首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formulation of gluten‐free (GF) bread of high quality presents a formidable challenge as it is the gluten fraction of flour that is responsible for an extensible dough with good gas‐holding properties and baked bread with good crumb structure. As the use of wheat starch in GF formulations remains a controversial issue, naturally GF ingredients were utilized in this study. Response surface methodology was used to optimize a GF bread formulation primarily based on rice flour, potato starch, and skim milk powder. Hydroxypropylmethylcellulose (HPMC) and water were the predictor variables. Analyses of the treatments from the design were made 24 hr after baking. Specific volume and loaf height increased as water addition increased (P < 0.01). Crumb firmness decreased as water levels increased (P < 0.01). Significant interactions (P < 0.01) between HPMC and water were found for the number of cells/cm2. The number of large cells (>4 mm2) decreased with increasing levels of HPMC and water. Optimal ingredient levels were determined from the data obtained. The optimized formulation contained 2.2% HPMC and 79% water flour/starch base (fsb) and measured responses compared favorably to predicted values. Shelf‐life analysis of the optimized formulation over seven days revealed that, as crumb firmness increased, crust firmness and crumb moisture decreased.  相似文献   

2.
The effects of increasing levels of eight commercial fungal enzymes enriched in four types of activity (α‐amylase, protease, xylanase, or cellulase) on Japanese‐style sponge and dough bread quality and processing characteristics have been studied using a Canadian red spring wheat straight‐grade flour. At optimum levels, the enriched α‐amylases, xylanases, and cellulases increased loaf volume and bread score and reduced crumb firmness, while the proteases only reduced crumb firmness. For α‐amylases, xylanases, and cellulases, optimum levels for crumb firmness were obtained at higher levels of addition than for loaf volume and bread score. At high levels of addition, all four enriched enzyme types reduced loaf volume and bread score and increased crumb firmness relative to optimum levels, with the proteases showing the most dramatic effects. α‐Amylases and cellulases had little impact on dough mixing requirements, while xylanases increased and proteases greatly reduced mixing requirements. All enzymes at optimum levels reduced sheeting work requirements, resulting in softer more pliable dough. Optimum bread properties for α‐amylases, xylanases, and cellulases were attained within a relatively narrow range of dough sheeting work values. This similarity in response suggests a dominant common nonspecific mechanism for their improver action, which is most likely related to water release and the resulting impact on physical dough properties.  相似文献   

3.
Monoglycerides are widely used in the baking industry because of their antistaling effects, mainly suppressing crumb firming. Commercial monoglycerides are normally prepared from hydrogenated fats, with stearate being the most common fatty acid. In a previous study, monoglycerides such as monopalmitate (C16) and monostearate (C18) had positive effects on Canadian short process bread but no improvements on sponge‐and‐dough process (SDP) bread. The objective of this study was to investigate the effects of saturated monoglycerides of varying fatty acid chain length (C14–C22) on SDP breadmaking quality by using volume judgment, crumb image analysis, and texture measurements. Higher levels (1.00–1.50%) of all monoglycerides (C14, C16, and C18) significantly (P < 0.05) increased loaf volume and cell diameter. The larger cell diameter with increasing levels of these monoglycerides may have resulted from softer, more extensible dough handling properties and greater gas cell stability during baking. Addition of C16 and C18 caused the largest increase in crumb softness with increasing monoglyceride levels but showed relatively low resilience, which might be related to larger loaf volume (i.e., lower density of bread). However, addition of blended monoglycerides C14+C16 increased crumb softness and loaf volume while partially retaining resilience. Each monoglyceride had a different function in breadmaking quality and somewhat positive effects on SDP.  相似文献   

