首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amylose contents of prime starches from nonwaxy and high-amylose barley, determined by colorimetric method, were 24.6 and 48.7%, respectively, whereas waxy starch contained only a trace (0.04%) of amylose. There was little difference in isoamylase-debranched amylopectin between nonwaxy and high-amylose barley, whereas amylopectin from waxy barley had a significantly higher percentage of fraction with degree of polymerization < 15 (45%). The X-ray diffraction pattern of waxy starch differed from nonwaxy and high-amylose starches. Waxy starch had sharper peaks at 0.58, 0.51, 0.49, and 0.38 nm than nonwaxy and high-amylose starches. The d-spacing at 0.44 nm, characterizing the amylose-lipids complex, was most evident for high-amylose starch and was not observed in waxy starch. Differential scanning calorimetry (DSC) thermograms of prime starch from nonwaxy and high-amylose barley exhibited two prominent transition peaks: the first was >60°C and corresponded to starch gelatinization; the second was >100°C and corresponded to the amylose-lipid complex. Starch from waxy barley had only one endothermic gelatinization peak of amylopectin with an enthalpy value of 16.0 J/g. The retrogradation of gelatinized starch of three types of barley stored at 4°C showed that amylopectin recrystallization rates of nonwaxy and high-amylose barley were comparable when recrystallization enthalpy was calculated based on the percentage of amylopectin. No amylopectin recrystallization peak was observed in waxy barley. Storage time had a strong influence on recrystallization of amylopectin. The enthalpy value for nonwaxy barley increased from 1.93 J/g after 24 hr of storage to 3.74 J/g after 120 hr. When gel was rescanned every 24 hr, a significant decrease in enthalpy was recorded. A highly statistically significant correlation (r = 0.991) between DSC values of retrograded starch of nonwaxy barley and gel hardness was obtained. The correlation between starch enthalpy value and gel hardness of starch concentrate indicates that gel texture is due mainly to its starch structure and functionality. The relationship between the properties of starch and starch concentrate may favor the application of barley starch concentrate without the necessity of using the wet fractionation process.  相似文献   

2.
Kernel hardness is not a well‐characterized food quality trait in barley. Unlike wheat, not much is known about the effect of barley kernel hardness on food processing. Ten barley genotypes differing in single kernel characterization system hardness index (SKCS‐HI) (30.1–91.2) of dehulled kernels were used to determine the association of barley HI with other physical grain traits and food processing parameters. Thousand kernel weight (TKW) values of 10 genotypes were 29.7–38.1 g. Values for bulk density of grains were 721.1–758.9 kg/m3. Crease width and depth values were 0.9–1.3 mm and 0.4–0.7 mm, respectively. Barley HI showed no significant association with TKW, bulk density, or kernel crease dimensions. Kernel loss due to pearling after 325 sec of abrasion was 28.8–38.4% and showed significant negative correlation with HI (r = –0.87, P < 0.01). Proportion of barley flour particles >106 μm had values of 34.5–42.0%, and starch damage values were 1.8–4.5% among those 10 barley genotypes. HI showed significant positive correlations with both proportion of barley flour particles >106 μm (r = 0.93, P < 0.01) and starch damage (r = 0.93, P < 0.01). Water imbibition of barley kernels and cooked kernel hardness did not show significant correlation with HI.  相似文献   

3.
The effects of high growth temperature on sorghum starch structures were examined from the grains of three inbred lines (BTx623, IS8525, and Karper669), and the possible mechanism by which the growth of amylopectin molecules is terminated was discussed. Sorghum plants were grown at high temperature (38/21°C day/night) and control temperature (32/22°C day/night) from sowing to maturity. The grains sampled from plants grown at high temperature had significantly lower starch weights per grain (except BTx623) and smaller starch granule sizes than those grown at control temperature. Nevertheless, the amylose contents were similar. BTx623 and IS8525 samples grown at high temperature also had higher ratios of long to short amylopectin branches and lower degree of branching than their control counterparts. These results suggested that the activities of starch biosynthetic enzymes were evidently affected by elevated growth temperature. However, the weight‐average molecular weight and the z‐average radius of gyration of sorghum starch molecules were not significantly affected by the growth temperatures, suggesting that the effects of growth temperature on starch yield, starch granule size, and the branching structure of amylopectin molecules did not influence the events that stopped the overall growth of amylopectin molecules. This observation was consistent with the cessation of whole‐molecule growth being through increasing hindrance to enzyme access as the size of the starch molecule increases, controlled largely by the molecular density of the outermost part of an amylopectin molecule.  相似文献   

