首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Reclamation of disturbed soils is done with the primary objective of restoring the land for agronomic or forestry land use. Reclamation followed by sustainable management can restore the depleted soil organic carbon (SOC) stock over time. This study was designed to assess SOC stocks of reclaimed and undisturbed minesoils under different cropping systems in Dover Township, Tuscarawas County, Ohio (40°32·33′ N and 81°33·86′ W). Prior to reclamation, the soil was classified as Bethesda Soil Series (loamy‐skeletal, mixed, acid, mesic Typic Udorthent). The reclaimed and unmined sites were located side by side and were under forage (fescue—Festuca arundinacea Schreb. and alfa grass—Stipa tenacissima L.), and corn (Zea mays L.)—soybean (Glycine max (L.) Merr.) rotation. All fields were chisel plowed annually except unmined forage, and fertilized only when planted to corn. The manure was mostly applied on unmined fields planted to corn, and reclaimed fields planted to forage and corn. The variability in soil properties (i.e., soil bulk density, pH and soil organic carbon stock) ranged from moderate to low across all land uses in both reclaimed and unmined fields for 0–10 and 10–20 cm depths. The soil nitrogen stock ranged from low to moderate for unmined fields and moderate to high in some reclaimed fields. Soil pH was always less than 6·7 in both reclaimed and unmined fields. The mean soil bulk density was consistently lower in unmined (1·27 mg m−3 and 1·22 mg m−3) than reclaimed fields (1·39 mg m−3 and 1·34 mg m−3) planted to forage and corn, respectively. The SOC and total nitrogen (TN) concentrations were higher for reclaimed forage (33·30 g kg−1; 3·23 g kg−1) and cornfields (21·22 g kg−1; 3·66 g kg−1) than unmined forage (17·47 g kg−1; 1·98 g kg−1) and cornfield (17·70 g kg−1; 2·76 g kg−1). The SOC stocks in unmined soils did not differ among forage, corn or soybean fields but did so in reclaimed soils for 0–10 cm depth. The SOC stock for reclaimed forage (39·6 mg ha−1 for 0–10 cm and 28·6 mg ha−1 for 10–20 cm depths) and cornfields (28·3 mg ha−1; 32·2 mg ha−1) were higher than that for the unmined forage (22·7 mg ha−1; 17·6 mg ha−1) and corn (21·5 mg ha−1; 26·8 mg ha−1) fields for both depths. These results showed that the manure application increased SOC stocks in soil. Overall this study showed that if the reclamation is done properly, there is a large potential for SOC sequestration in reclaimed soils. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Here we report on the variation of a soilscape in south central Wisconsin, USA. The variation in soil properties and soil features results in four soil order (Entisols, Inceptisols, Alfisols and Mollisols). Observations were made along a 200 m transect in a field that was cultivated since 1870. Slopes ranged from 7.5% on the back slope to 0% in the lower part. The soilscape had a total relief difference of 7.0 m. The soils were studied by 41 soil pits (60 cm), 6 soil pits (125 cm), 15 soil augers (100 cm), and ground-penetrating radar imagery. The summit and shoulder consist of coarse glacial outwash (loamy sands) over limestone whereas the lower part is lacustrine sediments over coarse outwash (loams, silty loams). The A-horizon thickness ranged from 14 to 52 cm with thick A horizons at the toeslope that also had the lowest soil pH. The soil organic carbon (SOC) contents of the A horizons ranged from 11.6 to 46.9 g C kg–1, and the higher contents are in the lower part of the soilscape. SOC stocks (0–20 cm depth) ranged from 50 to 70 Mg C ha–1 on the summit and backslope, but were 80 to 95 Mg C ha–1 in the flat part of the soilscape. The lowest soybean yields (1.6 Mg ha–1) were found at the summit and the highest yield (6.3 Mg ha–1) at the lower end of the backslope. Soybean yields were correlated to the thickness of the A horizon, and every 10 cm increase in A horizon thickness yielded an extra 0.6 Mg soybeans ha–1. Analysis of spherical magnetic particles was used to estimate soil erosion rates that were highest on the backslope (16.2 Mg ha–1 yr–1) and rates of soil deposition in the lowest part of the soilscape was 18.8 Mg haP1 yr–1. It seems that there is no net soil and SOC loss within this soilscape. All in all, we found 4 soil taxonomic orders within 200 m. The variation in this soilscape was substantial and probably enhanced by 140 years of cultivation.  相似文献   

3.
