首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary It is commonly assumed that the adverse effect of plant residues on crop yields is largely or partly due to phytotoxic compounds leached from these residues or produced by their decomposition. There has been substantial support for the hypothesis that the phytotoxic compounds responsible for reduced crop yields are phenolic acids such as p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid. To test the validity of this hypothesis, we studied the effects of nine phenolic acids (caffeic acid, chlorogenic acid, p-coumaric acid, ellagic acid, ferulic acid, gallic acid, p-hydroxybenzoic acid, syringic acid, and vanillic acid) on (1) seed germination of corn (Zea mays L.), barley (Hordeum vulgare L.), oats (Avena sativa L.), rye (Secale cereale L.), sorghum [Sorghum bicolor (L.) Moench], wheat (Triticum aestivum L.), and alfalfa (Medicago sativa L.) on germination paper and soil, (2) seedling growth of alfalfa, oats, sorghum, and wheat on germination paper and soil, and (3) early plant growth of corn, barley, oats, rye, sorghum, and wheat in soil. The results showed that although the phenolic acids tested affected germination and seedling growth on germination paper, they had no effect on seed germination, seedling growth, or early plant growth in soil even when the amounts applied were much greater than the amounts detected in soil. We conclude that the adverse effect of plant residues on crop yields is not due to phenolic acids derived from these residues.  相似文献   

2.
Simple phenolic acid levels were determined on pooled millstreams of five different classes of Canadian wheat milled to ~75, 80, and 85% extraction. Pooled flours and whole grain were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) to establish endogenous levels of insoluble bound, soluble esterified, and free phenolic acids. Only ferulic acid was detected in the insoluble bound category, which accounted for >80% of the total phenolic acids present in every flour. The soluble esterified phenolic acids accounted for up to 17% of the overall total phenolic acid content within a flour. The major constituents were sinapic, ferulic, and vanillic acids, with minor amounts of coumaric, caffeic, and syringic acids. Free phenolic acids accounted for a maximum of 6% of the total phenolic content of any prepared flour. Ferulic acid was the major free phenolic acid, while sinapic acid was not detected in any flour. Significant correlations (r = 0.64–0.97, P < 0.05) were observed between insoluble bound ferulic acid, individual soluble esterified acids, and most free acids with polyphenol oxidase activity, as well as color and ash content for each class.  相似文献   

3.
Analysis by GC/MS/MS showed that a worldwide collection of 58 wheat accessions differed significantly in the production of seven phenolic acids in the roots of 17-day-old wheat seedlings. The allelochemical contents among wheat accessions ranged from 24.5 to 94.5, 19.9 to 91.7, 3.7 to 15.4, 2.2 to 38.6, 1.0 to 42.2, 19.3 to 183.6, and 11.7 to 187.6 mg/kg of root dry weight for p-hydroxybenzoic, vanillic, cis-p-coumaric, syringic, cis-ferulic, trans-p-coumaric, and trans-ferulic acids, respectively. trans-Ferulic acid was identified as the most predominant phenolic acid in the roots. Phenolic acids, with the exception of syringic acid, were more concentrated in roots than in shoots. Significant correlation was found between the roots and the shoots in the contents of vanillic, cis-p-coumaric, syringic, trans-p-coumaric, and trans-ferulic acids, and in the content of each structural group of phenolic acids. Wheat accessions with high levels of total identified phenolic acids in the roots were generally strongly allelopathic to the growth of annual ryegrass.  相似文献   

4.
Phenolic acids in rice straw and its decayed product were surveyed and quantitatively analyzed by gas chromatography.

1) Thirteen kinds of phenolic acids in rice straw and its decayed product were identified. Besides p-hydroxybenzoic, vanillic, P-coumaric, and ferulic acids which had been already reported, nine phenolic acids were newly identified; these were benzoic, salicylic, syringic, protocatechuic, β-resorcylic, caffeic, sinapic, gallic, and gentisic acids.