4.
Breads baked from wheat flours (protein contents 14.1–16.5% at 14.0% mb) that were pretreated with 2–3 mL of gaseous acetic acid per kg of wheat flour, showed maximum bread height and specific volume (cm3/g). Flour-water suspension and the crumb pH values were gradually decreased with increased amounts of acetic acid. Gas generation and dough expansion tests with bread dough showed that the addition of the same amount of acetic acid, which achieved maximum specific volume, also showed the highest rate of gas generation and dough expansion. However, increasing acetic acid decreased these values. Scanning electron microscope (Cryo-SEM) observation showed that the bread dough made from the same acetic acid-treated flour indicated continuum and no cracks in the dough matrix. Evaluation of mixograms showed the decrease of mixing stability with increased acetic acid levels. Viscosity and water binding capacity of flour-water suspensions were sharply increased by the addition of acetic acid at pH 5.0–3.5.  相似文献   

5.
A standard quality flour for French breadmaking was fractionated by extraction of water‐soluble components (6% db) and by defatting (<1%db) to study the impact of soluble components and lipids on bread quality in terms of loaf specific volume (vs) and crumb structure. Addition of puroindolines (<0.2%) was also tested. Crumb cell structure was assessed by digital image analysis (DIA) according to erosion‐dilation and closing treatments. The fraction of cells area with size <1 mm (%d<1) was defined as an index of fineness of crumb structure. Both DIA procedures allowed differentiation of crumb structures obtained by various formulations and, in the range of composition modifications tested, variations by a factor of 2 of both criteria (vs and %d1) were obtained. Soluble fraction increased vs and decreased fineness. Defatting and adding puroindolines increased fineness with no effect on vs. The possible role of molecular components of each flour fraction was discussed in terms of rheological and foaming properties. DIA methods and flour recipes tested in this work offer a valuable tool for further studies on the processing‐structure‐properties relationships of French bread dough and crumb.  相似文献   

6.
The objective of this study was to examine treatments that directly influence Norwegian lean doughs destined to be frozen. Therefore a strip-block experimental design with four dough treatment factors (wheat flour blend, diacetyl tartaric acid esters of monoglycerides [DATEM], water absorption, and dough temperature) and two storage factors (frozen storage time and thawing time) was used. Four levels were selected for frozen storage time and two levels were selected for the remaining factors. After frozen storage (2–70 days), the doughs were thawed and baked. Principal component analysis showed that to obtain a high loaf volume and bread score after freezing, a high dough temperature after mixing (27°C) was essential. The highest form ratio (height/width) level was obtained after 28 days of frozen storage and with a short thawing time (6 hr). Analysis of variance (ANOVA) of dough treatments showed that an increase in dough temperature from 20 to 27°C after mixing resulted in a significant increase in loaf volume (1,653 to 2,264 mL), form ratio (0.64 to 0.69), and bread score (1.7 to 3.2), and a reduction in loaf weight (518.4 to 512.5 g) and crumb score (7.9 to 5.9, i.e., a more open bread crumb). Also, the addition of DATEM significantly increased loaf volume (1,835 to 2,081 mL), form ratio (0.64 to 0.69), and bread score (2.2 to 2.6). Frozen dough storage time significantly affected loaf volume, loaf weight, bread score, and crumb score. Increasing thawing time from 6 to 10 hr significantly increased loaf volume (1,855 to 2,121 mL), and reduced the form ratio (0.69 to 0.63) and loaf weight (516.8 to 511.4 g). ANOVA of the interaction between dough treatment and frozen storage time showed that decreasing water absorption significantly increased the loaf volume.  相似文献   

