首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to determine the dietary vitamin E requirement of juvenile hybrid striped bass ( Morone chrysops female ×  Morone saxatilis male). Semi-purified diets supplemented with 0.2 mg Se kg−1 from Na2SeO3 and either 0 (basal), 10, 20, 40, 60, or 80 mg vitamin E kg−1 as  DL -α-tocopheryl acetate were fed to hybrid striped bass initially averaging 1.8 ± 0.1 g (mean ± SD) for 12 weeks. Fish fed the basal diet, which contained 5.8 mg α-tocopherol kg−1 dry weight, were darker in colour and had reduced weight gain, as well as generally reduced haematocrit values compared with fish fed diets supplemented with vitamin E. In addition, fish fed diets containing less than 20 mg supplemental vitamin E kg−1 had significantly ( P  < 0.05) reduced weight gain and feed efficiency compared with those fed diets supplemented with vitamin E at 20–80 mg kg−1. Dietary supplementation of vitamin E caused incremental increases in the concentration of α-tocopherol in both plasma and liver tissues. However, hybrid striped bass fed graded levels of vitamin E did not exhibit a dose response in terms of ascorbic acid-stimulated lipid peroxidation of hepatic microsomes. Regression analysis of weight gain data using the broken-line model indicated a minimum vitamin E requirement ( ±  SE) of 28 ( ±  3) mg kg−1 dry diet. Based on these data, the dietary vitamin E requirement of hybrid striped bass appears to be similar to that determined for other fish species.  相似文献   

2.
This study was conducted to evaluate the effects of dietary myo -inositol (MI) on the antioxidant status of juvenile Jian carp ( Cyprinus carpio var. Jian). A total of 1050 Jian carp (22.28±0.07 g) were randomly distributed into seven groups of three replicates each, feeding diets containing graded levels of MI (163.5, 232.7, 384.2, 535.8, 687.3, 838.8 and 990.3 mg kg−1 diet) for 60 days. Results indicated that the malondialdehyde content was the lowest for fish fed diets containing ≥384.2 mg MI kg−1, and the highest for fish fed the MI-unsupplemented basal diet ( P <0.05). The protein carbonyl content was decreased with increasing dietary MI levels up to 535.8 mg kg−1 diet, and no differences were found with a further increase in the MI concentration. The anti-superoxide anion capacity (ASA) and anti-hydroxyl radical capacity (AHR) were increased with increasing MI levels up to 535.8 mg kg−1 diet, and plateaued thereafter. The superoxide dismutase and glutathione- S -transferase activities showed the same tendency with the ASA capacity. Catalase, glutathione peroxidase and glutathione reducase activities were improved with increasing MI levels up to 838.8, 384.2 and 687.3 mg kg−1 diet, respectively, and remained nearly constant thereafter. These results suggested that MI could inhibit oxygen radical generation, increase enzymatic antioxidant capacity and prevent oxidative damage of carp. Dietary MI requirements for ASA and AHR activities of juvenile Jian carp were 567.94 and 517.22 mg MI kg−1 diet respectively.  相似文献   

3.
l -ascorbyl-2-polyphosphate (ApP) was used as a vitamin C source to investigate the ascorbic acid (AsA) requirements on growth performance and stress resistance of the larval white shrimp, Litopenaeus vannamei . Five isoenergetic and isonitrogenous fish meal-fish protein hydrolysate-based diets with five levels of ApP, AsA equivalent to 91.8, 188, 271, 360 and 436 mg kg−1 diet were fed to triplicate groups of L. vannamei (mean initial wet weight 1 mg) for 32 days. The diet with AsA 91.8 mg kg−1 showed high cumulative mortality after 10 days of feeding. After the 32-day trial, the shrimp that fed the diet had significantly lower survival and weight gain (WG, %) than those that fed 188, 271, 360 and 436 mg AsA kg−1 diets. Specific growth rate (SGR, % day−1) and final body wet weight (FBW, mg) showed the same pattern as WG (%). There were no significant differences in growth performance (FBW, WG and SGR) among the groups that fed 188, 271, 360 and 436 mg kg−1 of AsA at the termination of feeding trial. Broken-line regression analysis on WG indicated that 191 mg AsA kg−1 in the diet was the optimum for larval L. vannamei . On the contrary, dietary level of more than 360 mg AsA kg−1 was needed to ensure high resistance to stressful conditions such as low dissolved oxygen stressors.  相似文献   