4.
A water‐soluble starch fraction isolated from corn masa and identified by HPSEC as predominantly fragmented amylopectin was highly correlated in amount to both masa adhesiveness (r = 0.890, P < 0.01) and cook time (r = 0.957, P < 0.01). The molecular weight of the component ranged from approximately 6.4 × 105 to 1.2 × 106, based on HPSEC column calibration with pullulan standards. Debranching with isoamylase illustrated that the structure of the soluble masa starch component was highly branched with a similar debranched profile to native amylopectin. Further analysis revealed that a minor amount of amylose was present in the second half of the broad HPSEC peak containing the fragmented amylopectin component. There was a high second‐order correlation (r = 0.998, P < 0.01) between the absorbance at the wavelength of maximum absorbance (λmax) of the soluble fraction from masa (527–532 nm) and masa adhesiveness, indicating that a rapid assay for masa adhesiveness could easily be developed. Increasing the shear at the stone mill by reducing the gap setting between the stones, increased the amount of fragmented amylopectin. The high correlation between the amount of fragmented amylopectin and masa adhesiveness suggests that this fraction is the main determinant of masa adhesiveness. The amount of fragmented amylopectin can be controlled by cook time and gap between the stone plates of the mill.  相似文献   

5.
Using rice samples derived from normal rice cultivars and endosperm starch mutant, we investigated key factors contributing to the enzyme digestibility of steamed rice grains. The chemical composition of polished rice grains, structural features of endosperm starch, and enzyme digestibility of steamed rice grains were examined. The protein content of polished rice grains was 4.6–9.1%, amylose content was 4–27%, the DPn of purified amylose was 900–1,600, the amylopectin short/long chain ratio was 1.2–5.9, and the enzyme digestibilities of steamed polished rice grains were 0.9–12.6 °Brix. Amylose content and RVA parameters (viscosity, breakdown, and setback) correlated significantly with enzyme digestibility of steamed rice grains. Multiple regression formulas were constructed to predict digestibility of steamed rice grain as a function of the molecular characteristics of the starch. When both amylose content and the short/long chain amylopectin ratio were used as predictor variables, they accounted for >80% of the observed variance in digestibility of steamed rice grains. Multiple regression revealed that the more digestible rice samples had starch with a lower amylose content and more short‐chain amylopectin. Reassociation of amylose‐lipid complex and recrystallization of amylopectin in the stored steamed rice grains was monitored by differential scanning calorimetry (DSC), and the observed retrogradation properties were related to the structural characteristics of starch and to the enzyme digestibility of steamed rice grains.  相似文献   

6.
Physical properties of resistant starch (RS) were examined in a range of barley genotypes to determine the contribution of starch and seed physical characteristics to the RS component. Thirty‐three barley genotypes were studied, which varied significantly in their RS, amylose, and starch contents and grain yield. From 33 genotypes, 13 exhibiting high RS were selected for detailed physicochemical analysis of starch. In high‐RS varieties, granule size and number were unimodal, compared with normal starches from a reference genotype, which showed a bimodal distribution. Principal component analysis (PCA) showed that a higher content of granules <15 µm was positively correlated with RS and amylose content, whereas the proportion of granules 15–45 µm was negatively correlated with the RS and amylose contents. Physical fractionation of starches by centrifugation into different population sizes demonstrated that size alone is not an accurate indicator of the population of A‐type and B‐type granules within a given genotype. PCA also showed that large 15–45 µm granules were positively correlated with seed thickness and that thousand grain weight was positively correlated with seed width. High‐RS and high‐amylose genotypes showed variation in overall yield and starch content, with some genotypes showing yield comparable to the reference genotype. Analysis of amylopectin chain length distribution showed that high amylose or RS content was not associated with a higher proportion of amylopectin long chains when compared with either waxy or reference (normal) barley genotypes. This study highlights useful markers for screening barley genotypes with favorable starch characteristics.  相似文献   