7.
The viscoelastic behavior of bread crumb was studied using dynamic mechanical analysis (DMA) in the compression mode with the frequency sweep. The dynamic storage modulus (E′), loss modulus (E″), and tanδ (E″/E′) were measured for bread crumb aged up to three days at ambient temperature. The viscoelastic properties of bread crumb showed a characteristic frequency dependence similar to that of a soft rubberlike solid. Typical behavior of bread crumb involved a transition from rubberlike to glasslike consistency with increasing frequency. At a low frequency region, the E′ and E″ values were relatively small and nearly constant, showing characteristics of the rubbery plateau. Then, they increased rapidly with increasing frequencies and approached a glasslike state. Tanδ was low and almost constant at low frequencies before the transition, then went through a prominent peak with increasing frequency. The frequency at which the tanδ of bread crumb started to rapidly increase was defined as the onset frequency (ƒo) of the transition. The ƒo values increased with the aging of bread crumb samples, which correlated highly to bread staling (r = 0.942). Both dynamic moduli E′ and E″ at ƒo also increased with the aging of bread, which correlated highly to firmness obtained using a texture analyzer in a static compression mode (r = 0.941 and 0.943, respectively). DMA measurements could be helpful in characterizing bread staling.  相似文献   

8.
The effects of increasing levels of eight commercial enzymes representing four types of fungal hydrolytic enzymes (α‐amylases, proteases, xylanases, and cellulases) on Canadian short process (CSP) bread quality and processing characteristics were studied. Addition of all enzymes types at optimum levels resulted in increased loaf volume and bread score and softer crumb. All four types of enzymes appeared to be equally effective in improving bread properties compared with the controls. At high levels, greater tolerance to the addition of xylanases and cellulases compared with the addition of α‐amylases and proteases was apparent. Mixing requirements increased with increasing levels of α‐amylase but no change was apparent with the other enzymes. Addition of all enzymes reduced sheeting work requirements, indicating a dough softening effect. Optimum bread properties for all enzymes were attained within a relatively narrow range of dough sheeting work values, which presumably correspond to optimum dough handling properties. The similarity in response of bread and sheeting characteristics at optimum levels of addition for all four enzyme types suggests a common nonspecific mechanism for improver action that is probably related to water release and the resulting impact on physical dough properties.  相似文献   

9.
Effect of freezing and frozen storage of doughs on bread quality   总被引:3,自引:0,他引:3  
The effects of freezing and storage in frozen conditions on bread quality, crumb properties, and aggregative behavior of glutenins were analyzed. The effect of different additives on bread quality was also studied. The results obtained showed that freezing and storage at -18 degrees C decreased the bread quality. Samples stored in frozen conditions supplemented with diacetyl-tartaric acid ester of monoglycerides, gluten, and guar gum produced breads of greater volume and more open crumb structure than those prepared with the base formulation (without additives). All additives analyzed increased the proof time. Crumb firmness increased with dough frozen storage and bread aging time at 4 degrees C. A decrease in the amount of glutenin subunits of high molecular mass was observed by electrophoresis analysis of the SDS-soluble proteins aggregates extracted from the frozen dough. This result suggested that the protein matrix of bread underwent depolymerization during storage in frozen conditions.  相似文献   

10.
A. Amr  R. Ajo 《Cereal Chemistry》2005,82(5):499-503
Two types of flat bread (thin and thick) were produced from straight‐grade flour by the traditional straight dough (SD) and sponge and dough (SPD) methods using 50 and 60% sponges. Quality of the resulting bread was evaluated with respect to specific volume, crumb distribution between layers, moisture content, overall sensory quality, and rate of staling. The results showed that the method of production has a significant effect (P < 0.05) on the specific volume of the crumb‐rich thick flat bread but not on the almost crumb‐free thin type. The study showed that breads produced with the SPD method were superior to those produced by the SD method with respect to their overall quality and resistance to staling, and that using 50% sponge gave bread with superior overall sensory quality to that obtained using 60% sponge. The results indicate that the Structograph can be used to follow the staling of these breads. Nonetheless, using the SPD method has some drawbacks, mainly longer fermentation time, and more space, mixing, and labor requirements that are expected to limit its use in commercial production of flat bread types.  相似文献   