4.
Soft-shelled turtles, Pelodiscus sinensis , with an average weight of 5.55 g, were fed diets supplemented with eight levels of ferrous sulphate for 8 weeks. The analysed iron content ranged from 50.8 to 482.9 mg kg−1. Growth rate of turtles fed the control diet with no iron supplementation was the lowest among all dietary groups. Haematological parameters including red blood cell, haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration of the turtles fed the control diet were also significantly ( P  < 0.05) lower relative to the other groups. Thus, dietary iron at 50.8 mg kg−1 (no supplemented iron) was deemed deficient for growth and ineffective at preventing anaemia in juvenile soft-shelled turtle. Whereas, a supplementation of 50 mg kg−1 ferrous sulphate (a total dietary iron of 91.8 mg kg−1) was enough to normalize the haematological values of soft-shelled turtles to the level similar to other iron supplement-fed groups. Within the tested dietary iron range, liver iron content curve-linearly ( r 2 = 0.99) increased with increasing dietary iron level. Furthermore, thiobarbituric acid-reactive substances in liver tissues of the turtles have also increased when liver iron content increased. The dietary iron requirement of soft-shelled turtle is 120–198 mg kg−1 when ferrous sulphate is used as the source of iron.  相似文献   

5.
Juvenile rainbow trout Oncorhynchus mykiss (Walbaum) were fed six low-phosphorus (P) diets supplemented with two different sizes of ground fish bone-meals (fine, 68 μm or less; coarse, 250–425 μm) and a coarse bone-meal diet containing four levels of citric acid (0, 4, 8 or 16 g kg−1 diet) to investigate the effects of pH and bone particle size on P bioavailability. The basal diet provided 3.4 g P   kg−1 and bone-meal increased P contents to 5.4–6.0 g P   kg−1. Coarse bone-meal diets supplemented with 0, 4, 8 or 16 g kg−1 of citric acid had pH values of 6.0, 5.7, 5.4 and 5.0, respectively. Weight gain and whole-body water, protein and lipid contents were not influenced by bone-meal supplementation. Supplementing the basal diet with both coarse and fine bone-meal significantly increased whole-body ash content. Fish fed no bone-meal were hypophosphataemic compared with fish fed with either fine or coarse bone-meals. Phosphorus in fine bone-meal had higher availability than P in coarse bone-meal. Bone-meal supplementation significantly decreased whole-body manganese content from 8.9 μg g−1 in fish fed no bone-meal to 2.3 and 4.5 μg g−1 in fish fed with fine and coarse bone-meals, respectively. The concentration of magnesium increased but zinc concentration was not affected by bone-meal supplements. Citric acid increased whole-body ash content but the influence of citric acid on the body P content was not significant ( P  = 0.07). Dietary acidification by citric acid significantly increased whole-body iron in a linear fashion. The bioavailability of dietary P can be improved by fine grinding the bone in fish meals.  相似文献   