2) A gas chromatographic analysis was applied to the micro-determination of major phenolic acids in rice straw and . the decayed products. The methanolic alkaline extracts from them were washed with ether, acidified, transferred into ether, trimethylsilylated, and injected into a gas chromatograph equipped with a silicon SE-30 column. The recoveries of p-coumaric, p-hydroxybenzoic, vanillic, and syringic acids were more than 90%, and ferulic and syringic acids were recovered at about 70%.

3) The content of each of the above described major phenolic acids in rice straw ranged from 0.002 to 0.037% per dry weight. p-Coumaric acid was contained in the largest amount. Ferulic and vanillic acids followed. In the decayed straw, these contents decreased to 0.002–0.017%. The whole phenolic substances in ether-extracted fraction were present at 0.34%, and the amount decreased to one-third during the decaying process.  相似文献   

5.
Tef, Eragrostis tef (Zucc.) Trotter, is a cereal crop originated and diversified in Ethiopia, where it is used to produce a range of food products. This study aimed to profile and quantify the phenolic composition and antioxidant potential of seven tef grain varieties. Soluble and bound phenolics ranged from 37 to 71 and from 226 to 376 mg of gallic acid equivalent/100 g dry basis (db), and soluble and bound flavonoid contents varied between 36 and 64 and between 113 and 258 mg of catechin equivalent/100 g db, respectively. Protocatechuic, vanillic, syringic, p‐coumaric, sinapic, ferulic, and rosmarinic acids, catechin, and naringenin were detected at least in three of the varieties studied. The dominant phenolic compounds were catechin, rosmarinic acid, and ferulic acid in the soluble extracts, whereas ferulic, rosmarinic, and p‐coumaric acids were the dominant ones in the bound extract. Gallic, caffeic, and salicylic acids were not detected in any of the varieties studied. The majority (>84%) of tef grain phenolics were found in bound form, contributing >84% of total 2,2‐diphenyl‐1‐picrylhydrazyl antioxidative capacity and >80% of total ferric reducing antioxidant power. These results clearly demonstrated the differences in phenolic profile among tef grain varieties. These results are relevant for developing healthy and nutritious tef‐based food products.  相似文献   

6.
A high-performance liquid chromatographic (HPLC) method with diode-array detection (DAD) was used to identify and quantify free and total phenolic acids (m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, gallic acid, vanillic acid, syringic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, chlorogenic acid, and ellagic acid) in plant foods. Free phenolic acids were extracted with a mixture of methanol and 10% acetic acid. Bound phenolic acids were liberated using first alkaline and then acid hydrolysis followed by extraction with diethyl ether/ethyl acetate (1:1). All fractions were quantified separately by HPLC. After HPLC quantification, results of alkali and acid hydrolysates were calculated to represent total phenolic acids. Ellagic acid was quantified separately after long (20 h) acid hydrolysis. The methods developed were effective for the determination of phenolic acids in plant foods. DAD response was linear for all phenolic acids within the ranges evaluated, with correlation coefficients exceeding 0.999. Coefficients of variation for 4-8 sample replicates were consistently below 10%. Recovery tests of phenolic acids were performed for every hydrolysis condition using several samples. Recoveries were generally good (mean >90%) with the exceptions of gallic acid and, in some cases, caffeic acid samples.  相似文献   

7.
Coarse and fine fiber fractions obtained from the corn wet‐milling processes, with and without steeping chemicals (SO2 and lactic acid), were evaluated microscopically for structure and analytically for recovery of phytosterol compounds from the fiber oil. Microscopic results showed that wet milling, with and without chemicals during steeping, changed the line of fracture between pericarp and endosperm and therefore affected the recovery of the aleurone layer in coarse (pericarp) and fine (endosperm cellular structure) fiber. Analytical results showed that most of the phytosterols and mainly phytostanols in corn fiber are contributed by the aleurone layer. Hand‐dissection studies were performed to separate the two layers that comprise the wet‐milled coarse fiber, the aleurone, and pericarp layer. Analyses revealed that the aleurone contained 8× more phytosterols than the pericarp.  相似文献   