11.
The objective of this study was to evaluate protein composition and its effects on flour quality and physical dough test parameters using waxy wheat near‐isogenic lines. Partial waxy (single and double nulls) and waxy (null at all three waxy loci, Wx‐A1, Wx‐B1, and Wx‐D1) lines of N11 set (bread wheat) and Svevo (durum) were investigated. For protein composition, waxy wheats in this study had relatively lower albumins‐globulins than the hard winter wheat control. In the bread wheats (N11), dough strength as measured by mixograph peak dough development time (MDDT) (r = 0.75) and maximum resistance (Rmax) (r = 0.70) was significantly correlated with unextractable polymeric protein (UPP), whereas in durum wheats, moderate correlation was observed (r = 0.73 and 0.59, respectively). This may be due to the presence of high molecular weight glutenin subunits (HMW‐GS) Dx2+Dy12 at the Glu‐D1 locus instead of Dx5+Dy10, which are associated with dough strength. Significant correlation of initial loaf volume (ILV) to flour polymeric protein (FPP) (r = 0.75) and flour protein (FP) (r = 0.63) was found in bread wheats, whereas in durum wheats, a weak correlation of ILV was observed with FP (r = 0.09) and FPP (r =0.51). Significant correlation of ILV with FPP in bread wheats and with % polymeric protein (PPP) (r = 0.75) in durum lines indicates that this aspect of end‐use functionality is influenced by FPP and PPP, respectively, in these waxy wheat lines. High ILV was observed with 100% waxy wheat flour alone and was not affected by 50% blending with bread wheat flour. However, dark color and poor crumb structure was observed with 100% waxy flour, which was unacceptable to consumers. As the amylopectin content of the starch increases, loaf expansion increases but the crumb structure becomes increasingly unstable and collapses.  相似文献   

12.
Whole sorghum flour was fermented (a five‐day natural lactic acid fermentation) and dried under forced draught at 60°C, and evaluated for its effect on sorghum and wheat composite bread quality. In comparison with unfermented sorghum flour, fermentation decreased the flour pH from 6.2 to 3.4, decreased total starch and water‐soluble proteins, and increased enzyme‐susceptible starch, total protein, and the in vitro protein digestibility (IVPD). Fermentation and drying did not decrease the pasting temperature of sorghum flour, but slightly increased its peak and final viscosity. In comparison with composite bread dough containing unfermented sorghum flour, fermented and dried sorghum flour decreased the pH of the dough from 5.8 to 4.9, increased bread volume by ≈4%, improved crumb structure, and slightly decreased crumb firmness. IVPD of the composite bread was also improved. Mixing wet fermented sorghum flour directly with wheat flour (sourdough‐type process) further increased loaf volume and weight and reduced crumb firmness, and simplified the breadmaking process. It appears that the low pH of fermented sorghum flour inactivated amylases and increased the viscosity of sorghum flour, thus improving the gas‐holding capacity of sorghum and wheat composite dough. Fermentation of sorghum flour, particularly in a sourdough breadmaking process, appears to have considerable potential for increasing sorghum utilization in bread.  相似文献   

13.
Karkade (Hibiscus sabdariffa) was blended with wheat flour to make bread. When 0.5% Karkade was blended with wheat flour, maximum bread height and specific volume (cm3/g) were obtained (pH 4.8–5.0); these properties gradually deteriorated with increased Karkade. The pH of the bread crumb decreased with increased Karkade, reaching pH 3.35 when blended with 10% Karkade. The pH of Karkade alone was 2.5, which was adjusted to ≈5.0 by the addition of alkali just before blending with wheat flour and making bread. Control of the Karkade pH resulted in bread height and specific volume recovering to the original optimal levels. In addition, the deep reddish purple color (513 nm) of the bread crumb changed to a brownish color crumb. The Fe content was 0.14 mg of Fe/gram of dry crumb, or 6.22 mg of Fe/60 g of fresh bread when 5% Karkade was blended with wheat flour.  相似文献   

