with gentle sloping lands (<1% slope), and 217 farmers own land in the watershed. The soils are Alfisols. A total of 114 soil samples were collected from the top 15‐cm layer to represent the entire watershed. Each sample was a composite of 7–8 cores, randomly collected from the area represented by a crop and group of farmers. The soil samples were air dried, ground, and analyzed for pH, electrical conductivity (EC), organic carbon (C), total nitrogen (N), and extractable phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), sulfur (S), zinc (Zn), manganese (Mn), iron (Fe), copper (Cu), and boron (B). Statistical analysis of the results on soil fertility parameters showed that the mean‐ or median‐based results of soil tests performed in the study did not differ significantly when the sample set size varied from 5 to 114 (100% of the population). Our results indicate that farmers' fields in the Appayapally watershed are uniform in the chemical fertility parameters studied, and even a small sample set size can represent the whole population. However, such a sampling strategy may be applicable only to watersheds that are very gently sloping and where fertilizer use is very low, resulting in an overall low fertility in the whole watershed.  相似文献   

7.
Berpura alluvial soil series of the Indo‐Gangetic Plains is situated in the Ambala District of the Haryana State of India. Soils of this series had medium concentrations of both potassium (K) and phosphorus (P) and large concentrations of sulfur (S) before 1970. To study different fractions of K, Olsen P, and 0.15% calcium chloride (CaCl2)–extractable (available) S of soils of the Berpura series and to create nutrient indexing of rice crops growing on this series, surface soil samples were collected from 100 farmers' fields after the harvest of the wheat crop in 2005. During kharif season of same year, samples of upper two leaves at anthesis growth stage of rice crop were also collected from the same 100 farmers' fields that had earlier been sampled for soil analysis. Analysis of soil samples showed more K depletion in soils of this series, of which 86% of farmers' fields were deficient in ammonium acetate (NH4OAc) K (available K). Thirty and 62% of leaf samples of the rice crop growing on the 100 fields of this series were extremely and moderately deficient in K, respectively. The mean values of water‐soluble, exchangeable, nonexchangeable, lattice, and total K were 10.6, 30.3, 390.0, 8204, and 8635 mg kg?1, respectively. In soils of this series, 0.123, 0.351, 4.517, and 95.009% of total K were found in water‐soluble, exchangeable, nonexchangeable, and lattice K forms, respectively. On the other hand, long‐term farmers' practice of more application of P fertilizer in wheat crop has resulted in P buildup in the soils of the Berpura series. Olsen P in soils of farmers' fields of this series ranged from 9.0 to 153.0 mg kg?1, with the mean value of 41.8 mg kg?1. Eighty‐two percent of leaf samples of rice crops grown on this series without application of P fertilizer were sufficient in P. The analysis of soil and rice crops for P and K proved the suitability of 0.5 M sodium bicarbonate (NaHCO3) and 1 N NH4OAc for extracting available P and K, respectively, in alluvial soils of the Indo‐Gangetic Plains. The 0.15% CaCl2–extractable S in this soil ranged from 9.6 to 307 mg kg?1 with a mean value of 34.6 mg kg?1. Four and 26% of soil samples had low and medium, respectively, in 0.15% CaCl2–extractable S. S deficiency was recorded in rice crops, as 29% of the leaf samples were extremely deficient in S and 58% were moderately deficient in S. This indicated the unsuitability of the 0.15% CaCl2 to extract available S from the Udic ustochrept utilized for cultivation of rice crops.  相似文献   

