首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole grain oats are widely regarded as conferring significant health benefits. Composite flour of whole grain oat flour, wheat flour, and tapioca starch in the ratio 1:1:0.16 was formulated to make oat noodles with the addition of gluten at various levels. The influence of gluten on pasting and gelling properties of composite flour, and on cooking, textural, and sensory properties of salted oat noodles was evaluated. Addition of gluten decreased the paste viscosity, reduced hardness and springiness of gel, reduced cooking yield, cooking loss, and broken ratio during cooking, and increased the tensile strength and firmness of cooked noodles. Scanning electron microscopy showed that gluten tightened the network of protein in the noodles by forming oriented fibrils. Addition of gluten had little effect on the color of raw and cooked oat noodles, which were somewhat yellow. Sensory evaluation indicated that addition of gluten could enhance the overall acceptability of cooked oat noodles. This study may stimulate further interest in using functional whole grain cereal ingredients in developing healthy staple foods.  相似文献   

2.
A hard white spring wheat was milled to yield three patent flours with different starch damage levels by manipulating reduction grinding conditions, and each flour was sieved to give three different particle sizes (85–110, 110–132, 132–183 μm). Raw alkaline noodles were prepared using either 1% w/w kansui (sodium and potassium carbonates in 9:1 ratio) or 1% w/w sodium hydroxide. Noodles prepared with sodium hydroxide were significantly brighter, less red, and more yellow than those made with kansui. Differences in noodle color among flour treatments were evident but were attributable to differences in flour refinement rather to than particle size or starch damage. Noodles were rested for 1 hr after processing before cooking. Alkaline reagent was the main factor associated with cooking loss, being ≈50% greater for sodium hydroxide noodles because of higher pH compared with kansui noodles. Cooked sodium hydroxide noodles were thicker than kansui noodles, and cooked strands for both noodle types became thicker as starch damage increased and as particle size became coarser. Instrumental assessment of cooked noodle texture showed that maximum cutting stress (MCS), resistance to compression (RTC), recovery (REC), stress relaxation time (SRT), chewiness (CHE), and springiness (SPR) were influenced by the type of alkaline reagent. Flour particle size and starch damage also influenced noodle texture but the magnitude of the effects and the trends were dependent on alkaline reagent. MCS of kansui noodles was much greater than for sodium hydroxide noodles. MCS of kansui noodles increased as starch damage increased but, in contrast, MCS of sodium hydroxide noodles decreased with increasing starch damage. REC of kansui noodles increased with increasing starch damage and decreased with larger particle size, whereas for sodium hydroxide noodles REC decreased with increasing starch damage and declined dramatically with larger particle size. Kansui noodles exhibited significantly shorter SRT than sodium hydroxide noodles. SRT of kansui noodles was only moderately affected by starch damage and particle size, whereas for sodium hydroxide noodles, SRT became much shorter as flour became coarser and starch damage became higher. CHE of kansui noodles was greater than for sodium hydroxide noodles. CHE of kansui noodles increased as starch damage increased. In contrast, CHE of sodium hydroxide noodles decreased as starch damage increased and also decreased as flour became coarser. SPR of both noodle types decreased as flour became coarser and starch damage became greater. On the basis of these experiments, flour of smaller particle size is an asset to the cooking quality of sodium hydroxide noodles, but high starch damage is to be avoided. For kansui noodles, the impact of flour particle size on cooked noodle texture was less evident and low starch damage, rather than high starch damage, was an asset.  相似文献   