Under semiarid climatic conditions, intensive tillage increases soil organic matter losses, reduces soil quality, and contributes to climate change due to increased CO2 emissions. There is a need for an agricultural management increasing soil organic matter. This paper presents the organic carbon (OC) and nitrogen (N) stocks, C:N ratio and stratification ratios (SRs) of these properties for olive groves soils under long‐term organic farming (OF), and conventional tillage (CT) in Los Pedroches valley, southern Spain. The results show that OF increased C and N stocks. The soil organic carbon (SOC) stock was 73·6 Mg ha−1 in OF and 54·4 Mg ha−1 in CT; and the total nitrogen (TN) stock was 7·1 Mg ha−1 and 5·8 Mg ha−1 for OF and CT, respectively. In the surface horizon (A: 0–16·9 cm in OF and Ap: 0–21·8 cm in CT) and Bw horizon (16·9–49·6 cm in OF and 21·8–56 cm in CT), SOC and TN concentrations and C:N ratios were higher in OF than in CT. Soil properties stratification in depth, expressed as a ratio, indicates the soil quality under different soil management systems. The SR of SOC ranged from 2·2 to 3·1 in OF and from 2·1 to 2·2 in CT. However, only SR2 (defined by Ap‐A/C) showed significant differences between CT and OF. The SR of TN showed similar trends to that of the SR of SOC. Organic farming contributes to a better soil quality and to increased carbon sequestration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Spatiotemporal heterogeneity of soil available nitrogen (AN) (sum of NO3–N and NH4+–N) is the essential basis for soil management and highly correlates to crop yield. Both geostatistical and traditional analyses were used to describe the spatiotemporal distribution of AN in the 0–20‐cm soil depth on typical Mollisol slopes (S1 and S2) in Northeast China. The concentration of NO3–N dynamics at slope positions was typically opposite to NH4+–N. The peak values of AN typically moved from the summit of the slope to the bottom from spring to autumn and were mainly influenced by the content of NO3–N (S1, 7·9–18·9 mg kg−1; S2, 1·2–103·6 mg kg−1), both of NO3–N (S1, 3·9–8·3 mg kg−1; S2, 2·2–28·0 mg kg−1) and NH4+–N (S1, 21·4–30·5 mg kg−1; S2, 2·1–23·3 mg kg−1), and NH4+–N (S1, 10·5–28·9 mg kg−1; S2, 5·0–39·0 mg kg−1) in the seedling stage, vegetative growth stage, and reproductive growth stage, respectively. The spatial autocorrelation of AN was strong and was mainly influenced by structural factors during crop growth stages. This was mainly determined by soil erosion–deposition (SED) and soil temperature–moisture (STM) in the seedling stage; this was also mainly influenced by SED, STM, crop type, and crop growth in the vegetative growth stage and by early STM and early SED in the reproductive growth stage. Generally, the content of AN, NO3–N, and NH4+–N on the whole slope was mainly determined by the early SED and local fertilizer application, while their spatiotemporal heterogeneity, especially the evenness, was mainly changed by SED, STM, crop growth, and crop types on the slope scale. In order to increase more crop yields, additional N fertilizer application on both the summit and the bottom during the vegetative growth stage and conservation tillage systems or additional soil amendments on the back slopes was necessary. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The continuous use of plowing for grain production has been the principal cause of soil degradation. This project was formulated on the hypothesis that the intensification of cropping systems by increasing biomass‐C input and its biodiversity under no‐till (NT) drives soil restoration of degraded agro‐ecosystem. The present study conducted at subtropical [Ponta Grossa (PG) site] and tropical regions [Lucas do Rio Verde, MT (LRV) site] in Brazil aimed to (i) assess the impact of the continuous plow‐based conventional tillage (CT) on soil organic carbon (SOC) stock vis‐à‐vis native vegetation (NV) as baseline; (ii) compare SOC balance among CT, NT cropping systems, and NV; and (iii) evaluate the redistribution of SOC stock in soil profile in relation to soil resilience. The continuous CT decreased the SOC stock by 0·58 and 0·67 Mg C ha−1 y−1 in the 0‐ to 20‐cm depth at the PG and LRV sites, respectively, and the rate of SOC sequestration was 0·59 for the PG site and ranged from 0·48 to 1·30 Mg C ha−1 y−1 for the LRV site. The fraction of C input by crop residues converted into SOC stock was ~14·2% at the PG site and ~20·5% at the LRV site. The SOC resilience index ranged from 0·29 to 0·79, and it increased with the increase in the C input among the NT systems and the SOC sequestration rates at the LRV site. These data support the hypothesis that NT cropping systems with high C input have a large potential to reverse the process of soil degradation and SOC decline. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Carbon accumulation is an important research topic for grassland restoration. It is requisite to determine the dynamics of the soil carbon pools [soil organic carbon (SOC) and soil inorganic carbon (SIC)] for understanding regional carbon budgets. In this study, we chose a grassland restoration chronosequence (cropland, 0 years; grasslands restored for 5, 15 and 30 years, i.e. RG5, RG15 and RG30, respectively) to compare the SOC and SIC pools in different soil profiles. Our results showed that SOC stock in the 0‐ to 100‐cm soil layer showed an initial decrease in RG5 and then an increase to net C gains in RG15 and RG30. Because of a decrease in the SIC stock, the percentage of SOC stock in the total soil C pool increased across the chronosequence. The SIC stock decreased at a rate of 0·75 Mg hm−2 y−1. The change of SOC was higher in the surface (0–10 cm, 0·40 Mg hm−2 y−1) than in the deeper soil (10–100 cm, 0·33 Mg hm−2 y−1) in RG5. The accumulation of C commenced >5 years after cropland conversion. Although the SIC content decreased, the SIC stock still represented a larger percentage of the soil C pool. Moreover, the soil total carbon showed an increasing trend during grassland restoration. Our results indicated that the soil C sequestration featured an increase in SOC, offsetting the decrease in SIC at the depth of 0–100 cm in the restored grasslands. Therefore, we suggest that both SOC and SIC should be considered during grassland restoration in semi‐arid regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This study analyses soil organic carbon (SOC) and hot‐water extractable carbon, both measures of soil quality, under different land management—(i) conventional tillage (CT); (ii) CT plus the addition of oil mill waste alperujo (A); (iii) CT plus the addition of oil mill waste olive leaves (L); (iv) no tillage with chipped pruned branches (NT1); and (v) no tillage with chipped pruned branches and weeds (NT2)—in a typical Mediterranean agricultural area: the olive groves of Andalusia, southern Spain. SOC values in CT, A, NT1 and NT2 decreased with depth, but in NT2, the surface horizon (0–5 cm) had higher values than the other treatments, 47% more than the average values in the other three soils. In L, SOC also decreased with depth, although there was an increase of 88·5% from the first (0–10 cm) to the second horizon (10–16 cm). Total SOC stock values were very similar under A (101·9 Mg ha−1), CT (101·7 Mg ha−1), NT1 (105·8 Mg ha−1) and NT2 (111·3 Mg ha−1, if we consider the same depth of the others). However, SOC under L was significantly higher (p < 0·05) at 250·2 Mg ha−1. Hot‐water extractable carbon decreased with depth in A, CT and NT1. NT2 and L followed the same pattern as the other management types but with a higher value in the surface horizon (2·3 and 4·9 mg g−1, respectively). Overall, our results indicate that application of oil mill waste olive leaves under CT (L) is a good management practice to improve SOC and reduce waste. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Temporal changes in soil chemical and nutritional properties were evaluated in a long-term experiment conducted on Alfisols in West Africa. Effects of land use and cropping duration on soil chemical properties at 0–5 cm and 5–10 cm depths were evaluated for five treatments: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) mucuna (Mucuna utilis) fallowing for 1 year followed by maize (Zea mays)-cowpea (Vigna unguiculata) cultivation for 2 years on severely degraded land; (3) fallowing with mucuna on moderately degraded soils; (4) ley farming involving growing improved pastures for 1 year, grazing for the second