8.
Available micronutrient status of zinc, copper, manganese, and iron (Zn, Cu, Mn, and Fe) in surface soil samples under a rice–wheat system collected from farmers' fields in 40 districts representing different agroclimatic zones of the Indo‐Gangetic Plain (IGP) were determined. The selection of farmers, villages, blocks, and districts within an agroclimatic zone was made on the basis of a multistage statistical approach. In Trans‐Gangetic Plains, the diethylenetriaminepentaacetic acid (DTPA)–extractable Zn ranged from 0.11 to 5.08, Cu ranged from 0.22 to 4.72, Mn ranged from 2.9 to 101.2, and Fe ranged from 1.05 to 97.9 mg kg?1. In the Upper Gangetic Plains, the DTPA‐extractable Zn ranged from 0.04 to 2.53, Cu ranged from 0.06 to 4.32, Mn ranged from 11.1 to 421.0, and Fe ranged from 3.48 to 90.2 mg kg?1. In the Middle Gangetic Plains, the DTPA‐extractable Zn ranged from 0.17 to 8.60, Cu ranged from 0.09 to 7.80, Mn ranged from 3.0 to 155.1, and Fe ranged from 9.22 to 256.7 mg kg?1. In the Lower Gangetic Plains, the DTPA‐extractable Zn ranged from 0.04 to 3.46, Cu ranged from 0.21 to 4.38, Mn ranged from 9.54 to 252.2, and Fe ranged from 3.60 to 182.5 mg kg?1. The intensively cultivated Trans‐Gangetic transect representing the midplain and Siwalik had more available micronutrients than the arid plain. Midplain and arid plain showed 17 to 20% of soil samples were low to medium in Zn and 5 and 8% were low in Fe. In the Upper Gangetic Plains, only 25% samples were deficient in Zn, especially in central and southwest plains. In the Middle Gangetic Plains, 20 to 30% of samples were deficient in Zn, and very few samples were deficient in other micronutrients. In the Lower Gangetic Plains, a majority of the samples were medium to high in micronutrients except in Barind and Rarh Plains where 30% of samples were deficient in Zn. In the Lower Gangetic Plains, the available micronutrients were plentiful. Available micronutrients increased with increase in organic C content and decreased with increase in sand content, pH, and calcium carbonate. These soils are alluvial in nature, and there was no definite pattern of micronutrient distribution with depth in the profile. However, there was more accumulation in the Ap horizon than in the B horizon.  相似文献   

9.
Long-term effects of intensive cultivation and imbalanced fertilization were studied on nutrient concentration of soil and in wheat grown on loamy sand alluvial soils belonging to Lukhi soil series located in semiarid-subtropical region of North-Western India. The same 86 farmers' fields were sampled during 2009 and 2010 which had earlier been studied during 1983 and 1984. Electrical conductivity of soil decreased, pH did not change, and organic carbon improved. In soil, K extractable in 1N NH4OAc and boiling 1N HNO3 depleted to a deficient levels in 2009 from medium levels of 1983. Similarly, DTPA extractable Cu depleted to deficient level from earlier sufficient level in 2009 from medium K and sufficient Cu levels in 1983. Consequently, K and Cu in the top two leaves of wheat decreased to a deficient level in 2010 from a sufficient level in 1984. Sulfur in soils and leaves decreased significantly. Olsen P and DTPA-extractable Zn increased, increasing their contents in leaves. DTPA-extractable manganese (Mn) and iron (Fe) improved.  相似文献   

10.
Abstract

Crops grown on soils of the Kootenai River Valley of northern Idaho are showing an increasing tendency for micronutrient deficiencies. These soils are generally high in organic carbon (OC) and slightly alkaline. Soil pH has been increasing at the rate of 0.2 units every 10 years for the last 30 years. Normal soil sampling and testing procedures have failed to identify potential deficiencies of micronutrients prior to planting crops. Consequently, a different way to predict the tendency of micronutrient deficiencies is desired. The objectives of this study were to: (1) evaluate the effects of soil pH and OC on DTPA‐extractable Cu, Mn, and Zn, (2) establish relationships between pH, OC, Cu, Mn, and Zn and soil mapping units and geographic areas (drainage districts), and (3) predict tendencies for deficiencies or sufficiencies of evaluated micronutrients. One hundred fifty‐four soil samples were collected from the surface 30 cm of fields in the Kootenai River floodplain during 1989 and 1990. Six soil mapping units and eleven drainage districts were sampled. Soil pH, OC and DTPA‐extractable Cu, Mn, and Zn were determined on each sample. AU collected data were analyzed with the GLM procedure of SAS and quartile reference was used to separate the data. Manganese availability was negatively correlated with pH and OC. Significant correlations were also found between Cu and soil pH, and Zn and OC. The pH x OC interaction significantly affected both Mn and Zn availability. Soil pH, OC, and DTPA‐extractable Cu, Mn, and Zn were used to categorize soil mapping units and drainage districts into low, medium, and high tendencies for micronutrient availability. This categorization can be used as a tool for growers and consultants for soil micronutrient management  相似文献   