3.
Mineral content, as determined and expressed by ash content, serves as an index of wheat flour quality for flour millers and food manufacturers who prefer flour of low mineral content, even though the significance of mineral content on the functional properties of wheat flour is not well understood. We explored whether minerals have any influence on the functional properties of wheat flour and product quality of white salted noodles. Ash, obtained by incinerating wheat bran, was incorporated into two hard white spring wheat flours and their starches to raise the total ash content to 1, 1.5, or 2%. Pasting properties were determined using a rapid visco analyzer (RVA). Addition of ash increased the peak viscosity of the flours in both water and buffer solution but did not affect the peak viscosity of starch. Wheat flours with added ash showed lower pasting temperature by approximately 10°C in buffer solution. Mineral extracts (15.3% ash) isolated from wheat bran, when added to increase the ash content of wheat flour and starch to 2%, increased the peak viscosity and lowered the pasting temperature of flour by 13.2–16.3% but did not affect the pasting properties of the isolated starch. The mineral premix also increased peak viscosity of wheat flour but not in starch. Added ash increased noodle thickness and lowered water retention of cooked noodles while it exhibited no significant effect on cooked noodle texture as determined using a texture analyzer.  相似文献   

4.
The effect of amylose content of starch on processing and textural properties of instant noodles was determined using waxy, partial waxy, and regular wheat flours and reconstituted flours with starches of various amylose content (3.0–26.5). Optimum water absorption of instant noodle dough increased with the decrease of amylose content. Instant noodles prepared from waxy and reconstituted wheat flours with ≤12.4% amylose content exhibited thicker strands and higher free lipids content than wheat flours with ≥17.1% amylose content. Instant noodles of ≤12.4% amylose content of starch exhibited numerous bubbles on the surface and stuck together during frying. Lightness of instant noodles increased from 77.3 to 81.4 with the increase of amylose content of starch in reconstituted flours. Cooking time of instant noodles was 4.0–8.0 min in wheat flours and 6.0–12.0 min in reconstituted flours, and constantly increased with the increase in amylose content of starch. Hardness of cooked instant noodles positively correlated with amylose content of starch. Reconstituted flours with ≤12.4% amylose content of starch were higher in cohesiveness than those of wheat flours of wild‐type and partial waxy starches and reconstituted flours with ≥17.1% amylose content. Instant fried noodles prepared from double null partial waxy wheat flour exhibited shorter cooking time, softer texture, and higher fat absorption (1.2%) but similar color and appearance compared with noodles prepared from wheat flour of wild‐type starch.  相似文献   

5.
In search of a way to improve the nutritional profile of noodles, we prepared them with various mixtures of durum wheat flour and isolated plantain starch, and tested their proximal composition. Cooked noodles were assessed for in vitro starch digestibility, indigestible fraction content, and predicted glycemic index. The protein content declined with the addition of plantain starch. Both total starch (TS) level and the content of starch available for digestible enzymes (AS) decreased as the plantain starch level increased, a pattern that may be related to increased starch lixiviation during cooking of noodles containing plantain starch. There was an inverse pattern for resistant starch (RS). RS content in control (durum wheat flour) noodles was ≈50% lower than in the samples containing plantain starch. The soluble indigestible fraction (SIF) content in all samples was higher than the insoluble counterpart (IIF). The total indigestible fraction varied according to the wheat substitution level. Although the hydrolysis index (HI) and predicted glycemic index (pGI) of plantain starch noodles were moderate and decreased as the plantain starch proportion rose. These composite noodles exhibited higher indices than the control sample, a phenomenon that may also be dependent on the product physical structure. Results indicate that in spite of the increased starch digestion rate, plantain starch noodles are a better source of indigestible carbohydrates than pure wheat starch pasta. This might have dietetic applications.  相似文献   