8.
In the present study, bioprocessing with eight microbial strains including Bacillus species, yeasts, and filamentous fungi was evaluated for its potential to improve the phenolic acid composition and antioxidant activity of wheat bran. The soluble free and soluble conjugated fractions of ethanolic extracts of the treated bran samples were compared for their total phenolic contents, phenolic acid composition, and in vitro antioxidant activities. In general, total phenolic content in the soluble free fraction increased significantly, accounting for 241.11 ± 1.25 μg of gallic acid equivalents (GE)/g (Rhizopus oryzae), 230.50 ± 1.05 μg of GE/g (Mucor circinelloides), and 230.19 ± 1.02 μg of GE/g (Saccharomycopsis fibuligera). The phenolic acid composition, especially of the soluble free fraction, was improved most by S. fibuligera (hydroxybenzoic, vanillic, syringic, and trans‐ferulic acids), M. circinelloides (chlorogenic acid), and R. oryzae (protocatechuic, trans‐coumaric, and benzoic acids). Comparatively, bioprocessing exhibited less effectiveness on conjugated phenolic acid composition. Fermented wheat bran displayed enhanced reducing capacity, superoxide anion radical scavenging activity, and 1,1‐diphenyl‐2‐picrylhydrazyl radical scavenging activity in comparison with the nonfermented sample. The antioxidant activity was significantly correlated to the total phenolic content.  相似文献   

9.
The contents of free and total phenolic acids and alk(en)ylresorcinols were analyzed in commercial products of eight grains: oat (Avena sativa), wheat (Triticum spp.), rye (Secale cerale), barley (Hordeum vulgare), buckwheat (Fagopyrum esculentum), millet (Panicum miliaceum), rice (Oryza sativa), and corn (Zea mays). Avenanthramides were determined in three oat products. Free phenolic acids, alk(en)ylresorcinols, and avenanthramides were extracted with methanolic acetic acid, 100% methanol, and 80% methanol, respectively, and quantified by HPLC. The contents of total phenolic acids were quantified by HPLC analysis after alkaline and acid hydrolyses. The highest contents of total phenolic acids were in brans of wheat (4527 mg/kg) and rye (4190 mg/kg) and in whole-grain flours of these grains (1342 and 1366 mg/kg, respectively). In other products, the contents varied from 111 mg/kg (white wheat bread) to 765 mg/kg (whole-grain rye bread). Common phenolic acids found in the grain products were ferulic acid (most abundant), ferulic acid dehydrodimers, sinapic acid, and p-coumaric acid. The grain products were found to contain either none or only low amounts of free phenolic acids. The content of avenanthramides in oat flakes (26-27 mg/kg) was about double that found in oat bran (13 mg/kg). The highest contents of alk(en)ylresorcinols were observed in brans of rye (4108 mg/kg) and wheat (3225 mg/kg). In addition, whole-grain rye products (rye bread, rye flour, and whole-wheat flour) contained considerable levels of alk(en)ylresorcinols (524, 927, and 759 mg/kg, respectively).  相似文献   

10.
Consumption of whole‐wheat products, including whole‐wheat spaghetti, is associated with beneficial health effects. Flavonoids and lignans are antioxidant phytochemicals that have received much attention from researchers. Investigations were conducted on the content of flavonoid glycosides, lignan diglucoside, and secoisolariciresinol diglucoside (SDG) as contributors to the health‐promoting properties of whole‐wheat spaghetti. Flavonoid glycosides present in regular and whole‐wheat spaghetti samples were identified as 6‐C‐glucosyl‐8‐C‐arabinosyl apigenin and the sinapic acid ester of apigenin‐C‐diglycoside while, in a previous study, the sinapic acid ester of apigenin‐C‐diglycoside was found only in wheat germ tissues. The content of these compounds was significantly higher in whole‐wheat spaghetti (17.0 and 15.1 μg of apigenin equivalent/g) compared to the regular brands (9.5 and 5.8 μg apigenin equivalent/g). SDG content was also significantly higher in whole‐wheat spaghetti (41.8 μg/g) compared to the regular brands (12.9 μg/g). These findings lend further support to the notion that phenolic compounds, along with dietary fiber, are concentrated in the bran layers of the wheat kernel; hence, consumption of whole grain products is strongly recommended to obtain significant levels of health‐promoting phytochemicals.  相似文献   