14.
Gluten-free breads are usually characterized by deficient quality characteristics as compared to wheat breads. Problems related to volume and crumb texture are associated with gluten-free breads even when rice flour is used, which seems to be the best raw material for this type of bread. The potential use of cyclodextrin glycosyl transferase (CGTase) as a rice bread improver is presented. The effect of CGTase addition to rice flour on dough rheology and bread quality was investigated. In addition, an experimental design was developed to optimize the levels of CGTase, hydroxypropylmethylcellulose (HPMC), and oil. The addition of CGTase produced a reduction in the dough consistency and also in the elastic modulus. With regard to the rice bread quality, better specific volume, shape index, and crumb texture were obtained. The amount of cyclodextrins in the bread crumb was quantified to explain the action of this enzyme. The data indicate that the improving effect of the CGTase results from a combination of its hydrolyzing and cyclizing activities, the latter being responsible for the release of cyclodextrins, which have the ability to form complexes with lipids and proteins.  相似文献   

15.
Breadmaking properties were determined for formulations that included durum, soft, and spring wheat flour, using a pound-loaf sponge-dough baking procedure. Up to 60% durum or soft wheat flour plus 10% spring wheat flour could be incorporated at the sponge stage for optimum dough-handling properties. At remix, the dough stage required 30% spring wheat flour. Bread made with 100% spring wheat flour was used as a standard for comparison. Bread made with 60% durum flour exhibited internal crumb color that was slightly yellow. When storing pound bread loaves for 72 hr, crumb moisture content remained unchanged. Crumb firmness and enthalpy increased the most in bread made with 60% soft wheat flour. Crumb firmness increased the least in bread made with 100% spring wheat flour. Enthalpy changed the least in bread made with 60% durum flour. Crumb moisture content was significantly correlated with crumb firmness (r = -0.82) and enthalpy (r = -0.65). However, crumb moisture content was specific for each type of flour and a function of flour water absorption; therefore, these correlations should be interpreted with caution. Crumb firmness and enthalpy were significantly correlated (r = 0.65). Ball-milling flour resulted in an increase in water absorption of ≈2% and in crumb moisture content of ≈0.5% but had no effect on either crumb firmness or enthalpy.  相似文献   

16.
The improving effects of transglutaminase (TGase) were investigated on the frozen dough system and its breadmaking quality. Rheological properties and microstructure of fresh and frozen doughs were measured using a Rapid Visco‐Analyser (RVA), dynamic rheometer, and scanning electron microscopy (SEM). The frozen doughs with three storage periods (1, 3, and 5 weeks at –18°C) were studied at three levels (0.5, 1.0, and 1.5%) of TGase. As the amount of TGase increased, hot pasting peak viscosity and final viscosity from the RVA decreased, but breakdown value increased. The TGase content showed a positive correlation with both storage modulus G′ (elastic modulus) and the loss modulus G″ (viscous modulus): G′ was higher than G″ at any given frequency. The SEM micrographs showed that TGase strengthened the gluten network of fresh, unfrozen dough. After five weeks of frozen storage at –18°C, the gluten structure in the control dough appeared less continuous, more disrupted, and separated from the starch granules, while the dough containing 0.5% TGase showed less fractured gluten network. Addition of TGase increased specific volume of bread significantly (P < 0.05) with softer bread texture. Even after the five weeks of frozen storage, bread volume from dough with 1.5% TGase was similar to that of the fresh control bread (P < 0.05). The improving effects of TGase on frozen dough were likely the result of the ability of TGase to polymerize proteins to stabilize the gluten structure embedded by starch granules in frozen doughs.  相似文献   