6.
This study was conducted to evaluate the effect of dietary levels of vitamins C (0, 100 and 2000 mg kg−1), E (0, 50 and 500 mg kg−1) and their interaction on the growth performance, liver contents of ascorbic acid and α-tocopherol, haematology and immune response of channel catfish, Ictalurus punctatus . Each diet was fed to catfish in triplicate aquaria to apparent satiation twice daily for 12 weeks. The results indicate that the amount of vitamin E contained in the basal diet (23.1 mg kg−1) was sufficient to promote good growth, feed efficiency and survival, but its supplementation was needed to maintain high haematological values and liver vitamin E. Supplementation of vitamin C (100 mg kg−1) to the basal diet containing 10.5 mg kg−1 was required for good growth, feed efficiency, survival and prevention of vertebral deformity and optimum haematological indices. Liver storage of ascorbic acid and α-tocopherol increased with increasing dietary levels of each vitamin. Dietary vitamin E levels had no effect on liver ascorbic acid content, but increasing dietary vitamin C increased liver α-tocopherol. Some measured immune parameters (serum protein and superoxide anion production) were enhanced by supplementation of vitamin C or E. Chemotaxis ratio and phagocytosis were not affected by treatments.  相似文献   

7.
Juvenile yellow perch Perca flavescens were fed semipurified diets with varying protein to metabolizable energy ratios (PME, g protein MJ−1 metabolizable energy) and nutrient densities in three experiments to determine recommended dietary protein and energy concentrations. Experiment 1 fish (18.6 g) were fed diets containing 450 g crude protein kg−1 dry diet and 14.5–18.8 MJ ME kg−1 dry diet for 10 weeks. No differences were found in the growth of experiment 1 fish fed the different diets. Experiment 2 fish (21.9 g) were fed diets containing 15.7 MJ ME kg−1 dry diet and 210–420 g crude protein kg−1 dry diet for 8 weeks. Fish fed the diet containing 340 g kg−1 protein (diet PME = 22) exhibited the greatest weight gain. Experiment 3 fish (27.1 g) were fed diets with a PME of 22 and varying nutrient density (yielding 205–380 g crude protein kg−1 dry diet) for 8 weeks. No differences were found in the growth of experiment 3 fish. Yellow perch fed the semipurified diets exhibited increased liver fat content, liver size and degree of liver discoloration compared with fish fed a commercial fish meal-based diet. Liver changes may have resulted from high dietary carbohydrate levels. We conclude that a protein level of 210–270 g kg−1 dry diet is suitable for juvenile yellow perch provided that the dietary amino acid profile and carbohydrate content are appropriate for yellow perch.  相似文献   

8.
Six isonitrogenous (350 g kg−1 crude protein) and isoenergetic (17573 kJ kg−1) experimental diets incorporating raw and fermented sesame ( Seasamum indicum ) seed meal at 200, 300, and 400 g kg−1 into a fishmeal based diet were fed to rohu Labeo rohita fingerlings for 60 days and the growth performance and feed utilization efficiency of the fish was studied. The antinutritional factor phytic acid, from raw sesame seed meal, could be reduced below detection limit by fermentation with lactic acid bacteria ( Lactobacillus acidophilus ). Fermentation of the oilseed meal resulted in reduction of the tannin content from 20 to 10 g kg−1. In terms of growth response, feed conversion ratio and protein efficiency ratio, a diet containing 400 g kg−1 fermented sesame seed meal resulted in a significantly ( P  < 0.01) best fish performance. In general, growth and feed utilization efficiencies of fish fed fermented sesame seed meal diets were superior to those fed raw oilseed meal diets. Apparent protein digestibility (APD) values decreased with increasing levels of raw oilseed meal. APD was, however, significantly ( P  < 0.01) higher at all levels of incorporation of fermented sesame seed meal, while diets containing raw oilseed meal resulted in poor protein and lipid digestibility. Carcass protein and lipid contents of fish fed fermented sesame seed meal diets increased with increasing level of incorporation, being highest with 400 g kg−1 fermented oilseed meal-containing diet. The results showed that sesame seed meal may be incorporated in carp diets up to 200 g kg−1 and 400 g kg−1 in raw and treated (fermented) forms respectively.  相似文献   