year, and growing maize-cowpea for the third year on severely degraded land; (5) ley farming on moderately degraded soils. Soil chemical properties were measured once every year from 1982 through 1986 during the dry season, and included pH, soil organic carbon (SOC), total soil nitrogen (TSN), Bray-P, exchangeable cations, and effective cation exchange capacity (CEC). Regardless of the cropping system treatments, soil chemical quality decreased with cultivation time. The rate of decrease at 0–5 cm depth was 0·23 units year−1 for pH, 0·05 per cent year−1 for SOC, 0·012 per cent year−1 for TSN, 0·49 cmol kg−1 year−1 for Ca2+, 0·03 cmol kg−1 year−1 for Mg2+, 0·018 cmol kg−1 year−1 for K+, and 0·48 cmol kg−1 year−1 for CEC. Although there was also a general decrease in soil chemical quality at 5–10 cm depth, the trends were not clearly defined. In contrast to the decrease in soil properties given above, there was an increase in concentration at 0–5 cm depth of total acidity with cultivation time at the rate of 0·62 cmol kg−1 year−1, and of Mn3+ concentration at the rate of 0·081 cmol kg−1 year−1. Continuous cropping also increased the concentration of Bray-P at 0–5 cm depth due to application of phosphatic fertilizer. Trends in soil chemical properties were not clearly defined with regards to cropping system treatments. In general, however, soil chemical properties were relatively favorable in ley farming and mucuna fallowing treatments imposed on moderately degraded soils. Results are discussed in terms of recommended rates of fertilizer use, in view of soil test values, expected yields, and critical limits of soil properties.  相似文献   

9.
Soil erosion is a major threat to food security in rural areas of Africa. Field experiments were conducted from 2011 to 2014 in Majulai and Migambo villages with contrasting climatic conditions in Usambara Mountains, Tanzania. The aim was to investigate the effectiveness of mulching in reducing soil erosion and restoring soil fertility for productivity of maize (Zea mays) and beans (Phaseolus vulgaris) under miraba, a unique indigenous soil conservation measure in the area. Soil loss was significantly higher (p < 0·05) under miraba sole than under miraba with mulching, for example, 35 versus 20 and 13 versus 8 Mg ha−1 y−1 for Majulai and Migambo villages, respectively, in 2012. Soil fertility status was significantly higher (p < 0·05) under miraba with Tughutu mulching than under miraba sole, for example, 0·35 versus 0·25% total N, 37 versus 22 mg kg−1 P and 0·6 versus 0·2 cmol(+) kg−1 K for the Majulai village; and 0·46 versus 0·38 total N, 17·2 versus 10·2 mg kg−1 P and 0·50 versus 0·2 cmol(+) kg−1 K for the Migambo village. Maize and bean yields (Mg ha−1) were significantly higher (p < 0·05) under miraba with Tughutu mulching than under miraba sole, 2·0 versus 1·3 for maize and 0·9 versus 0·8 for beans in Majulai; and 3·8 versus 2·6 for maize and 1·0 versus 0·8 for beans in the Migambo village in 2012. This implies that Tughutu mulching is more effective in improving crop yield than Tithonia, although both could potentially protect the arable land from degradation caused by water erosion under miraba. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In order to assess the potential of soils as C reservoir at regional scale, accurate estimates of soil organic carbon (SOC) are required, and different approaches can be used. This study presents a method to assess and map topsoil organic carbon stock (Mg ha−1) at regional scale for the whole Emilia Romagna plain in Northern Italy (about 12 000 km2). A Scorpan Kriging approach is proposed, which combines the trend component of soil properties as derived from the 1:50 000 soil map with geostatistical modeling of the stochastic, locally varying but spatially correlated component. The trend component is described in terms of varying local means, calculated taking into account soil type and dominant land use. The resulting values of SOC, sand, silt, and clay contents are retained for calculating topsoil SOC stocks, using a set of locally calibrated pedotransfer functions (PTFs) to estimate bulk density. The maps of each soil attribute are validated over a subset of 2000 independent and randomly selected observations. As compared to the standard approach based on the mean values for delineation, results show lower standard errors for all the variables used for SOC stock assessment, with a relative improvement (RI) ranging from 4 per cent for SOC per cent to 24 per cent for silt. The total C stock (0–30 cm) in the study area is assessed as 73·24 ± 6·67 M t, with an average stock of 62·30 ± 5·55 Mg ha−1. The SOC stock estimates are used to infer possible SOC stock changes in terms of carbon sequestration potential and potential carbon loss (PCL). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Tillage practices on sloping ground often result in unsustainable soil losses impairing soil functions such as crop productivity, water and nutrients storage, and soil organic carbon (SOC) sequestration. A sloping olive grove (10%) was planted in shallow gypsiferous soils in 2004. It was managed by minimum tillage; the most frequent management practice in central Spain. The consequences of erosion were studied in soil samples (at 0–10, 10–20, and 20–30 cm depths) by analyzing SOC, available water and gypsum content, and by detecting spectral signatures using an ASD FieldSpecPro® VIS/NIR-spectroradiometer. The Brightness index (BI), Shape index (FI), and Normalized Difference Vegetation Index (NDVI) were derived from the ASD spectral signatures and from remote sensing (Sentinel-2 image) data. The development of these young olive trees was estimated from the measured diameter of the trunks (17 ± 18 cm diameter). In 20–30 cm of the soil, the carbon stock (38 ± 18 Mg ha−1) as well as the available water content (12 ± 6%) was scarce, affecting the productivity of the olive grove. The above-mentioned indices obtained from the laboratory samples and the pixels of the Sentinel-2 image were significantly (p < 0.01) correlated, with a correlation coefficient of around 0.4. The BI was related to the gypsum content and the slope of the plot. The FI was related to the carbon and water contents. The NDVI derived from the satellite image identified the influence of soil degradation on the trees and the carbon content. The spatial-temporal changes of the indices might help in tracking soil changes over time.  相似文献   

12.
Soils are an effective sink for carbon storage and immobilization through biomass productivity and enhancement of soil organic carbon (SOC) pool. The SOC sink capacity depends on land use and management. Degraded lands lose large amounts of C through SOC decomposition, erosion, and leaching. Thus, restoration of disturbed and degraded mine lands can lead to increase in biomass productivity, improved soil quality and SOC enhancement and sequestration. Reclamation of mined lands is an aggrading process and offers significant potential to sequester C. A chronosequence study consisting of 0‐, 5‐, 10‐, 15‐, 20‐ and 25‐year‐old reclaimed mine soils in Ohio was initiated to assess the rate of C sequestration by pasture and forest establishment. Undisturbed pasture and forest were used as controls. The SOC pool of reclaimed pasture sites increased from 15·3 Mg ha−1 to 44·4 Mg ha−1 for 0–15 cm depth and from 10·8 Mg ha−1 to 18·3 Mg ha−1 for 15–30 cm depth over the period of 25 years. The SOC pool of reclaimed forest sites increased from 12·7 Mg ha−1 to 45·3 Mg ha−1 for 0–15 cm depth and from 9·1 Mg ha−1 to 13·6 Mg ha−1 for 15–30 cm depth over the same time period. The SOC pool of the pasture site stabilized earlier than that of the forest site which had not yet attained equilibrium. The SOC sequestered in 0–30 cm depth over 25 years was 36·7 Mg ha−1 for pasture and 37·1 Mg ha−1 for forest. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Zhu  Meng  Feng  Qi  Zhang  Mengxu  Liu  Wei  Qin  Yanyan  Deo  Ravinesh C.  Zhang  Chengqi 《Journal of Soils and Sediments》2019,19(4):1640-1650
Purpose

Soil organic carbon (SOC) in mountainous regions is characterized by strong topography-induced heterogeneity, which may contribute to large uncertainties in regional SOC stock estimation. However, the quantitative effects of topography on SOC stocks in semiarid alpine grasslands are currently not well understood. Therefore, the purpose of this research study is to determine the role of topography in shaping the spatial patterns of SOC stocks.