11.
12.
Agricultural land degradation due to nutrient deficiencies is a threat to agricultural sustainability. As nutrients availability is influenced by soil heterogeneity, climatic conditions and anthropogenic activities; hence, delineation of nutrient management zones (MZs) based on spatial variability could be an effective management option at regional scale. Thus, the present study was carried out to delineate MZs in the Shiwalik Himalayan region of India by capturing spatial variability of soil properties and secondary and micronutrients status because of the emerging nutrient deficiencies. For the study, a total of 2575 geo‐referenced representative surface (0–15 cm depth) soil samples were collected from the study region covering an area of 53,483 km2. The soils were analysed for pH, electrical conductivity, soil organic carbon, available sulphur (S) and micronutrients (Zn, Fe, Cu, Mn, B and Mo) concentrations. There was a wide variation in soil properties with coefficient of variation values of 14 (for pH) to 86% for available Mo. Geostatistical analysis revealed spherical, Gaussian, exponential, stable, circular and K‐Bessel best‐fit models for soil properties. Most of the soil properties were having moderate spatial dependence except soil pH and S (strong spatial dependence) and Zn (weak spatial dependence). About 49%, 10%, 2%, 13%, 11%, 12% and 8% area of the study region were found to be deficient (including acute and marginal deficiency) in S, Zn, Fe, Cu, Mn, B and Mo, respectively. The principal component analysis and fuzzy c‐mean clustering were performed to develop the MZs. Four principal components with eigenvalues greater than 1 and accounting 65·4% of total variance were retained for further analysis. On the basis of fuzzy performance index and normalized classification entropy, four potential MZs were identified. Analysis of variance confirmed the heterogeneity in most of the studied soil properties among the MZs. The study indicated that the methodology of delineating MZs can be effectively used in site‐specific S and micronutrients management in the Shiwalik Himalayan region of India. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

The Diagnostic and Recommendation Integrated System (DRIS) was employed for interpreting nutrient analyses of leaf tissue of guava fruit trees (Psidium guajava L.) cultivated in Punjab, northwest India. Standard reference DRIS norms were established for various nutrient ratios and used to compute DRIS indices, which assessed nutrient balance and order of limitation to yield. The DRIS evaluation and sufficiency range approach were equally effective and in agreement for diagnosing deficiencies of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sulfur (S), manganese (Mn), zinc (Zn), and copper (Cu). The results also show that the position of leaf tissue sampled does not have a major effect on the DRIS diagnosis. Nutrient sufficiency ranges derived from DRIS norms were 1.41–1.65, 0.10–0.17, 0.51–0.97, 1.16–2.12, 0.31–0.51, 0.18–0.28% for N, P, K, Ca, magnesium (Mg), and S and were 105–153, 58–110, 15–29, and 6–16 mg Kg?1 for iron (Fe), Mn, Zn, and Cu, respectively. According to these sufficiency ranges 35, 62, 51, 75, 70, and 68% of samples were sufficient, and 4, 29, 36, 9, 10, and 22% of samples were low in N, P, K, Ca, Mg, and S, respectively. More than 50 and 2% of the guava trees selected for sampling was found to deficient in N and P, respectively. For micronutrients, 15, 6, and 7% of samples were found to be low in Mn, Zn, and Cu.  相似文献   

14.
Soil health assessment of farmers’ fields in watershed villages in Medak district, Andhra Pradesh, India showed widespread deficiencies of sulfur (S), boron (B), and zinc (Zn) in addition to organic carbon and phosphorus (P). Participatory on-farm trials on soil test-based application of deficient Zn, B, and S along with nitrogen (N) and P during 2009 to 2012 significantly increased crop yields over farmers’ practice (FP)—by 31% to 45% in chickpea, 15% to 16% in cotton, 12% to 15% in paddy, and 8% to 9% in sugarcane. Total soluble sugars in sugarcane under balanced nutrition (BN) increased by 13%. Residual benefits of S, B, and Zn were observed in succeeding chilly crop (12% higher yield). Benefit to cost (B:C) ratios of BN ranged between 2.8 to 8.5 in chickpea, 2.6 to 4.4 in cotton, 2.3 to 2.9 in paddy, and 7.1 to 11.4 in sugarcane, indicating economic feasibility for scaling-up.  相似文献   