9.
Atlantic halibut larvae (120 mg) were weaned to formulated diets with different supplementations of ascorbate- poly-phosphate, ApP (300, 2000 and 3000 mg ascorbic acid (AA) equivalents kg−1 diet). The experiment lasted for 50 days with cofeeding of enriched Artemia and formulated diets during the first 30 days. During the last 20 days, only formulated diets were offered to the fish. One control group was fed only Artemia (770 mg AA kg−1 dry weight) during the entire experimental period. The specific growth rate during the 50 days was ≈ 4.5% day−1 and the mean weights in all dietary groups were ≈ 1 g when the experiment was terminated. No differences in mean weight and mortality were observed between the groups fed formulated diets and that fed Artemia during the experiment. The fish size in the groups fed formulated diets ranged between 0.10 and 3.05 g and this differed from the Artemia group where the size ranged between 0.35 and 1.35 g. Dietary levels of ApP had no positive effect on growth and survival. The retention of AA was significantly higher in the groups fed high dietary levels of ApP. Apparently, the bioavailability of high dietary levels of ApP appeared to be low for young halibut. After stressing the fish using a high-salinity challenge test, no significant difference in survival occurred among the dietary groups. Cortisol levels in plasma recorded 3 h post stress was significant lower in the Artemia group compared with the groups fed the formulated diets.  相似文献   

10.
Ethoxyquin (EQ) has been used as an antioxidant in livestock, aquaculture and pet foods. Animal food safety law has established the upper limit of EQ in animal feed at 150 mg kg−1. However, the risk of EQ at the approved level for aquaculture feed (150 mg kg−1) to fish health is unknown. Here, we examine the effect of EQ on the immunity of tilapia ( Oreochromis niloticus ). EQ concentration in the blood reached 0.16 mg L−1 in fish fed EQ at the approved level. This level of EQ inhibited phagocytic activity of leucocytes in vitro and antibacterial activity of whole blood in vivo . Furthermore, pyknosis in the liver was observed throughout the duration of feeding. However, after 30 days of experimental challenge with feed containing 150 mg kg−1 of EQ, no significant difference was observed in mortality. Although EQ at the approved level in feed causes immunosuppression in fish, the severity of immunosuppression does not lead to a lowering of disease resistance for short feeding periods.  相似文献   

11.
This study was conducted to determine the effects of feeding increasing lipid concentrations (310, 380 and 470 g kg–1 lipid on dry weight) in diets based mainly on herring byproducts to Atlantic salmon Salmo salar . The diets were isonitrogenous, varying in dietary lipid content at the expense dietary starch. Average fish weight increased from 1.2 kg in April to 2.2–2.7 kg at the end of the feeding trial in September. Significantly greater growth was found in fish fed either the 380 g kg−1 or the 470 g kg−1 lipid diets compared with the 310 g kg−1 lipid diet. Muscle lipid content increased in all dietary groups on a wet weight basis from 7.7 ± 1.4% to 12 ± 3% in salmon fed the 310 g kg−1 lipid diet, and to 16 ± 2% in salmon fed the 380 g kg−1 and 470 g kg−1 lipid diets. In fish of similar weight there was a positive correlation between dietary lipid and muscle lipid concentrations. Low concentrations of muscle glycogen were detected in fish fed each of the diets, while muscle vitamin E concentrations slowly decreased as muscle lipid increased. Muscle fatty acid composition reflected dietary fatty acid profiles, containing similar percentages of total saturated, monoenic and n-3 fatty acids (20:5n-3 and 22:6n-3) in fish from all dietary treatment groups. However, a higher ratio of n-3/n-6 was found in muscle from fish fed the 470 g kg−1 lipid diet compared with the other two groups. Blood chemistry values varied somewhat, but all values were within normal ranges for Atlantic salmon of these sizes.  相似文献   