6.
不同淀粉糊化及凝胶特性与粉条品质的关系   总被引:7,自引:2,他引:5  
为了研究粉条加工过程中原料淀粉的糊化及凝胶特性对粉条品质的影响,该文对绿豆、红薯、马铃薯、大米和玉米等5种原料淀粉的糊化凝胶特性及其粉条品质进行了测定,并对淀粉糊化凝胶特性与淀粉粉条品质之间的关系进行探讨。结果表明:5种淀粉原料所制的粉条中,绿豆粉条的品质是较好,其次就是马铃薯粉条和红薯粉条,大米粉条和玉米粉条的品质较差;淀粉的糊化特性与粉条品质之间具有显著相关性,按显著程度的大小(P值大小)依次是:峰值黏度谷值黏度衰减值回生值、最终黏度;淀粉凝胶的硬度、弹性、黏性和咀嚼性对粉条品质的影响较大,按显著程度的大小(P值大小)依次是:硬度黏性咀嚼性弹性。在粉条加工原料选择及粉条品质改善中可以考虑用谷值黏度、回生值以及淀粉凝胶特性特征值回复性、咀嚼性和黏性作为考核衡量指标。研究结果为粉条生产中原料选择及品质改善提供参考依据。  相似文献   

7.
为了提高米粉的营养价值,本研究将不同粒径的豌豆粉添加到米粉中,分析不同粒径及添加量(0%、7.5%、15%、30%)对大米粉粉质特性及米粉蒸煮、质构和感官特性的影响。结果表明,添加豌豆粉可以增加米粉中蛋白质的含量,添加30%豌豆粉后米粉的蛋白质含量为原米粉的1.73倍。豌豆粉的添加降低了米粉的峰值黏度、最终黏度和回生值,提高了米粉冷糊稳定性,使米粉不易老化。随着豌豆粉添加量的增加,米粉的硬度与蒸煮损失逐渐增大,感官品质降低。豌豆粉的粒度对米粉品质影响较大,当豌豆粉添加量相同时,添加200目豌豆粉的米粉蒸煮损失比添加80目豌豆粉降低9.08%~20.73%;感官评价总分提高1.35%~10.43%。综上,通过降低豌豆粉的粒度可以制备出豌豆粉添加量为30%的品质较好的米粉。本研究结果为营养健康型米粉的开发提供了一定的理论基础。  相似文献   

8.
《Cereal Chemistry》2017,94(5):881-886
In this study, the impact of characteristics (physicochemical, rheological, and pasting properties) of different wheat flours on the quality of frozen cooked noodles was investigated. In this sample set, results showed the cooking loss of noodles related negatively to flour swelling power. The water absorption of noodles related negatively to the dough stability time, the area, and the resistance to extension. The wheat flour with higher dough development time resulted in frozen cooked noodles with higher hardness, chewiness, and adhesiveness. Springiness of noodles correlated negatively to degree of softening. The tensile properties of frozen cooked noodles were influenced by rheological and pasting properties of wheat flours. The present study indicated high quality of frozen cooked noodles demanded wheat flours with high dough gluten strength, peak viscosity, and final viscosity and with low pasting temperature.  相似文献   

9.
A commercial gluten and glutens isolated from four soft and four hard wheat flours were incorporated into a hard and a soft white flour by replacement to directly determine the quantitative and qualitative role of gluten proteins in making noodles. Gluten incorporation (6%) decreased water absorption of noodle dough by 3%, shortened the length of the dough sheet by 15 and 18%, and increased the thickness of the dough sheet by 18 and 20% in soft and hard wheat flour, respectively. Noodles imbibed less water and imbibed water more slowly during cooking with gluten incorporation, which resulted in a 3‐min increase in cooking time for both soft and hard wheat noodles. Despite the extended cooking time of 3 min, noodles incorporated with 6% gluten exhibited decreases in cooking loss by 15% in soft wheat. In hard wheat flour, cooking loss of noodles was lowest with 2% incorporation of gluten. Tensile strength of fresh and cooked noodles, as well as hardness of cooked noodles, increased linearly with increase in gluten incorporation, regardless of cooking time and storage time after cooking. While hardness of cooked noodles either increased or showed no changes during storage for 4 hr, tensile strength of noodles decreased. There were large variations in hardness and tensile strength of cooked noodles incorporated with glutens isolated from eight different flours. Noodles incorporated with soft wheat glutens exhibited greater hardness and tensile strength than noodles with hard wheat glutens. Tensile strength of cooked noodles incorporated with eight different glutens negatively correlated with SDS sedimentation volume of wheat flours from which the glutens were isolated.  相似文献   