17.
Selected types of commercial breads obtained from local markets, including white sandwich, Irish oatmeal, soft rye, hearty rye, sour dough, home-like white, and onion-basil, were analyzed for volatiles. Using a purge and trap instrument, volatiles were purged directly from fresh crumb and crust samples of each bread type, collected on a trap (Tenax-TA), and transferred to a gas chromatograph. Separated components were detected and identified using mass and infrared spectroscopic detectors. Many components were present in all of the bread samples, with relative amounts varying among bread types and crust and crumb samples of a given bread type. Alcohols were generally the most abundant, followed in approximate order by aldehydes, esters, ketones, acids, various aromatics, terpenes, and hydrocarbons. Flavor additives, such as limonene, carvone, and other related compounds, were found mostly in rye and onion-basil breads. Composition of volatiles from sour dough bread differed greatly from the other breads, especially in increased levels of aldehydes, acids, and certain esters. Unsaturated aldehydes, such as 2-hexenal and 2-heptenal, were most abundant in sour dough bread.  相似文献   

18.
The impact of freezing on dough rheology, fermentation performance, and final steamed bread quality was investigated in this study. Also, the incorporation of sodium alginate and xanthan gum into the frozen dough formulation, in comparison with 0.1% salt, was studied to test their suitability as frozen dough improvers. Incorporating these hydrocolloids into steamed bread revealed their totally different characteristics from those in baked bread. Freezing of dough led to diminished specific volumes of proofed dough and steamed bread, and it also caused higher crumb firmness for steamed bread. The incorporation of sodium alginate and xanthan gum did not improve the quality of the steamed bread but led to further reduction in specific volume and increase in crumb firmness at the higher levels of 0.3, 0.5, and 1.0% and 0.07 and 0.1%, respectively. Xanthan gum and sodium alginate showed dough strengthening effects by increasing resistance to uniaxial deformation, bubble burst stress, and declining dough weakening coefficients at these levels, but decreased dough extensibility and bubble burst strain were revealed at these concentrations tested.  相似文献   

19.
The mechanism of glucose oxidase action in breadmaking was investigated by studying the baking performance of glucose oxidase, the active ingredient that it produced, and its effect on the rheological properties of dough. Glucose oxidase improved the loaf volume of bread made by 45-, 70-, and 90-min fermentation processes. Although the increase in loaf volume was significant, it was less than that obtained with an optimum level of KBrO3. With the 90-min fermentation process, the crumb grain of bread was similar for loaves oxidized with optimum levels of glucose oxidase or KBrO3. The rheological properties of doughs containing glucose oxidase and doughs containing no oxidant were compared. Doughs made with glucose oxidase had higher G′ and G″ and lower tan δ values than doughs made without an oxidant. Hydrogen peroxide was responsible for a drying effect in doughs. This drying effect of glucose oxidase was reduced significantly by incorporation of free radical scavengers into the dough.  相似文献   

20.
Barley is rich in nutritionally positive compounds, but the quality of bread made of wheat–barley composite flours is impaired when a high percentage of barley is used in the mixture. A number of enzymes have been reported to be useful additives in breadmaking. However, the effect of β‐glucanase on breadmaking has scarcely been investigated. In this paper, the influence of different levels (0.02, 0.04, 0.06, and 0.08%, based on composite flour) of β‐glucanase (100,000 U/g) on the properties of dough and bread from 70% wheat, 30% barley composite flour were studied. Although dough development time, dough stability, and protein weakening value decreased after β‐glucanase addition, dough properties such as softness and elasticity as well as bread microstructure were improved compared with the control dough. β‐Glucanase also significantly improved the volume, texture, and shelf life of wheat–barley composite breads. The use of an optimal enzyme concentration (0.04%) increased specific volume (57.5%) and springiness (21%), and it reduced crumb firmness (74%) and staling rate. Bread with added β‐glucanase had a better taste, softness, and overall acceptability of sensory characteristics compared with the control bread. Moreover, the quality of wheat–barley composite bread after addition of 0.04% β‐glucanase was nearly equal to the quality of pure wheat bread. These results indicate that dough rheological characteristics and bread quality of wheat–barley composite flour can be improved by adding a distinct level of β‐glucanase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号