首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The Central Rift Valley (CRV) is one of the most environmentally vulnerable areas of Ethiopia. Most of the lowland in the CRV is arid or semiarid, and droughts occur frequently. We studied the dynamics of land use and cover and land degradation by analyzing Landsat data from 1973, 1985, and 2006 using Geographic Information Systems and remote sensing techniques. The analysis revealed that in the last 30 years, water bodies, forest, and woodland decreased by 15·3, 66·3, and 69·2 per cent, respectively; intensive cultivation, mixed cultivation/woodland, and degraded land increased by 34·5, 79·7, and 200·7 per cent. The major causes of land use and cover change (LUCC) and land degradation in the area were population and livestock growth in regions of limited resources, unsustainable farming techniques, the Ethiopian land tenure system and poverty. Lake level and area decline, and accelerated land degradation are the major environmental impacts of LUCC observed in the CRV. The environmental and socio‐economic consequences of LUCC and land degradation are far‐reaching. As a result of the expansion of land degradation over time, agricultural productivity has decreased and worsened food insecurity (shortages) and poverty in the Ethiopian CRV. In addition, if current trends in LUCC continue, Lake Abiyata will dry up by 2021. A detailed study of the degradation amount in relation to soil erosion, sediment yield to the lakes and catchment characteristics should be made using adaptable models; so as to guide the implementation of comprehensive and sustainable land use management by giving more attention to erosion prone areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Changes in land use/land cover have important consequences on the management of natural resources including soil and water quality, global climatic systems and biodiversity. This study analysed the spatial and temporal pattern of land use/land cover change in the Camili forest planning unit that includes the Camili Biosphere Reserve Area within the Caucasian hotspot, in the northeast corner of Turkey. To assess the patterns during a 33‐year period, the necessary data were obtained from forest stand maps and evaluated with Geographic Information Systems and FRAGSTATS. Results showed that the total forested areas increased from 19 946·5 ha (78·6% of the study area) in 1972 to 20 797·3 ha (81·9 per cent) in 2005 with a slight net increase of 851 ha. Softwood cover types (411·8 ha) completely transitioned to other cover types over 33‐year period. In terms of spatial configuration, the total number of forest fragments increased from 172 to 608, and mean size of forest patch (MPS) decreased from 147·7 ha to 41·8 ha during the period. Nearly 84 per cent of the patches in 1972 and 93 per cent of them in 2005 generally seem to concentrate into 0–100 ha patch size class, indicating more fragmented landscape over time that might create a risk for the maintenance of biodiversity of the area. There were apparent trends in the temporal structure of forest landscape, some of which may issue from mismanagement of the area, social conflict, and illegal utilization of forest resources due to ineffective forest protection measurements. The study revealed that it is important to understand both spatial and temporal changes of land use/land cover and their effects on landscape pattern to disclose the implications for land use planning and management. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In the present work, land cover and land use changes between 2003 and 2008 were assessed in the Cupatitzio River sub‐basin located in the Trans‐Mexican Volcanic System and Balsas Depression in Mexico. The effects of land cover conversion from temperate forest to avocado orchards on soil properties were determined. Land cover and land use databases were built for the years 1975, 2003, and 2008 using available cartographic information and interpretation of panchromatic SPOT images for the year 2008. Additionally, soil sampling was carried out in 16 representative sites in the higher parts of the sub‐basin, where avocado plantation dynamics have caused important changes in areas covered by temperate forests. Results show that (i) temperate coniferous and tropical low deciduous forests were reduced at an annual rate of 0·9 per cent (1, 001 ha y−1) between 1975 and 2008; (ii) cropland areas expanded at an annual rate of 0·7 per cent between 1975 and 2008, representing a growth of 553 ha y−1; (iii) wet soil aggregate stability, mechanical resistance to penetration and nitrate (N‐NO3) concentration in the topsoil layer of Andosols were significantly affected by land use conversion to avocado orchards. Other soil properties such as organic matter, interchangeable K, and available P showed degradation tendencies. These results suggest the importance of implementing strategies for mitigating the accelerated process of transformation and degradation of natural resources in the Cupatitzio River sub‐basin. The implementation of programs for deforestation reduction should be a priority in the restoration strategy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, we investigated the extent of peatland degradation and development in Peninsular Malaysia and in the islands of