11.
Swiss red wheat grain, bran, aleurone, and micronized aleurone were examined and compared for their free radical scavenging properties against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH*), radical cation ABTS*+ and peroxide radical anion O(2)*-, oxygen radical absorbance capacity (ORAC), chelating capacity, total phenolic content (TPC), and phenolic acid composition. The results showed that micronized aleurone, aleurone, bran, and grain may significantly differ in their antioxidant properties, TPC, and phenolic acid composition. Micronized aleurone had the greatest antioxidant activities, TPC, and concentrations of all identified phenolic acids, suggesting the potential of postharvesting treatment on antioxidant activities and availability of TPC and phenolic acids. Ferulic acid was the predominant phenolic acid in Swiss red wheat and accounted for approximately 57-77% of total phenolic acids on a weight basis. Ferulic acid concentration was well correlated with scavenging activities against radical cation and superoxide anion, TPC, and other phenolic acid concentrations, suggesting the potential use of ferulic acid as a marker of wheat antioxidants. In addition, 50% acetone and ethanol were compared for their effects on wheat ORAC values. The ORAC value of 50% acetone extracts was 3-20-fold greater than that of the ethanol extracts, indicating that 50% acetone may be a better solvent system for monitoring antioxidant properties of wheat. These data suggest the possibility to improve the antioxidant release from wheat-based food ingredients through postharvesting treatment or processing.  相似文献   

12.
A universal method to separate and quantify 13 phenolic acids (gallic acid, chlorogenic acid, gentsic acid, vanillic acid, caffeic acid, syringic acid, sinapic acid, p-coumaric acid, ferulic acid, anisic acid, rosmarinic acid, salicylic acid, and cinnamic acid) in some compound herbal medicines was established by liquid chromatographic (HPLC). On an Agela XBP-C18 (5 microm, 4.6 mm x 150 mm) column, a multistep binary gradient elution program and a simplified sample pretreatment approach were used in the experiment. For all of the phenolic acids, detection limits ranged around 0.01 mg/L. Linear ranges of higher than 2 orders of magnitude were obtained with a correlation coefficient of 0.9991 to 1. Repeatability was 0.39-2.24% (relative standard deviation, RSD) for intraday, 1.17-3.96% (RSD) for interday, and 0.14-5.33% (RSD) for drug sample analysis. Recovery, tested by a standard addition method, ranged from 83.3% to 104.9% for various trace phenolic acids.  相似文献   

13.
Analysis by GC-MS/MS showed that a worldwide collection of 58 wheat accessions differed significantly in the amounts of 7 known phenolic acids exuded by the living roots of 17-day-old wheat seedlings. The quantities of exuded allelochemicals varied with the specific compound and ranged from 2.3 to 18.6, from 0.6 to 17.5, from 0.1 to 4.9, from 0.0 to 52.7, from 0.33 to 12.7, from 1.5 to 20.5, and from 1.6 to 23.4 microg/L of water/agar for p-hydroxybenzoic, vanillic, cis-p-coumaric, syringic, cis-ferulic, trans-p-coumaric, and trans-ferulic acids, respectively. The concentrations of p-hydroxybenzoic and vanillic acids exuded by wheat seedlings were normally distributed in the 58 accessions. The level of each phenolic acid in root exudates did not correlate well to that previously observed in wheat. In comparison with weakly allelopathic accessions, strongly allelopathic accessions exuded larger quantities of allelochemicals into the growth medium. The chemical basis for wheat seedling allelopathy is an area for further investigation.  相似文献   

14.
Grain is an important source of phytochemicals, which have potent antioxidant capacity. They have been implicated in the beneficial health effect of whole grains in reducing cardiovascular disease and type 2 diabetes. The aim of the present study was to identify the most important antioxidant fractions of wheat grain. It was found that the aleurone content of these fractions was highly correlated with the antioxidant capacity of the fractions (r = 0.96, p < 0.0001). Ferulic acid appeared to be the major contributor to the antioxidant capacity in fractions with higher antioxidant capacity. The contribution of protein was rather limited. It was concluded that the antioxidant potency of wheat grain fractions is predominantly determined by aleurone content, which can be attributed to the presence of relatively large amounts of phenolic compounds, primarily ferulic acid.  相似文献   