7.
Seven wheat cultivars with different starch contents were used as materials to investigate the distribution of grain starch granule size under irrigated and rainfed conditions. In mature grains, the diameter of starch granules was 0.37–52.6 μm, and the percent volume distribution showed a two‐peak curve with the mean particle diameter of 5 (B‐type) and 25 μm (A‐type) at each peak. The volume percentages of A‐ and B‐types were 52.7–65.5% and 34.5–47.3%, respectively. A two‐peak curve is also shown in percent surface area distribution of starch granules, but only one peak in percent number. Both irrigated and rainfed conditions had a significant effect on the starch granule size distribution of the seven cultivars. As compared with irrigated treatment, rainfed treatment affected the distribution of starch granules in grains of all cultivars through increasing the volume percentage and surface area percentage of 2–9.8 and <9.8 μm starch granules and decreasing those of >9.8 and >18.8 μm starch granules. The soil water deficit also decreased the contents of amylose and starch in grains and increased protein content, indicating that different water regimes had an evident effect on grain quality. According to correlation coefficients (r), the contents of amylose, starch, and protein in grains was significantly correlated with the volume percentage of starch granules with different diameter ranges.  相似文献   

8.
Wet fractionation of barley flours was conducted to identify appropriate fractionation water temperature considering the recovery and purity of starch and protein. In abraded hulless regular barley, yield of starch fraction, starch recovery, and purity of the protein fraction increased from 43.3 to 45.7%, from 61.7 to 64.8%, and from 37.6 to 65.2% when water temperature in fractionation was increased from 23 to 60°C. In abraded hulless waxy barley, recovery of starch with 40°C water was much greater (67.7%) than that at other temperatures (<61.7%). Starch recovery and protein purity of regular barley cultivars were higher than those of waxy barley cultivars with fractionation water of 60°C. In whole hulless barley flours fractionated with 60°C water, waxy barley flours showed similar to or higher protein purity (44.8–48.9%) than regular barley flours (42.8– 44.6%), while regular barley flours exhibited higher starch recovery (>60.6%) than waxy barley flours (<57.3%). The purity of isolated starch was >97.7%, regardless of water temperature and barley type. Considering yield and recovery of the isolated starch, and purity of the isolated protein, 60°C water for hulless regular barley and 40°C for hulless waxy barley seem to be appropriate for fractionation of barley flour for isolation of starch and protein.  相似文献   

9.
Although pulsed NMR (PNMR) has been used for qualitative study of starch retrogradation in selected systems, validation is necessary for its application to new systems. PNMR was used to analyze the retrogradation of rice starches in purified form, in rice flour, and in cooked rice grains. The standard curves between the relative solid content (S′, %) by PNMR and the percentage of gelatinized starch (GS, %) were determined for common rice flour, common rice starch, and waxy rice starch at different moisture contents. The coefficients of linear regression for these curves (R2) were all >0.997. Starches with different amylose contents were tested for S′ values at the stages of freshly gelatinized, retrograded (4°C, 18 days), and reheated (90°C, 20 min). The S′ of reheated starch (S′reheat) was similar to the S′ of freshly gelatinized starch (S′0), so we concluded that the increase in S′ during storage corresponded to amylopectin retrogradation. The effect of moisture content on retrogradation of rice starch, rice flour, and cooked rice grains was studied by PNMR, and the data were interpreted using the Avami equation. Decreasing the moisture content increased the rate of retrogradation and led to a higher parameter k and a lower parameter n. For moisture content in the range studied, PNMR can be used to follow amylopectin retrogradation of different rice starch systems.  相似文献   

10.
The mechanism underlying the previously reported parabolic relationship between amylopectin fine structure, represented by the weight ratio of linear short chains [degree of polymerization (DP < 13) to long chains (DP >/= 13], and slowly digestible starch (SDS) content was investigated from the viewpoint of starch retrogradation and substrate susceptibility to enzyme hydrolysis. A maize mutant sample, termed "highest long-chain starch" (HLCS) representing group I samples with a higher proportion of long chains, showed a bell-shaped SDS pattern with retrogradation time, whereas insignificant changes in SDS were found for the sample termed "highest short-chain starch" (HSCS) representing group II samples with a higher proportion of short chains. This corresponded to results from X-ray powder diffraction and differential scanning calorimetry that showed a rapid increase of crystallinity and enthalpy for HLCS during retrogradation, but negligible changes for sample HSCS. Therefore, retrogradation was associated with SDS content for group I samples, but not for group II samples. Analysis of amylopectin fine structure, SDS content, retrogradation enthalpy, SDS material debranching profile, and hydrolysis pattern demonstrated, for group I samples, that linear branched chains of DP 9-30 of amylopectin may act as anchor points to slow the digestion of branced-chain fractions of DP > 30, which constitute the major slowly digestible portion, whereas for group II samples, it is the inherent molecular structure of amylopectin with a higher amount of branches and shorter chains that is not favorable for rapid enzyme digestion. The concept of a slowly digestible starch state (SDS state) that could be a chemical or physical entity is proposed to better describe the mechanistic underpinning of the slow digestion property of starches.  相似文献   