Sumatra and Borneo, in the western part of insular Southeast Asia, since 1990. Furthermore, carbon emissions caused by these land cover changes were estimated in order to evaluate their contribution to global climate change. High resolution Landsat (30 m spatial resolution) and Satellite Pour l'Observation de la Terre (SPOT; 10–20 m) satellite images were used to derive information on land cover in 1990 and 2008. Analysis of land cover changes since 1990 revealed remarkable reduction and degradation of peatswamp forest ecosystems. In less than 20 years, 5·1 Mha of the total 15·5 Mha of peatland had been deforested (11·6 Mha → 6·5 Mha; 75 per cent → 42 per cent) and the great majority of the remaining forests had been selectively logged. Simultaneously, area covered by unmanaged secondary growth ecosystems had doubled to nearly a quarter of all peatlands and industrial plantations had expanded dramatically (0·3 Mha → 2·3 Mha; 2 per cent → 15 per cent). It was conservatively estimated that these changes have caused minimum of 1·5 Gt carbon emissions into the atmosphere since 1990. Currently, peatlands of the study area emit at least 81 Mt of carbon (equivalent to 300 Mt of carbon dioxide) on annual basis due to mere peat decomposition. Thereby, it was concluded that peatland degradation and development in insular Southeast Asia during the past two decades have not only put the existence of Southeast Asian peatswamp forest ecosystems in danger but it has also caused globally significant carbon emissions and created a constant source of carbon dioxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Lake Qinghai, the largest saline lake in China, covers 4234 km2 (2007) with a catchment area of 29 660 km2 on the northeastern margin of the Qinghai‐Tibet Plateau. The ecosystem of the lake is extremely vulnerable and sensitive to global climate change and human interference. However, little information is available on land use/cover change (LUCC) in Lake Qinghai watershed. Using a geographical information system (GIS) and remote sensing (RS), this study analysed land use and land cover change pattern in Lake Qinghai watershed between 1977 and 2004 and discussed major environmental issues in this area. LUCC analysis indicated that grassland (63 per cent) and water body (18 per cent) dominated in the watershed and the magnitude of the land use and land cover change was generally low; the percentage of the change of various land types relative to the total area was less than 1 per cent. From 1977 to 2004, cropland, sandy land, bare rock, salinized land, swampland and built‐up areas increased by 0·43, 0·35, 0·24, 0·06, 0·03 and 0·03 per cent of the total area, respectively; in contrast, water body, grassland and woodland decreased by 0·99, 0·22 and 0·05 per cent, respectively. Moreover, the area of LUCC tended to expand from places around the lake to the upper reaches of the watershed during the last three decades. The LUCC transition pattern was: woodland converted to grassland, grassland converted to cropland and water body converted to sandy land. Lake level decline and grassland degradation are major ecological and environmental problems in Lake Qinghai watershed. The level and area of the lake decreased at the rate of 6·7 cm a−1 and 6·4 km2 a−1, respectively, between 1959 and 2007, resulting in sandy land expansion and water quality deterioration. Lake level decline and area shrinkage was mainly attributed to climate change, but grassland degradation was mainly resulted from anthropogenic activities (increasing population, overgrazing and policy). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This paper highlights some interventions which might alleviate agricultural pressures on steep slopes and reduce land degradation in parts of the Ethiopian Highlands. The Ethiopian Highlands are losing alarming amounts of soils (estimated at more than one billion, 1000 million, tonnes) annually. This loss, which is associated with nutrient losses, is manifest in declining agricultural production and biodiversity. About 80 per cent of the annual soil loss occurs from croplands during the rainy season. The nutrient imbalance is further accentuated by forest clearing, removal of crop residue from cultivated lands, and little use of chemical fertilizers or organic manure. Even where livestock are part of the production system, dung is preferentially used as a cooking fuel. Chemical fertilizers are costly, and therefore and alternative land-management scheme is suggested. This is based on a new land-shaping device for drainage which is called the BBM (broad-bed maker), and growing forage legumes to improve soil nutrients, which should allow intensive cultivation of Vertisols in the Ethiopian Highlands. Adoption of the broad bed and furrow land-management system would facilitate early planting and increase the yield of both grain and straw from the major crops relative to the yield from traditional cultivation in flat beds. While not decreasing the yield of grain, mixed cropping of grain and forage crops has been shown to give significantly greater total crop residue yields. The yield is even greater when fertilizers are applied. Supplementary irrigation can help in utilizing Vertisols on bottom lands, and this can be expedited by constructing water reservoirs.  相似文献   

8.