15.
Two barley varieties (Falcon and AC Metcalfe) were separated by pearling into seven fractions and subsequently extracted with 80% methanol. The extracts, after solvent removal, were evaluated for their radical scavenging efficacy using Trolox equivalent antioxidant capacity (TEAC). The radical scavenging capacity of the extracts was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, oxygen radical absorbance capacity (ORAC(FL)), and superoxide radical assays and a photoinduced chemiluminescence technique. In both barley varieties the outermost fraction (F1) yielded the highest phenolic content. In general, Falcon had a significantly higher total phenolic content than AC Metcalfe. A similar trend was observed for TEAC, DPPH, and superoxide radical scavenging capacities of the extracts. The contents of water-soluble antioxidants of Falcon and AC Metcalfe were 1.15-12.98 and 2.20-12.25 micromol of Trolox equiv/(g of defatted material), while the corresponding lipid-soluble counterparts varied from 1.44 to 4.70 micromol of alpha-tocopherol equiv/(g of defatted material). Phenolic acids, namely, vanillic, caffeic, p-coumaric, ferulic, and sinapic acids, were identified by HPLC in barley fractions.  相似文献   

16.
Antioxidant activity of grains   总被引:21,自引:0,他引:21  
Epidemiological studies have shown that consumption of whole grains and grain-based products is associated with reduced risk of chronic diseases. The health benefits of whole grains are attributed in part to their unique phytochemical composition. However, the phytochemical contents in grains have been commonly underestimated in the literature, because bound phytochemicals were not included. This study was designed to investigate the complete phytochemical profiles in free, soluble conjugated, and insoluble bound forms, as well as their antioxidant activities in uncooked whole grains. Corn had the highest total phenolic content (15.55 +/- 0.60 micromol of gallic acid equiv/g of grain) of the grains tested, followed by wheat (7.99 +/- 0.39 micromol of gallic acid equiv/g of grain), oats (6.53 +/- 0.19 micromol of gallic acid equiv/g of grain), and rice (5.56 +/- 0.17 micromol of gallic acid equiv/g of grain). The major portion of phenolics in grains existed in the bound form (85% in corn, 75% in oats and wheat, and 62% in rice), although free phenolics were frequently reported in the literature. Ferulic acid was the major phenolic compound in grains tested, with free, soluble-conjugated, and bound ferulic acids present in the ratio 0.1:1:100. Corn had the highest total antioxidant activity (181.42 +/- 0.86 micromol of vitamin C equiv/g of grain), followed by wheat (76.70 +/- 1.38 micromol of vitamin C equiv/g of grain), oats (74.67 +/- 1.49 micromol of vitamin C equiv/g of grain), and rice (55.77 +/- 1.62 micromol of vitamin C equiv/g of grain). Bound phytochemicals were the major contributors to the total antioxidant activity: 90% in wheat, 87% in corn, 71% in rice, and 58% in oats. Bound phytochemicals could survive stomach and intestinal digestion to reach the colon. This may partly explain the mechanism of grain consumption in the prevention of colon cancer, other digestive cancers, breast cancer, and prostate cancer, which is supported by epidemiological studies.  相似文献   

17.
Fusarium head blight (FHB) has emerged as a major threat to wheat crops around the world, and it has been hypothesized that wheat antioxidants may play a role against Fusarium infections. The current study aimed to determine antioxidant properties of FHB-resistant wheat grains as compared to susceptible wheat. The wheat samples were collected from a single growing location (Warsaw, VA) and the same growing season. The results showed that both FHB-resistant and -susceptible wheat grains exerted strong radical scavenging activities against DPPH* radical [0.91-1.53 micromol of Trolox equivalents (TE)/g], peroxyl radical (15.5-24.5 micromol of TE/g), and hydroxyl radical (15.7-35.8 micromol of TE/g). Their total phenolic contents ranged from 888 to 1117 microg of gallic acid equivalents (GAE)/g. Five phenolic acids including ferulic, syringic, vanillic, caffeic, and p-coumaric acids were determined in soluble and insoluble fractions of wheat grains, altogether with a range of 219-389 microg/g. On average, the FHB-resistant wheat group showed significantly higher average values in DPPH* and hydroxyl radicals scavenging activities (30 and 41% higher, respectively) than the FHB-susceptible wheat group.  相似文献   