11.
Pulse starches were isolated from different cultivars of pea, lentil, and chickpea grown in Canada under identical environmental conditions. The in vitro digestibility and physicochemical properties were investigated and the correlations between the physicochemical properties and starch digestibility were determined. Pulse starch granules were irregularly shaped, ranging from oval to round. The amylose content was 34.9–39.0%. The amount of short A chains (DP 6‐12) of chickpea starch was much higher than the other pulse starches, but the proportions of B1 and B2 chains (DP 13‐24 and DP 25‐36, respectively) were lower. The X‐ray pattern of all starches was of the C type. The relative crystallinity of lentil (26.2–28.3%) was higher than that of pea (24.4–25.5%) and chickpea starches (23.0–24.8%). The swelling factor (SF) in the temperature range 60–90°C followed the order of lentil ≈ chickpea > pea. The extent of amylose leaching (AML) at 60°C followed the order of pea ≈ chickpea > lentil. However, in the temperature range 70–90°C, AML followed the order of lentil > pea > chickpea. The gelatinization temperatures followed the order of lentil > pea > chickpea. The peak viscosity, setback, and final viscosity of pea starch were lower than those of the other starches. Lentil starch exhibited lower rapidly digestible starch (RDS) content, hydrolysis rate, and expected glycemic index (eGI). The resistant starch (RS) content of both lentil cultivars was nearly similar. However, pea and chickpea cultivars exhibited wide variations in their RS content. Digestibility of the pulse starches were significantly correlated (P < 0.05) with swelling factor (60°C), amylose leaching (60°C), gelatinization temperature, gelatinization enthalpy, relative crystallinity, and chain length distribution of amylopectin (A, B1, and B2 chains).  相似文献   

12.
《Cereal Chemistry》2017,94(5):873-880
The identification of the plant physiological trait called stay green (SG) was first identified in sorghum (Sorghum bicolor L. Moench), followed by other cereals, including barley. The effects of this drought tolerance trait on starch biosynthesis, structure, and properties have not been extensively investigated. Using size‐exclusion chromatography, the impact of SG expression on starch molecular structure in barley (Hordeum vulgare L.) under heat‐ and water‐stress conditions was examined. Differences were found in total starch and amylose contents within and between the treatments. The chain‐length distribution of the amylose in a heat‐stressed doubled haploid, ND24260 × Flagship population expressing SG showed significant differences (P < 0.05), whereas no such differences were observed in the water‐stressed samples. However, significant differences (P < 0.05) in protein content were observed corresponding to SG expression, with higher levels of SG expression having higher protein content. These differences in composition and starch structure could influence functional properties. Understanding physiological responses in plants to abiotic stress and its impact on grain quality and starch biosynthesis may allow for the future manipulation of plants to improve drought tolerance, while maintaining desirable grain quality and yield potential.  相似文献   

13.
Water is a key factor influencing the yield and quality of crops. Thus, a field simulative study was carried out from 2002 to 2003 in order to assess yield and nutritional composition changes in maize (Zea mays L.) grains at three different soil moisture levels: full-watered (FW), moderately stressed (MS), and severely stressed (SS). Our data indicated that SS treatment significantly increased nitrogen (N), calcium (Ca), magnesium (Mg), copper (Cu), and zinc (Zn) contents in maize grains by 11.9%, 27.8%, 11.1%, 18.4%, and 32.9%, respectively, when compared to FW. However, significant decreases (P < 0.05) in starch, phosphorus (P), and potassium (K) contents and yields in maize grains, about 27.9%, 16.5%, 16.7%, and 375.2%, respectively, were seen at SS treatment as compared to those in the FW treatment. In contrast, crude fat content had a different pattern in response to drought stress as compared to most nutritional compositions in maize grains. It generally followed the series MS > FW > SS. These results suggested that although some nutritional compositions in maize grains were positively affected by drought stress, the yields decreased significantly.  相似文献   