10.
Flour was obtained from oats fermented with lactic acid bacteria (LAB) to study the effect of fermentation on the physical properties and the suitability of fermented oats for use in starch noodle production. The results showed that fermented samples had a significantly lower pH than control samples. Gel strength and amylose content initially increased and then decreased (P < 0.05) with fermentation time. The peak viscosity, breakdown, final viscosity, and setback value decreased with fermentation time. Fermented noodles showed a higher hardness and springiness. In particular, Lactobacillus plantarum (LP) induced the highest springiness, cohesiveness, gumminess, chewiness, and resilience over 12 hr of fermentation. The cooking quality evaluation indicated that fermentation improved the quality of oat starch noodles. Fermented oats resulted in noodles with low cooking loss and higher cooking weight compared to noodles made from fresh flour. The use of LP for 12 hr of fermentation time yielded noodles of the best quality.  相似文献   

11.
This research compared the physicochemical properties of six milling oat cultivars from Western Australia over two growing seasons (2011 and 2012). Variations among the cultivars in physicochemical properties, particularly β‐glucan content, were assessed to determine their suitability for incorporation into white salted noodles at a level of 30% of the flour component. The average across six oat cultivars grown in 2012 was significantly higher (P < 0.05) for protein content, lipid content, and volume of smaller sized particles (<100 µm) and significantly lower for ash content, starch damage, and volume of larger particles (>100 µm) in comparison with the average across the same oat cultivars grown in 2011. The year of cultivation by cultivar interaction was significant (P < 0.05) for ash content, protein content, β‐glucan content, starch damage, and particle size. Oat cultivar Mitika had the highest peak viscosity for 100% oat flour (whole groat) and 30% oat–wheat (OW) flour blend, which may be owing to lower amylose percentage, high protein content, and greater volume of smaller particles. The effect of growing season had greater impact on OW noodle firmness than the genetic effect of cultivars. The eating and cooking quality attributes of OW noodles, such as color, color stability, firmness, and cooking solid loss were superior for those incorporated with 2012 oat flour (whole groat) compared with 2011 oat flour. Among the six oat cultivars, Williams produced noodles with poor cooking and eating quality, and Mitika was easier to handle during processing and produced noodles with superior brightness and color stability in comparison with other oat cultivars evaluated.  相似文献   

12.
The effects of whole grain wheat (WGW) flour on the quality attributes of instant fried noodles were characterized in terms of mixing and oil‐resisting properties as well as in vitro starch digestibility. Higher water absorption and shorter kneading time were required to obtain the optimally mixed dough from WGW flour, and the presence of nonstarch components in the WGW flour lowered the thermal conductivity of the noodles. The use of WGW flour produced instant fried noodles with oil uptake reduced by 30%, which could be correlated with the less porous structure confirmed by the surface and cross‐sectional scanning electron microscope images. When the instant fried noodles were subjected to in vitro starch digestion, the use of WGW flour was effective in suppressing the hydrolysis of starch in the noodles, and the predicted glycemic index of the WGW noodles (80.6) was significantly lower than that of the white wheat noodles (83.3).  相似文献   

13.
White salted noodles were prepared through reconstitution of fractionated flour components with blends of waxy and regular wheat starches to determine the effects of amylose content on textural properties of white salted noodles without interference of protein variation. As the proportion of waxy wheat starch increased from 0 to 52% in starch blends, there were increases in peak viscosity from 210 to 640 BU and decreases in peak temperature from 95.5 to 70.0°C. Water retention capacity of waxy wheat starches (80–81%) was much higher than that of regular wheat starch (55–62%). As the waxy wheat starch ratio increased in the starch blends, there were consistent decreases in hardness of cooked noodles prepared from reconstituted flours, no changes in springiness and increases in cohesiveness. White salted noodles produced from blends of regular and waxy wheat flours became softer as the proportion of waxy wheat flour increased, even when protein content of flour blends increased. Amylose content of starch correlated positively with hardness and negatively with cohesiveness of cooked white salted noodles. Protein content of flour blends correlated negatively with hardness of cooked noodles, which were prepared from blends of regular (10.5% protein) and waxy wheat flours (> 16.4% protein).  相似文献   