18.
The contents of pnenolic acids and ferulic acid dehydrodimers were quantified by HPLC analysis after alkaline hydrolysis in kernels of 17 rye (Secale cereale L.) varieties grown in one location in Denmark during 1997 and 1998. Significant variations (P < 0.05) with regard to the concentration of the analyzed components were observed among the different rye varieties and also between different harvest years. However, the content of phenolic acids in the analyzed rye varieties was narrow compared to cereals such as wheat and barley. The concentration of ferulic acid, the most abundant phenolic acid ranged from 900 to 1170 microgram g(-1) dry matter. The content in sinapic acid ranged from 70 to 140 microgram g(-1) dry matter, p-coumaric acid ranged from 40 to 70 microgram g(-1) dry matter, and caffeic, p-hydroxybenzoic, protocatechuic, and vanillic acids were all detected in concentrations less than 20 microgram g(-1) dry matter. The most abundant ferulic acid dehydrodimer 8-O-4 -DiFA was quantified in concentrations from 130 to 200 microgram g(-1) dry matter followed by 8,5 -DiFA benzofuran form (50-100 microgram g(-1) dry matter), 5,5 -DiFA (40-70 microgram g(-1) dry matter), and 8,5 -DiFA (20-40 microgram g(-1) dry matter).  相似文献   

19.
Sulfate conjugation by phenolsulfotransferase (PST) enzyme is an important process in the detoxification of xenobiotics and endogenous compounds. There are two forms of PST that are specific for the sulfation of small phenols (PST-P) and monoamines (PST-M). Phenoilc acids have been reported to have important biological and pharmacological properties and may have benefits to human health. In the present study, human platelets were used as a model to investigate the influence of 13 phenolic acids on human PST activity and to evaluate the relationship to their antioxidant activity. The results showed that chlorogenic acid, syringic acid, protocatechuic acid, vanillic acid, sinapic acid, and caffeic acid significantly (p < 0.05) inhibited the activities of both forms of PST by 21-30% at a concentration of 6.7 microM. The activity of PST-P was enhanced (p < 0.05) by p-hydroxybenzoic acid, gallic acid, gentisic acid, o-coumaric acid, p-coumaric acid, and m-coumaric acid at a concentration of 6.7 microM, whereas the activity of PST-M was enhanced by gentisic acid, gallic acid, p-hydroxybenzoic acid, and ferulic acid. The phenolic acids exhibited antioxidant activity as determined by the oxygen radical absorbance capacity (ORAC) assay and Trolox equivalent antioxidant capacity (TEAC) assay, especially gallic acid, p-hydroxybenzoic acid, gentisic acid, and coumaric acid, which had strong activity. The overall effect of phenolic acids tested on the activity of PST-P and PST-M was well correlated to their antioxidant activity of ORAC value (r = 0.71, p < 0.01; and r = 0.66, p < 0.01). These observations suggest that antioxidant phenolic acids might alter sulfate conjugation.  相似文献   

20.
An online accumulation/mobilization preconcentration technique based on a dynamic pH junction technique and electrokinetic injection was employed for analysis of phenolic acids (sinapic, ferulic, coumarinic, caffeic, syringic, vanillic, and 4-hydroxybenzoic acid) in extracts from Majorana hortensis leaves. Samples were extracted by pressurized solvent extraction with acetone at 150 degrees C and 15 MPa. The capillary electrophoretic method employed 50 mmol.L (-1) sodium borate, pH 9.5, as the sample electrolyte, 50 mmol.L (-1) sodium phosphate, pH 2.5, as the background electrolyte, and 50 mmol.L (-1) sodium phosphate, pH 2.5, with 60 mmol.L (-1) sodium dodecyl sulfate as the mobilization electrolyte. The method allowed 720-fold to 5560-fold preconcentration of the phenolic acids during 30 min of electrokinetic accumulation with detection limits from 0.38 to 4.22 ng.mL (-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号