Intensification of land use can become a threat to agricultural sustainability if they lead to increased soil erosion. This study examines land‐use changes, soil and water conservation, soil erosion and soil productivity in the Highlands of Kenya. In addition, it examines farmers' perception of livelihood changes. Land‐use changes were determined from interpretations of aerial photographs taken in 1960 and 1996. Additional information on land use, soil and water conservation and livelihood changes were obtained from discussions and interviews with farmers, as well as from field verifications of the most recent aerial photographs. Soil samples were analysed and soil erosion assessed according to the PLUS classification scheme. The results indicate that substantial changes in land use, such as introduction of coffee and high‐yielding maize, and fragmentation of land holdings have taken place. Less land was conserved in 1996 as compared to 1960. Moreover, SWC practices have changed from fanya chini terraces and shifting cultivation to bench terraces and permanent cultivation. Rates of soil nutrients (organic C, N and K) and maize‐yield levels decreased significantly with increasing erosion. Farmers' perception of livelihood changes was differentiated according to farmers' off‐farm resource 60 per cent of the farmers depended on income from the land and thought livelihoods were better in the 1960s. It is concluded that more efforts to decrease soil erosion and investments in land and labour are necessary to sustain soil productivity and hence secure rural livelihoods. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Human land use of the Tigray landscape (north Ethiopia) can be traced back for at least 3000 years and is recognizably very complex, but in the past half-century there have been multiple narratives on environmental change in the Northern Ethiopian Highlands in which statements such as “the forest and soil resources in Tigray are dwindling at unprecedented rates” are common. In an attempt to provide an objective assessment, we made a semi-quantitative analysis of observed changes in the environment of the central Tigray plateau, between 1975 and 2006, and its impact on soil erosion. The first part of this period saw strong degradation, caused by a combination of drought, impoverishment, poor land husbandry and war; but over the whole period intense rehabilitation activities have been high on the agenda. To study these changes, two sets of 51 landscape photographs have been used. The older photo-set was taken in 1975 by R.N. Munro during the Tigrai Rural Development Study; locations were revisited in 2006 by J. Nyssen and colleagues, when a new set of photographs was made at the same locations and with the same aspect. Based on longstanding experience in soil erosion and landscape analysis worldwide and in Ethiopia, the time-lapsed photographs were rated for visible erosion, land cover and protective measures. We present a quantitative evaluation of the change of soil loss by sheet and rill erosion, involving the Universal Soil Loss Equation (USLE) and particularly the changes in the C (cover) and the P (management) factors. This allowed assessing soil loss in 2006 as a percentage of the 1975 situation. Both the landscape and land unit analysis show that the situation for natural resources has improved (and locally strongly improved) since 1974. The rehabilitation is due both to improved vegetation cover and to physical conservation structures. The USLE application indicates that in terms of a whole landscape the current average soil loss would be at around 68% of its 1975 rate. Exceptionally, degradation is still ongoing around Desa'a forest and some other remnant forests, and conservation should be strongly implemented too in these forests. On average, gullies have expanded slightly since 1975, but these incisions appear to have originated in the drought years of the 1980s. This photo-monitoring analysis invalidates hypotheses on (a) irreversibility of land degradation in Tigray; and (b) futility of Soil and Water Conservation (SWC) programmes. The study demonstrates that (a) land management has become an inherent part of the farming system in Tigray, and (b) that the authorities and NGOs are on the right track when promoting SWC.  相似文献   

10.