12.
Triplicate groups of Mystus nemurus (Cuvier & Valenciennes) were fed isoenergetic semipurified diets containing seven dietary protein levels from 200 to 500 g kg–1 diet for 10 weeks. Dietary protein was supplied by graded amounts of a protein mixture (tuna muscle meal:casein:gelatine) at a fixed ratio of 50:37.5:12.5. Mystus nemurus fingerlings of initial weight 7.6 ± 0.2 g were fed close to apparent satiation at 2.5% of their body weight per day in two equal feedings. Growth performance and feed utilization efficiency increased linearly with dietary protein level from 202 to 410 g kg–1 diet and declined with protein levels of 471 g kg–1 diet or above. Protein efficiency ratio and apparent net protein utilization started to decline when the fish were fed with dietary protein levels exceeding 471 g kg–1 diet. Fish fed with lower protein diets (202–295 g kg–1 diet) had significantly ( P  < 0.05) higher carcass lipid content compared with fish fed with higher protein diets. Carcass lipid contents were inversely related to moisture content. Dietary protein did not significantly affect fish carcass protein and ash content. Using two-slope broken-line analysis, the dietary protein requirement for M. nemurus based on percentage weight gain was estimated to be 440 g kg–1 diet with a protein to energy ratio of 20 mg protein kJ–1 gross energy. This level of protein in the diet is recommended for maximum growth of M. nemurus fingerlings weighing between 7 and 18 g under the experimental conditions used in this study.  相似文献   

13.
Haematological response and growth performance over 150 days, and resistance to a low-temperature stress of Nile tilapia fed diets with increasing folic acid (FA) levels were evaluated. The experiment was conducted in a completely randomized design with eight FA levels (0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 mg kg−1 feed) supplemented in purified diets (32.0% CP and 13 398 kj DE kg−1). One hundred and ninety-two fingerlings were randomly assigned to 32 net cages distributed in eight 1000 L aquaria with a physical and biological filter and a temperature control system (26.0 ± 1.0 °C). For cold-induced stress, fish were transferred to 24 30 L-aquaria with individual biofilters and aeration. The water temperature was gradually reduced until it reached 13 °C. Haematological parameters evaluated before and after cold stress were total erythrocytes and leucocytes count, differential leucocyte, haemoglobin, haematocrit, total plasmatic protein and haematometric indices. Growth performance parameters were mean weight gain, feed conversion ratio and survival. Dietary FA supplementation did not influence erythropoiesis under normal temperature conditions; cold stress impaired erythropoiesis, causing hypochromic microcytic anaemia and leucopoiesis, and also neutrophilia. Growth performance is influenced by folate and supplementation between 0.5 and 1.0 mg FA kg−1 diet, which makes up for nutritional demands, guaranteeing production and health under appropriate temperature conditions.  相似文献   

14.
The main objective of the present study was to evaluate whether dietary supplementation of urea might reduce the incidence of winter ulcer in sea water-farmed Atlantic salmon. Salmon destined to be S0 smolt were fed with a urea-supplemented diet (0 or 20 g kg−1 urea) over an 8-week period prior to sea water transfer and were then fed supplemented diet (0, 5, 10 or 20 g kg−1 urea) during the first and second winters in the sea. During the first winter positive relationships between dietary urea and plasma urea and between plasma urea and plasma osmolality were observed. Further, plasma osmolality displayed a negative relationship to mortality. Of the salmon that died during the first winter in the sea 90% had one or more skin ulcers. Both during the first and second winter there were fewer salmon with ulcer among fish fed with the diets supplemented with urea. Salmon fed with 20 g kg−1 urea tended to have higher percentage water in the muscle. Mortality and incidence of salmon with ulcer seemed to relate to plasma osmolality amongst fish fed on diets that differed in levels of urea supplementation, suggesting that an osmotic imbalance may contribute to the development of winter ulcer in farmed salmon. Salmon fed with 20 g kg−1 urea showed significantly greater body weight during the second winter in sea. Fish killed without prior starvation had significantly higher level of muscle urea in the 20 g kg−1 urea group compared with fish fed with the unsupplemented diet. However, a 13-day starvation period reduced urea content in the muscle to the level of the control. No effects of dietary urea supplementation on the sensory quality of market size Atlantic salmon were observed.  相似文献   