15.
Salt-affected soils in arid and semi-arid tracts of the Indian Punjab are prone to deficiency of micronutrients. Nine profiles from alluvial terraces, sand dunes and palaeochannels in the southwestern Punjab were investigated for total and diethylenetriamine-penta-acetic acid (DTPA) extractable Zn, Cu, Mn and Fe. Soil physiography exerted significant influence on the spatial distribution of micronutrients. Total contents varied from 20–78 for Zn, 8–32 for Cu, and 88–466 mg kg?1 for Mn and 0.82–2.53% for Fe. DTPA-extractable contents varied from 0.10–0.98 for Zn, 0.14–1.02 for Cu, 0.54–13.02 for Fe and 0.82–9.4 mg kg?1 for Mn. Total contents were higher in fine-textured soil than in coarse-textured soils. Concentration of micronutrients in the surface layer was low and there occurred more accumulation in the Cambic horizon. Organic carbon, pH, clay, silt and calcium carbonate exerted strong influence on the distribution of micronutrients. DTPA extractable Zn, Cu, Mn and Fe increased with increasing organic carbon but decreased with increase in pH and calcium carbonate content. Total micronutrient contents increased with increase in clay, silt and calcium carbonate contents and decreased with increase in sand content.  相似文献   

16.
The Diagnostic Recommendation and Integrated System (DRIS) was employed to interpret nutrient analyses of leaf tissues from ber fruit tree orchards grown in semi-arid and arid areas of Punjab in northwest India. The DRIS norms were established for various nutrient ratios obtained from the high-yield population and were used to compute DRIS indices, which assessed nutrient balance and their orders of limitation to yield. Nutrient sufficiency ranges derived from DRIS norms were 0.688–1.648%, 0.184–0.339%, 1.178–1.855%, 1.064–1.768%, 0.234–0.391%, and 0.124–0.180% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) and were 55–205, 26–80, 17–33, and 5–11 mg kg?1 for iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu), respectively. According to these DRIS-derived sufficiency ranges, 79%, 76%, 76%, 75%, 84%, and 72% of samples were sufficient, whereas 13%, 15%, 21%, 14%, 7%, and 18% of total samples were low in N, P, K, Ca, Mg, and S, respectively. For micronutrients, 84%, 85%, 77%, and 86% of samples were sufficient, whereas 6%, 3%, 8%, and 2% of samples were low in Fe, Mn, Zn, and Cu, respectively.  相似文献   

17.
In the semi-arid tropics (SAT), there exists large yield gaps (two- to four-fold) between current farmers’ yields and achievable yields. Apart from water shortages, soil degradation is responsible for the existing gaps and inefficient utilization of whatever scarce water resource is available. On-farm soil fertility testing across different states in Indian SAT during 2001–2012 showed widespread new deficiencies of sulfur (46–96 percent), boron (56–100 percent), and zinc (18–85 percent) in addition to already known phosphorus (21–74 percent) and nitrogen (11–76 percent, derived from soil carbon). Based on these results, a new fertilizer management strategy was designed to meet varying soil fertility needs at the level of a cluster of villages by applying a full nutrient dose if >50 percent fields were deficient and a half dose in the case of fields <50 percent deficient. Improved nutrient management significantly increased crop productivity in groundnut (Arachis hypogaea) (17–86 percent), sorghum (Sorghum bicolor) (30–55 percent), soybean (Glycine max) (10–40 percent), and maize (Zea mays) (10–50 percent) with favorable benefit-cost ratios (1.43–15.2) over farmers’ practice. Nutrient balancing improved nitrogen-fertilizer-use efficiency in respect of plant uptake from soil, transport into grain, use efficiency in food production, and grain nutritional quality. Balanced-nutrient-managed plots showed better postharvest soil fertility. Residual benefits of sulfur, boron, and zinc were observed in up to three succeeding seasons. Results of soil-test-based nutrient-management trials have sensitized policy makers in some states for desired policy orientation to benefit millions of smallholders in the Indian SAT.  相似文献   