14.
Within a starch granule there are a range of length scales present ranging from the atomic, to supramolecular structures of >100 nm that give rise to the growth rings arising as the starch is laid down. As the granule is formed, it is in a naturally hydrated state. This provides a degree of mobility permitting organization and self‐assembly of the sidechain branches of the amylopectin. External factors that affect the ability of the branches to pack well are discussed here. Plasticization of the residues nearest to the amylopectin backbone is crucial. If the degree of plasticization is insufficient (due to insufficient temperature or solvent) the double helical regions are disordered. Plasticization, this time of the amorphous growth rings, is also a necessary prerequisite for gelatinization.  相似文献   

15.
Cooked buckwheat groats are suggested to contain a greater amount of resistant starch (RS) than cereal grains. High RS content, in addition to dietary fibers present in groats, contributes to the low‐calorie, high‐fiber food status of buckwheat. Six buckwheat genotypes exhibiting high, medium, and low RS content of cooked groats were selected, and starches were isolated to determine their functional properties to explore the possible cause of high RS content of cooked buckwheat groats. Apparent and actual amylose contents were 27.4 and 31.6–34.5% in high, 27.4–28.6 and 32.5–33.7% in medium, and 21.4–25.6 and 24.5–32.0% in low RS genotypes, respectively. Genotypes of high RS content exhibited greater amylose leaching based on total starch content during cooking than genotypes of low RS content, mainly because of higher amylose content in the former than latter. Genotypes of low RS content exhibited a relatively high content of amylose‐lipid complexes, as determined with a differential scanning calorimeter (DSC). Gelatinization enthalpy and degree of amylopectin retrogradation determined with a DSC were not related to RS content. An evident relationship was observed between RS content of cooked groats and amylose retrogradation determined by gel hardness (r = 0.91, P < 0.05), cohesiveness (r = 0.89, P < 0.05), and syneresis (r = 0.88, P < 0.05). Increases in starch amylose content, amylose leaching capacity, and amylose retrogradation, as well as a decrease in the amount of amylose‐lipid complexes all appear to be related to high RS content of cooked buckwheat groats.  相似文献   

16.
The Waxy (Wx) gene in hexaploid wheat (Triticum aestivum L.) encodes granule‐bound starch synthase (GBSS1), which is involved in the synthesis of amylose, a mostly linear glucan polymer that makes up ∼25% of wheat starch. A null mutation of the Wx gene in each of the three genomes is associated with starch almost entirely consisting of the branched glucan polymer amylopectin (waxy starch), with corresponding changes in functionality. However, the rheological behavior of partially waxy starch remains unclear. The objective of this study was to characterize flour and baking quality in 16 near‐isogenic lines, null at the Wx locus on zero, one, two, or all three genomes, grown in four different environments. Across allelic groups, significant variations in amylose concentrations, flour paste viscosity, loaf structure and texture, dough stability, and proximate variables were observed. Because waxy wheat starch has greater water absorbance and resistance to retrogradation than normal starch, its inclusion in flour blends has been suggested as a means of improving the texture and appearance of bakery products and noodles. The results indicate that wheat encoding <3 functional homeologs of GBSS1 produces starch that has potential in the production of certain food items, such as Asian noodles. However, further research is necessary to determine the optimal amylose‐to‐amylopectin ratio to improve baking quality.  相似文献   

17.
It has long been recognized that limitations exist in the analytical methodology for amylose determination. This study was conducted to evaluate various amylose determination methods. Purified amylose and amylopectin fractions were obtained from corn, rice, wheat, and potato and then mixed in proportion to make 10, 20, 30, 50, and 80% amylose content starch samples for each source. These samples, considered amylose standards, were analyzed using differential scanning calorimetry (DSC), high-performance size-exclusion chromatography (HPSEC), and iodine binding procedures to generate standard curves for each of the methods. A single DSC standard equation for cereal starches was developed. The standard curve of potato starch was significantly different. Amylose standard curves prepared using the iodine binding method were also similar for the cereal starches, but different for potato starch. An iodine binding procedure using wavelengths at 620 nm and 510 nm increased the precision of the method. When HPSEC was used to determine % amylose, calculations based on dividing the injected starch mass by amylose peak mass, rather than calculations based on the apparent amylose/amylopectin ratio, decreased the inaccuracies associated with sample dispersion and made the generation of a cereal amylose standard curve possible. Amylose contents of pure starch, starch mixtures from different sources with different amylose ranges, and tortillas were measured using DSC, HPSEC, iodine binding, and the Megazyme amylose/amylopectin kit. All the methods were reproducible (±3.0%). Amylose contents measured by these methods were significantly different (P < 0.05). Amylose measurements using iodine binding, DSC, and Megazyme procedures were highly correlated (correlation coefficient >0.95). DSC and traditional iodine binding procedures likely overestimated true amylose contents as residual butanol in the amylose standards caused interference. The modified two-wavelength iodine binding procedure seemed to be the most precise and generally applicable method. Each amylose determination method has its benefits and limitations.  相似文献   