15.
In a 80-day feeding trial, a total of 1050 juvenile Jian carp ( Cyprinus carpio var. Jian) with an average initial weight of 10.71 ± 0.05 g were fed semi-purified diets containing seven graded levels of pyridoxine (0.20, 1.71, 3.23, 4.96, 6.32, 8.58 and 12.39 mg pyridoxine kg−1 diet). Results indicated that with increasing dietary pyridoxine levels up to 4.96 mg kg−1 diet, percent weight gain (PWG) and specific growth rate (SGR) were improved, and no differences were found with further increase of pyridoxine levels. Feed intake also followed the similar pattern to that observed with PWG and SGR when dietary pyridoxine levels were ≤6.32 mg kg−1 diet. But feed efficiency and protein efficiency ratio were not affected by pyridoxine levels. Crude protein of carcass, productive protein value and plasma ammonia concentration were improved with increasing dietary pyridoxine levels up to 4.96 mg kg−1 diet. Amylase activities in the intestine were improved with increasing dietary pyridoxine levels up to 4.96 mg kg−1 diet, but protease and lipase activities in the intestine were not affected by pyridoxine levels. Na+, K+-ATPase and Gamma-glutamyl transpeptidase activities in proximal intestine, mid intestine (MI) and distal intestine (DI) were lowest when fed the diet containing 1.71 mg pyridoxine kg−1 diet. The alkaline phosphatase activities in MI and DI followed the same pattern. The dietary pyridoxine requirement of juvenile Jian carp based on PWG estimated by broken line model was 6.07 mg pyridoxine kg−1 diet.  相似文献   

16.
Six isonitrogenous [450 g kg−1 crude protein (CP)] and isoenergetic diets (23 kJ g−1) with six levels of defatted soybean meal inclusion (0, 132, 263, 395, 526 and 658 g kg−1) in substitution of fish meal were evaluated in gilthead sea bream of 242 g initial weight for 134 days. Fish fed diets S0, S13, S26 and S39 had a similar live weight (422, 422, 438 and 422 g, respectively) but fish fed diets S53 and S66 obtained the lowest final weight (385 and 333g, respectively), and similar results were presented in specific growth rate (SGR). Fish fed diets S53 and S66 also obtained the highest feed conversion ratio (FCR). Quadratic multiple regression equations were developed for SGR and FCR which were closely related to dietary soybean level. The optimum dietary soybean levels were 205 g kg−1 for maximum SGR and 10 g kg−1 for minimum FCR. Sensorial differences were appreciated by judges between fish fed S0 and S39 soybean level, but after a re-feeding period of 28 days with diet S0, these differences disappeared.  相似文献   

17.
During refrigeration, lipid oxidation is a major factor contributing to post-mortem deterioration of flesh quality. Polyunsaturated fatty acids (PUFA), especially n -3 PUFA, are present in high concentration in fish tissues, and in oils used in diets, and are readily susceptible to peroxidation. α-Tocopherol (AT) can reduce tissue lipid peroxidation in vivo and post mortem. The effect of increasing the tissue level of AT by dietary supplementation of α-tocopherol acetate (ATA) was therefore investigated. Commercial salmon diets C, M and H, high in lipids, containing 184, 573 and 865 mg ATA kg−1 diet DM (dry matter) were fed to 18 fish per treatment. Dietary AT: PUFA ratios were 2.0, 6.3, and 9.5 mg g−1 for diets C, M and H, respectively. Fish (mean initial live weight 630 g) were slaughtered after 50 and 78 days of feeding. Fillet samples were analysed fresh or after storage at 4 °C for 12 days and –20 °C for 12 months. Lipid oxidation was measured using the thiobarbituric acid test. Colour score, but not carotenoid content, of fillets was significantly higher between 6 and 12 days of fresh storage in fish fed diets M and H compared with those fed diet C. Colour score, carotenoid content and ΑΤ content decreased and the content of lipid oxidation products increased following storage of fillets at –20 °C for up to 12 months, although lipid oxidation was always significantly lower in fish fed diets M and H.  相似文献   