Materials and methods

Soils from the summit, shoulder, backslope, footslope, and toeslope positions along nine toposequences within three elevation-dependent grassland types (i.e., montane desert steppe at ~?2450 m, montane steppe at ~?2900 m, and subalpine meadow at ~?3350 m) are sampled at four depths (0–10, 10–20, 20–40, and 40–60 cm). SOC content, bulk density, soil texture, soil water content, and grassland biomass are determined. The general linear model (GLM) is employed to quantify the effects of topography on the SOC stocks. Ordinary least squares regressions are performed to explore the underlying relationships between SOC stocks and the other edaphic factors.

Results and discussion

In accordance with the present results, the SOC stocks at 0–60 cm show an increasing trend in respect to the elevation zone, with the highest stock being approximately 37.70 g m?2 in the subalpine meadow, about 2.07 and 3.41 times larger than that in the montane steppe and montane desert steppe, respectively. Along the toposequences, it is revealed the SOC stocks are maximal at toeslope, reaching to 14.98, 31.76, and 49.52 kg m?2, which are also significantly larger than those at the shoulder by a factor of 1.38, 2.31, and 1.44, in montane desert steppe, montane steppe, and subalpine meadow, respectively. Topography totally is seen to explain about 84% of the overall variation in SOC stocks, of which 70.61 and 9.74% are attributed to elevation zone and slope position, while the slope aspect and slope gradient are seen to plausibly explain only about 1.84 and 0.01%, respectively.

Conclusions

The elevation zone and the slope position are seen to markedly shape the spatial patterns of the SOC stocks, and thus, they may be considered as key indicating factors in constructing the optimal SOC estimation model in such semiarid alpine grasslands.

  相似文献   

14.
Research on how tillage‐induced soil redistribution affects soil properties is limited for complex slopes in nonmechanized agricultural areas. The objectives of this study are (1) to examine the vertical redistribution of soil organic C (SOC), extractable P and K induced by tillage on a complex slope, (2) to assess the effects of tillage erosion on soil profile properties, and (3) to elucidate the variations in soil properties induced by both vertical mixture and downslope transport of soil within the landscape. Simulated tillage was conducted in the Yangtze Three Gorges Reservoir Area, China. The 137Cs data showed that intense tillage caused the soil vertical mixture and downslope transport. The redistribution of 137Cs and soil constituents varied with the number of tillage passes and location in relation to curvature. SOC was completely depleted with the disappearance of soil profiles at the summit position, while SOC concentrations decreased by 26% for the till layer and increased by 29% for the sublayer at the toeslope position for the 15‐tillage operation, as compared with those of pretillage. The vertical redistribution of extractable P and K followed a similar pattern to that of SOC. The gap and variation in soil constituents between the till layer and sublayer declined after tillage, suggesting that the mixing effect of tillage attenuates the variability of soil properties in the vertical direction. Net loss and gain of soil constituents occurred at the summit and toeslope positions, respectively, suggesting that the downslope transport of soil induced by tillage accentuates the variability of soil properties in the lateral direction.  相似文献   

15.