18.
Abstract

The Diagnosis and Recommendation Integrated System (DRIS) was used to identify nutrient status of mango fruit trees in Punjab, India. Standard norms established from the nutrient survey of mango fruit trees were 1.144, 0.126, 0.327, 2.587, 0.263, 0.141% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), and 15, 3.5, 145, 155, and 30 mg kg?1, respectively, for zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and boron (B) in dry matter. On the basis of DRIS indices, 16, 15, 12, 17, and 16% of total samples collected during nutrients survey of mango trees were low in N, P, K, Ca, and Mg, respectively. For micronutrients, 19, 18, 12, 20, and 6% samples were inadequate in Zn, Cu, Fe, Mn, and B, respectively. DRIS‐derived sufficiency ranges from nutrient indexing survey were 0.92–1.37, 0.08–0.16, 0.21–0.44, 1.71–3.47, 0.15–0.37, and 0.09–0.19% for N, P, K, Ca, Mg, and S and 11–19, 1–6, 63–227, 87–223, and 16–44 mg kg?1 for Zn, Cu, Fe, Mn, and B, respectively.  相似文献   

19.
In view of widespread deficiencies, a long-term experiment was started at the International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India in 2007 to identify economically efficient application strategy (full or 50% dose every or every second year) of sulphur (S) (30 kg ha?1), boron (B) (0.5 kg ha?1) and zinc (Zn) (10 kg ha?1). During the fourth year in 2010, balanced fertilization through adding S, B and Zn increased maize grain yield by 13–52% and soybean yield by 16–28% compared to nitrogen (N) and phosphorus (P) fertilization alone. Balanced nutrition increased N and P uptake, utilization and use efficiency for grain yield and harvest index indicating improved grain nutritional quality. The N, P plus 50% of S, B and Zn application every year recorded highest crop yields and N and P efficiencies indices and increased rainwater use efficiency with a benefit:cost ratio of 11.9 for maize and 4.14 for soybean. This study showed the importance of a deficient secondary nutrient S and micronutrients B, Zn in improving N and P use efficiency while enhancing economic food production.  相似文献   

20.
To identify the best combinations of micronutrient-based fertilization treatments in terms of crop yield and nutrient uptake, three field experiments with greengram?fingermillet as the test sequence with 12 treatments on micronutrient-based fertilization [with recommended nitrogen (N)?phosphorus (P)?potassium (K) fertilizer] were conducted during 2005 to 2007 in a semi-arid Alfisol at Bangalore. The effects of treatments on available soil and plant uptake of nutrients [N, P, K, sulfur (S), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), boron (B), and molybdenum (Mo)] and yield of crops were assessed based on standard analysis of variance procedure. Using the relationships of yield with soil and plant nutrient variables, regression models of yield through soil and plant variables were calibrated and effects of variables on crop yields were assessed. The models gave high and significant yield predictability in the range of 0.87 to 0.98 through different variables. The model of plant uptake through soil nutrients indicated that soil S, Fe, and Zn had significant positive effects, whereas soil N, K, B, and Mo had negative effects on plant nutrient status in greengram. Similarly, soil P, Mn, and Zn had significant positive effects, whereas soil N, K, and Fe had negative effects on plant uptake of nutrients in fingermillet. Based on a relative efficiency index (REI) criteria, T2 for plant uptake and T12 for maintaining soil nutrients were found to be superior in greengram, whereas T2 for plant uptake and T8 for maintaining soil nutrients were found to be superior in fingermillet over years based on REI. The combined REI over soil and plant nutrients for both crops indicated that application of T8 for greengram and T2 for fingermillet could be prescribed for attaining maximum plant uptake of nutrients and productivity of crops in sequence, apart from maintaining maximum soil fertility of nutrients under semi-arid Alfisols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号