14.
Physicochemical changes in the components of nontraditional spaghetti during cooking were reflected in the quality of the cooked product. Spaghetti formulations used were semolina (100%), whole wheat flour (100%), semolina/whole wheat flour (49:51), semolina/flaxseed flour (90:10), whole wheat flour/flaxseed flour (90:10), and semolina/whole wheat flour/flaxseed flour (39:51:10). Spaghetti quality was determined as cooking loss, cooked weight, and cooked firmness. Physicochemical analyses included total starch, starch damage, pasting properties, and protein quality and quantity of the flour mixes and spaghetti cooked for 0, 2, 4, 10, and 18 min. As cooking time progressed, total starch content decreased up to 5.7% units, starch damage increased up to 11.7% units, and both pasting parameters and protein solubility decreased significantly in all six formulations. Changes in the starch damage level, total starch content, and pasting properties of spaghetti correlated significantly (P < 0.05) with the cooking loss, cooked weight, and cooked firmness values recorded for the spaghetti. High levels of glutenin polymers and low levels of the albumin and globulin fractions were associated with low cooking losses and cooked weight and with high cooked firmness, indicating the involvement of these proteins in the cooked quality of nontraditional spaghetti.  相似文献   

15.
《Cereal Chemistry》2017,94(3):464-470
The effect of extruded brown rice flour (EBR) contents (0–50%) on antioxidant activity, phenolics, in vitro digestibility, color, and cooking quality of noodles containing mixtures of wheat and EBR was investigated. The antioxidant activity and phenolic content increased, especially ferulic and coumaric acids in bound forms, whereas the in vitro glycemic index, optimal cooking time, water absorption, hardness, and color were diminished in noodles with the addition of EBR; cooking loss increased as a function of the EBR percentage. The partial replacement of wheat flour with EBR can be favorably used in the wheat noodle formulation. The results provide the basis for the development of staple foods with nutritional characteristics for today's functional food markets.  相似文献   

16.
This study evaluated the blending of flours made from an Ontario hard red winter wheat (HWF) and an Ontario soft red winter wheat (SWF) and compared it with a commercial standard noodle flour (control) made from Canadian Western Hard Red Spring wheat to assess the impact on white salted noodle‐making performance and texture of cooked noodles. Flour characteristics, gluten aggregation, and starch pasting properties were assessed with a farinograph, GlutoPeak tester, and Rapid Visco Analyzer, respectively. The machinability of dough was evaluated with an SMS/Kieffer rig attached to a TA.XT Plus texture analyzer. Tensile and bite tests of cooked noodles were also conducted. Blending HWF with standard noodle flour decreased gluten strength and dough extensibility linearly proportional to the blend ratio, whereas a curvilinear response from blending SWF with standard noodle flour was observed. HWF demonstrated more favorable pasting properties except for lower peak viscosity for noodle making than standard noodle flour. Below a 20% blend ratio with HWF, no significant changes were seen on dough extensibility, cooking loss, tensile properties, and bite testing parameters of cooked noodles. It can be concluded that blending HWF up to a 20% level caused no significant change in the processing properties of dough and cooked noodle quality. The results also showed that the GlutoPeak tester is a sensitive tool for evaluating gluten strength in wheat flour.  相似文献   