There is growing evidence that population pressure on the land has become the most intractable problem in the developing countries where demand for food exceeds the food production capacity of the land. Southern Burkina Faso has experienced rapid population growth, mostly driven by immigration of farmers. This study was carried out in Sissili Province and used satellite images acquired over 31‐year period, census and survey data to capture migration patterns and its impacts on land use change. Results showed that migrant population which accounted for only 3 per cent in the study area in 1976 shifted to 57 per cent in 2007. Migrant people were using improved technology to progressively convert forest land to cropland. Cropland increased at an annualized rate of 0·46 per cent to the detriment of the dense forest and woodland which decreased at 0·57 per cent per annum. Population growth was highly correlated with increasing area of cropland (r2 = 0·95, p = 0·014) and declining dense forest (r2 = 0·78) and woodland (r2 = 0·95) covers. It can be concluded that rural migration, driven by the relatively good soil and rainfall conditions in the recipient area, is accounted for deforestation in the study area. If rural migration is not checked, it will seriously degrade the environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
During the last few decades, land use changes have largely affected the global warming process through emissions of CO2. However, C sequestration in terrestrial ecosystems could contribute to the decrease of atmospheric CO2 rates. Although Mediterranean areas show a high potential for C sequestration, only a few studies have been carried out in these systems. In this study, we propose a methodology to assess the impact of land use and land cover change dynamics on soil organic C stocks at different depths. Soil C sequestration rates are provided for different land cover changes and soil types in Andalusia (southern Spain). Our research is based on the analysis of detailed soil databases containing data from 1357 soil profiles, the Soil Map of Andalusia and the Land Use and Land Cover Map of Andalusia. Land use and land cover changes between 1956 and 2007 implied soil organic C losses in all soil groups, resulting in a total loss of 16·8 Tg (approximately 0·33 Tg y−1). Afforestation increased soil organic C mostly in the topsoil, and forest contributed to sequestration of 8·62 Mg ha−1 of soil organic C (25·4 per cent). Deforestation processes implied important C losses, particularly in Cambisols, Luvisols and Vertisols. The information generated in this study will be a useful basis for designing management strategies for stabilizing the increasing atmospheric CO2 concentrations by preservation of C stocks and C sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The effects of soil bunds on runoff, losses of soil and nutrients, and crop yield are rarely documented in the Central Highlands of Ethiopia. A field experiment was set up consisting of three treatments: (i) barley‐cultivated land protected with graded soil bunds (Sb); (ii) fallow land (F); and (iii) barley‐cultivated land without soil bund (Bc). For 3 years (2007–2009), the effect of soil bunds on runoff, losses of soil and nutrients, and crop productivity was studied. Daily runoff and soil and nutrient losses were measured for each treatment using standard procedures while barley yield was recorded from the cultivated plots. The results showed that Sb brought about significant reduction in runoff and soil losses. Plots with Sb reduced the average annual runoff by 28 per cent and the average annual soil loss by 47 per cent. Consequently, Sb reduced losses of soil nutrients and organic carbon. However, the absolute losses were still high. This implies the need for supplementing Sb with biological and agronomic land management measures to further control soil erosion. Despite these positive impacts on soil quality, Sb do not increase crop yield. Calculated on a per‐hectare basis, Sb even reduce crop yield by about 7 per cent as compared with control plots, which is entirely explained by the reduction of the cultivable area by 8·6 per cent due to the soil bunds. Suitable measures are needed to compensate the yield losses caused by the construction of soil bunds, which would convince farmers to construct these land management measures that have long‐term beneficial effects on erosion control. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Impacts of land use and climate change on runoff were investigated by studying the runoff in the Yarlung Zangbo River basin, China. Trends in precipitation, mean air temperature, and runoff were analysed by non‐parametric Mann‐Kendall tests. Land‐use changes were examined with land‐use transition matrix and geographic information system tools. Land‐use and climate changes showed several characteristics, including increased reforestation, decreased grassland, retreat of glaciers and increased desertification. Human activity caused great impact, especially within densely populated regions and cities. Reforestation and degradation of grasslands were more frequent than deforestation and cultivation of grasslands. Annual mean air temperature, precipitation and runoff showed increasing trends between 1974 and 2000. The impacts of land use and climate change on runoff had different effects depending on region and season. In the season of freezing, climate change clearly affected runoff within regions that experienced precipitation. Altered evapotranspiration accounted for about 80 per cent of runoff changes, whereas land‐use changes appear to have had greatest impact on runoff changes within regions that have inconsistent relationships between runoff and climate change. It was demonstrated that afforestation leads to increased runoff in dry seasons. It was estimated that glacier snow melt has caused annual runoff to increase at least 6·0 mm/10yr, 2·1 mm/10yr and 1·7 mm/10yr in Regions 1, 3 and 4, respectively, whereas evapotranspiration caused annual runoff to decrease at least 7·4 mm/10yr in Region 2. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Satellite remote sensing offers the potential to accurately identify and monitor spectrally separable land-cover classes at a range of spatial and temporal scales. This paper investigates the separability of despoiled land in imagery acquired by sensors carried by the Landsat satellites. These systems offer the opportunity to map areas at large to medium scales at a relatively high temporal frequency and so provide information on environmental quality necessary for many monitoring and planning activities. From an investigation using imagery of South Wales it was found that despoiled land was separable from other classes in the Landsat TM imagery, with an accuracy of over 90 per cent. Furthermore, with Landsat TM data three spectral wavebands were found to provide a level of separability similar to that based on all wavebands available, illustrating potential savings to the analyst. Despoiled land cover was classified from Landsat TM and MSS data and these classifications were evaluated against a manually produced map of despoiled land cover derived from the interpretation of aerial photographs. Estimates of the extent of despoiled land cover in administrative units derived from the Landsat TM data were significantly correlated (r = 0.81) with the map based estimates, although a weaker correlation was observed with Landsat MSS data.  相似文献   

15.