Land degradation can be triggered by the abuse of chemicals that damage soil quality. Agriculture is changing the chemical and physical properties of soils, and in vineyards, those changes are due to the use of pesticides. In order to assess the Pb and Cd content, 212 soil samples from La Rioja D.O.Ca were analysed. Concentrations of Pb in soil ranged from 0·96 to 64·31 mg kg−1 with a mean concentration of 21·26 mg kg−1 in the surface layer, while they ranged from 7·97–43·93 mg kg−1 with a mean of 20·83 mg kg−1 in the subsurface layer. The mean content of bioavailable lead was 1·03 mg kg−1 in the surface layer and 0·76 mg kg−1 in the subsurface. Cd overall average concentration was 0·29 mg kg−1 in the surface; in the subsurface, the mean was 0·31 mg kg−1 and ranged from 0·10 to 1·22 mg kg−1. The values in the surface layers were 0·15 mg kg−1 and in the subsurface layer 0·01 of Cd bioavailability. On the basis of pedogeochemical Pb and Cd distribution, balanced fertilization will be of great importance for sustainable development of agricultural wine‐producers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The proportional differences in soil organic carbon (SOC) and its fractions under different land uses are of significance for understanding the process of aggregation and soil carbon sequestration mechanisms. A study was conducted in a mixed vegetation cover watershed with forest, grass, cultivated and eroded lands in the degraded Shiwaliks of the lower Himalayas to assess land‐use effects on profile SOC distribution and storage and to quantify the SOC fractions in water‐stable aggregates (WSA) and bulk soils. The soil samples were collected from eroded, cultivated, forest and grassland soils for the analysis of SOC fractions and aggregate stability. The SOC in eroded surface soils was lower than in less disturbed grassland, cultivated and forest soils. The surface and subsurface soils of grassland and forest lands differentially contributed to the total profile carbon stock. The SOC stock in the 1.05‐m soil profile was highest (83.5 Mg ha−1) under forest and lowest (55.6 Mg ha−1) in eroded lands. The SOC stock in the surface (0–15 cm) soil constituted 6.95, 27.6, 27 and 42.4 per cent of the total stock in the 1.05‐m profile of eroded, cultivated, forest and grassland soils, respectively. The forest soils were found to sequester 22.4 Mg ha−1 more SOC than the cultivated soils as measured in the 1.05‐m soil profiles. The differences in aggregate SOC content among the land uses were more conspicuous in bigger water‐stable macro‐aggregates (WSA > 2 mm) than in water‐stable micro‐aggregates (WSA < 0.25 mm). The SOC in micro‐aggregates (WSA < 0.25 mm) was found to be less vulnerable to changes in land use. The hot water soluble and labile carbon fractions were higher in the bulk soils of grasslands than in the individual aggregates, whereas particulate organic carbon was higher in the aggregates than in bulk soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In the fragile hilly ecosystem of North‐eastern Himalayan Region (NEHR) of India, interaction of land use change and soil organic carbon (SOC) holds significance in sustaining land productivity. However, because of limited data, the effect of land use on SOC inventory at regional level is poorly quantified. The present study assessed the influence of seven major land uses and agrophysical variables (soil texture, bulk density, annual rainfall and mean temperature) on SOC concentration and stock across altitudinal gradients (6–3,500 masl) of NEHR of India. Results revealed that non‐agricultural land uses (grasslands and forests) registered significantly higher SOC concentration (2·20 to 2·51%) and stock (35·2–42·1 Mg ha−1) compared with agricultural (shifting and settled‐up and lowlands), plantation and horticultural land uses (SOC, 1·44 to 1·63%; stock, 27·4–28·4 Mg ha−1). Principal component analysis exhibited that the variation in SOC concentration among the land uses was mostly contributed by finer fractions of soil separates (silt and clay contents), and altitudinal gradient led variation in climatic variables (rainfall and temperature). Trend analyses depicted that SOC increased with an increase in rainfall and clay content but decreased with mean temperature and soil bulk density. Along the altitudinal gradient (6 to 1,000 masl), an inconsistent increase in silt + clay, annual rainfall, SOC concentration, and stock was also observed. However, beyond 1,000 masl, the corresponding increase was linear. The wide variability in SOC concentration and stock, therefore, resulted from the interaction of land uses, altitudinal gradients, textural gradients and climatic variables Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Increase in atmospheric concentration of CO2 from 285 parts per million by volume (ppmv) in 1850 to 370 ppm in 2000 is attributed