18.
The use efficiency and feed conversion of extruded and pelletized diets were compared. Eight isoproteic diets (220 g kg−1 digestible protein) were assayed for 90 days in a 2 × 2 × 2 multifactorial design with two carbohydrate levels (400 and 500 g kg−1), two lipids levels (40 and 80 g kg−1) and two diet processing (pelletization and extrusion) with three repetitions. The growth of Piaractus mesopotamicus fed with these diets and the quality control indices of diets were gauged. The density of extruded diets was lower as carbohydrate level was 400 g kg−1 and lipid 40 g kg−1. The interaction carbohydrate and diet processing presented higher leaching value for low carbohydrate level in extruded diet. Fish fed with extruded diets presented the best feed conversion and protein efficiency ratio. When high levels of carbohydrate and lipid are combined, the weight gain is impaired. The interaction between diet processing diet and lipid levels resulted in the best fish performance when pelletized diets with 40 g kg−1 lipid or extruded diets with 80 g kg−1 lipid were considered. The protein efficiency ratio increased with the increment of carbohydrates in the pelletized diets. The fish show low tolerance to lipids and a preference for carbohydrate when the lipid productive values are taken into account.  相似文献   

19.
Non-faecal phosphorus (P) was determined for large yellowtail to estimate a minimum available P requirement (Experiment  1) and to justify inorganic P supplementation in a fish meal-based diet (Experiment 2). In Experiment 1, purified diets with incremental P concentrations were fed to yellowtail (mean weight 917 g) at a feeding rate of 1.5% of body weight. The peaks of non-faecal P excretion appeared 5–6 h after feeding in fish fed more than 4.5 g available P kg−1 dry diet. Broken-line analysis indicated that the minimum available P requirement was 4.4 g kg−1 dry diet. In Experiment 2, a purified diet (PR) containing 6.5 g available P kg−1 and a fish meal-based diet with (F1) and without (F0) additional phosphorus were fed to yellowtail (mean weight 1.1 kg) at 1.5% (PR) and 2% (F0 and F1) feeding rates respectively. There was no significant difference in P excretion between fish fed the F0 (5.5 g soluble P kg−1 dry diet) and the PR diet. However, significantly higher (34.5%) amounts of non-faecal P excretions (7.4 g soluble P kg−1 dry diet) were found in fish fed F1 compared with the F0 diet. This suggested that there was an excess of dietary P in the F1 diet and that supplementation is not needed in fish meal-based diets for large yellowtail.  相似文献   

20.
The effect of five experimental diets with different crude protein content (220, 270, 330, 390 and 450 g kg−1) on gonad development of female Cherax quadricarinatus was tested under laboratory conditions. After 70 days, a significant linear relationship indicated that higher concentrations of protein and carbohydrates in the hepatopancreas were produced as the dietary crude protein increased ( P  < 0.05). There were significant responses of the gonadosomatic index, hepatosomatic index, biochemical composition of the gonad (protein, lipids, carbohydrates and energy) and frequency of secondary vitellogenic oocytes to dietary protein level, as indicated by significant fits of the quadratic equation to the observed experimental data. The optimal response of the criteria parameters corresponded to levels of crude protein in the range 284–355 g kg−1. Overall, 330 g kg−1 crude protein with a protein : energy ratio of 15.6 mg kJ–1 was considered the most adequate concentration of dietary protein for gonad development and biochemical composition in female redclaw crayfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号