18.
A rhizosphere-based method (a low-molecular-weight organic acid solution) was evaluated for the assessment of cadmium (Cd), chromium (Cr), and lead (Pb) bioavailability to barley (Hordeum vulgare) roots from rhizosphere soils (n = 36) following a 15.71 g dry weight kg?1 application of a metal-spiked sewage sludge under greenhouse conditions. Statistically significant correlation coefficients were found: r = 0.758, P < 0.001 for Cd, r = 0.762, P < 0.001 for Cr, and r = 0.723, P < 0.001 for Pb. The correlations were greater in acidic soils (n = 6; r = 0.983, P < 0.001 for Cd, r = 0.888, P < 0.01 for Cr, and r = 0.898, P < 0.01 for Pb). This extraction failed to assess heavy-metal bioavailability in basic soils (n = 30; r = 0.111, P > 0.05 for Cd, r = 0.002, P > 0.05 for Cr, and r = 0.037, P > 0.05 for Pb). The overall predictability was greatly improved when soil properties were considered (n = 36; r2 = 0.730, P < 0.001 for Cd, r2 = 0.800, P < 0.001 for Cr, and r2 = 0.719, P < 0.001 for Pb), and texture was observed in all the prediction models.  相似文献   

19.
Waxy rice starches from three japonica cultivars (Taichung Waxy 1 [TCW1], Taichung Waxy 70 [TCW70], Tachimemochi) and one indica cultivar (Tainung Sen Waxy 2 [TNSW2]) were characterized for chemical and physicochemical properties. The amylopectin structures were different for the four waxy rice starches in terms of degree of polymerization (DP), average chain length (CL), exterior chain lengths (ECL), and distribution of chains, indicating the existence of varietal differences. The order of swelling power was TCW1 > TCW70 > TNSW2 > Tachimemochi; the order of water solubility index was TCW70 > TNSW2 > Tachimemochi > TCW1. The low water solubility index of TCW1 might be ascribed to a high DP. All starches shared similar gelatinization temperatures and enthalpies but showed distinct retrogradation patterns. TNSW2 showed the highest retrogradation rate, followed by TCW2, Tachimemochi, and TCW70. TCW70 exhibited the highest overall pasting viscosity, followed by TNSW2, TCW1, and Tachimemochi. The hardness of waxy rice starch pastes from a Brabender amyloviscograph increased rapidly after storage at 5°C for one day and remained the same or slightly increased after seven days of storage, whereas the opposite trend was observed for adhesiveness. The lower degree of retrogradation of TCW70 was probably a result of a larger amount of A chain and a shorter ECL. The changes in hardness correlated with the amount of A and B1 chains. The texture attributes of waxy rice starch pastes were significantly affected by amylopectin retrogradation during storage.  相似文献   

20.
Preharvest sprouting of grains causes significant losses to growers and buyers. The problem occurs throughout the world, and economic losses can be millions of dollars. Visual assessment of germination is ineffective because even grains showing no external signs (e.g., having a visible shoot) may still have germinated sufficiently so that it is no longer possible for high‐quality products to be made from them. Current procedures to determine whether a grain has germinated are based around measuring enzyme or starch levels. However, despite protracted efforts to develop enhanced ways to measure germination over the last 50 years, there are currently no sufficiently accurate or reliable approaches available. The present work assesses the potential for infrared spectroscopy‐based metabolomic profiling to assess the germination of barley and wheat. The results indicate that mid‐ and near‐infrared spectroscopy are able to determine if the grain has germinated and give an indication of how long the germination process has been occurring. Both techniques are already well established in the grain industry and have the potential to form the basis of a simple, fast dockside test that would allow segregation of sound and mildly sprouted grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号