17.
不同品种小麦粉的粉质特性对速冻熟制面条品质的影响   总被引:2,自引:3,他引:2  
为研究不同品种小麦粉与速冻熟制面条质构特性之间的关系,选取30种小麦制粉,用FOSS定氮仪、快速黏度仪、粉质仪和拉伸仪等测定面粉品质指标,制作速冻熟制面条,用质构仪测定质构特性。采用描述性统计、主成分和聚类分析方法对30种小麦面粉和速冻熟制面条的质构关系进行了分析。结果表明:不同品种小麦粉的湿面筋、糊化温度、弱化度、粉质质量指数与硬度呈极显著相关(P0.01);蛋白质、湿面筋、总淀粉含量、最终黏度、回生值、糊化温度、粉质吸水率、粉质曲线稳定时间、面团形成时间、弱化度、粉质质量指数、拉伸曲线面积、拉伸阻力、最大拉伸阻力与剪切力呈极显著相关(P0.01);小麦粉的粉质特性,除衰减值、峰值时间和延伸度外,均与拉伸力呈极显著相关(P0.01)。根据方差贡献率提取出可以反映原变量84.023%信息的5个因子,因子1主要反映面粉的粉质拉伸特性,因子2反映小麦粉糊化特性,因子3反映蛋白质特性,因子4和因子5共同反映小麦粉的淀粉特性。这些性状在小麦粉的评价方面起着重要作用,在加工中要注重对它们的选择。聚类分析将30种小麦粉分为4类,结果表明,不能仅凭小麦粉的指标数据和质构数据来选择制作速冻熟制面条的原料,还需考虑到感官评价的影响。该结论可为小麦粉在速冻熟制面条加工应用方面提供一定的理论参考。  相似文献   

18.
Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.  相似文献   

19.
The quality of many baked products, noodles, gravies, and thickeners is related to the pasting properties of wheat (Triticum aestivum L.) flour, yet different flours vary markedly in their pasting performance. The objective of the present research was to assess the role of the wheat flour fractions, gluten, water solubles, prime and tailing starches, in the contribution to peak hot paste viscosity among three selected wheat cultivars. Straight-grade flours were fractionated and reconstituted. Fractions were examined independently and were deleted in otherwise fully reconstituted flours. Fractions were exchanged between cultivars for reconstituting flours, and fractions were substituted individually into a common starch base. The flours from the cultivars Klasic, McKay, and Madsen differed markedly in their peak hot paste viscosities, and were fractionated and reconstituted with only a small effect on paste viscosity. Results clearly showed that prime starch was the primary determinate of flour paste viscosity, but the other fractions all exerted a significant effect. Tailing starch increased paste viscosity directly due to pasting capacity of starch or indirectly through competition for water. Gluten also increased paste viscosity through competition for water. The water-soluble fraction from different cultivar flours was more variable in effect.  相似文献   

20.
A variety of Rapid-Visco Analyser (RVA) operating conditions have been tested with starch, flour, and wholemeal for predicting the quality of wheats for the manufacture of Japanese white-salted noodles. Using starch as the substrate, an initial temperature of 60°C has been found to be optimum, and the best heating time from this initial temperature to the peak temperature of 95°C was ≈6 min. Significant correlations were found between peak viscosity of starch pastes and noodle quality under these operating conditions. For flour and wholemeal samples, the correlations were not as high as for isolated starch. The correlations with wholemeal or flour and noodle quality could be improved by the addition of α-amylase inhibitors. Measuring RVA viscosity of flour or wholemeal in the presence of silver nitrate gave viscosities which showed highly significant correlations with noodle quality. These correlations were similar to those obtained with isolated starch. It appears that the improvement is due to inhibition of the α-amylase present in grain and flour. Correlations were also observed between flour paste viscosity and alkaline noodle quality. These could be increased either by inhibiting α-amylase with silver nitrate or by pH adjustment with sodium carbonate but the change was not significant. The improvement of the correlations by α-amylase inhibitors in this sample set was not as great as observed with Japanese white noodles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号