to emissions of 270 ± 30 Pg carbon (C) from fossil fuel combustion and 136 ± 55 Pg C by land‐use change. Present levels of anthropogenic emissions involve 6·3 Pg C by fossil fuel emissions and 1·8 Pg C by land‐use change. Out of the historic loss of terrestrial C pool of 136 ± 55 Pg, 78 ± 12 Pg is due to depletion of soil organic carbon (SOC) pool comprising 26 ± 9 Pg due to accelerated soil erosion. A large proportion of the historic SOC lost can be resequestered by enhancing the SOC pool through converting to an appropriate land use and adopting recommended management practices (RMPs). The strategy is to return biomass to the soil in excess of the mineralization capacity through restoration of degraded/desertified soils and intensification of agricultural and forestry lands. Technological options for agricultural intensification include conservation tillage and residue mulching, integrated nutrient management, crop rotations involving cover crops, practices which enhance the efficiency of water, plant nutrients and energy use, improved pasture and tree species, controlled grazing, and judicious use of inptus. The potential of SOC sequestration is estimated at 1–2 Pg C yr−1 for the world, 0·3–0·6 Pg C yr−1 for Asia, 0·2–0·5 Pg C yr−1 for Africa and 0·1–0·3 Pg C yr−1 for North and Central America and South America, 0·1–0·3 Pg C yr−1 for Europe and 0·1–0·2 Pg C yr−1 for Oceania. Soil C sequestration is a win–win strategy; it enhances productivity, improves environment moderation capacity, and mitigates global warming. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Tillage and soil management effects on soil physical and chemical qualities were monitored for eight years from 1979 through 1987 in a long-term experiment involving 17 consecutive crops of maize. Effects of no-till and plow-till methods of seedbed preparation were compared at two levels of residue management (residue removed versus residue returned) and two levels of fertilizer application (without fertilizer versus recommended fertilizer). Soil chemical quality was better for no-till compared with plow-till methods. Mean soil chemical properties of 0–5 cm depth for no-till and plow-till treatments respectively were 18·6 g kg−1 versus 12·2 g kg−1 for soil organic carbon content, 1·9 g kg−1 versus 1·1 g kg−1 for total soil nitrogen, 0·14 units yr−1 versus 0·18 units yr−1 rate of decline in soil pH, 63·1 mg kg−1 versus 31·8 mg kg−1 for Bray-P, and 6·0 cmol kg−1 versus 2·3 cmol kg−1 for Ca+2. Soil chemical quality consistently declined, although the rate of decline differed among tillage and fertilizer treatments. There were also differences in soil physical quality. Soil bulk density increased with cultivation duration in both tillage methods, and use of furadan in no-till plots drastically increased soil bulk density. Infiltration rate and soil moisture retention at all suctions was consistently more for no-till than plow-till treatments. Decline in soil quality with cultivation was reflected in decrease in crop yields. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
This study analyzes effects of soil and water conservation (SWC) on soil quality and implications to climate change adaptation and mitigation in the Upper Blue Nile River Basin of Ethiopia by using the Anjeni watershed as a case study site. Disturbed and undisturbed soil samples were collected from two sub‐watersheds of Anjeni: the Minchet sub‐watershed (with SWC measures) and the Zikrie sub‐watershed (without SWC measures). Soil samples were taken from 30‐cm depth from five representative landscape positions and analyzed following the standard soil lab analysis procedures. The results show that soils from the conserved sub‐watershed had improved quality indicators compared with those from the non‐conserved site. Significant improvement due to SWC measures was observed in the soil hydrological [total moisture content (+5·43%), field capacity (+5·35%), and available water capacity (+4·18%)] and chemical [cation exchange capacity (+4·40 cmol(+) kg−1), Mg2+ (+1·90 cmol(+) kg−1), Na+ (+0·10 cmol(+) kg−1)] properties. SWC interventions significantly reduced soil erosion by 57–81% and surface runoff by 19–50% in the conserved sub‐watershed. Reduction in soil erosion can maintain the soil organic carbon stock, reduce the land degradation risks, and enhance the C sequestration potential of soils. Therefore, adoption of SWC measures can increase farmers' ability to offset emissions and adapt to climate change. However, SWC measures that are both protective and sufficiently productive have not yet been implemented in the conserved sub‐watershed. Therefore, it is important that SWC structures be supplemented with other biological and agronomic measures in conjunction with soil fertility amendments appropriate to site‐specific conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号