Land use changes and soil management can potentially alter soil quality. A study was conducted to assess the long‐term (>20 years) effects of perennial trees (PT), vegetable crops (VC), rice–wheat (RW) system, sewage‐irrigated fields (SF), maize–wheat (MW) system and uncultivated soils (US) on soil quality. Soil physical quality parameters were significantly affected only in the SF system when compared with the US soil, particularly for bulk density (BD 1·51 Mg m−3 in SF vs. 1·34 in US). Among chemical parameters, electrical conductivity was high in SF, and soil nutrients (N, P, K, S, Zn, Fe, Cu and Mn) were well above the critical limits of deficiency in all the systems. Soil parameters were integrated into soil quality indices (SQIs) by unscreened transformation and principal component analysis (PCA). SQI observed under each system were compared with the US to assess the degree of degradation. Mean SQI differences showed that PT (+16·02 per cent), VC (+4·80 per cent), RW (+10·04 per cent), and MW (+11·30 per cent) are aggrading, whereas SF (−2·06 per cent) is degrading with respect to the reference soil (US). Adoption of MW system proved to be better than traditional RW; and in general agricultural crops have a significant advantage than VC, in terms of maintaining soil quality. Sewage irrigation is not a sustainable practice and long‐term use may degrade the soil. Among the SQIs, PCA with nonlinear scoring function (NLSF) based SQI was effective in judging land degradation due to soil quality changes as affected by long‐term land use and soil management practices. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
An assessment of the effectiveness of soil conservation practices is very important for watershed management, but the measurement over a small area does not necessarily represent the truth over a large area. Monitoring of soil erosion and analysis of sediment delivery were carried out in the Lizixi watershed (which is typical of the Upper Yangtze Basin, China), using remote sensing and a geographic information system (GIS). Land‐use and land‐cover maps were prepared by an interpretation of 1986 and 1999 images from SPOT and Landsat TM. Slope‐gradient maps were created from digital elevation model (DEM), while merged images of SPOT and Landsat TM were used to obtain land‐use information. The area of soil erosion was classified by an integration of slope gradients, land‐use types and vegetation cover rates, and soil erosion rates and their changes were calculated in a grid‐based analysis using an Erdas GIS. The change in sediment delivery ratio was estimated based on the changes in soil erosion rates from both monitoring and the truth survey. There was a reduction in soil erosion rate of 4·22 per cent during a 13‐year period after soil conservation practices were adopted in the Lizixi watershed. The amount of sediments transported into rivers has decreased by 51·08 per cent during the same period due to an integrated application of biological and engineering measures. The comparison of soil erosion severity between pre‐conservation and post‐conservation revealed that soil loss has been obviously diminished and the measures were quite effective. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The development and reversal of aeolian desertification have been widely recognised as the dominant causes of changes in the source areas of dust storms. The Alashan Plateau, which is near China's Hexi Corridor, is one of the major dust storm source regions in northern China. To investigate the relationship between climatic and anthropogenic factors and the development of aeolian desertification, we reconstructed the temporal and spatial evolution of aeolian desertification and the underlying processes from 1975 to 2007 using Landsat images and analysed the driving forces. The results show that aeolian desertified land in the study area covered 32 847·79 km2 in 2007, amounting to 11·3 per cent of the total area, with an initial period of desertification expansion from 1975 to 2000 and a reversal of desertification from 2000 to 2007. On the basis of the analysis of effects of climate changes and human activities in the region, aeolian desertification was principally driven by human activities in this area; climatic variations had little effect on the area of severe desertification. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The organic carbon pool in agricultural land‐uses is capable of enhancing agricultural sustainability and serving as a potential sink of atmospheric carbon dioxide. A study was carried out to estimate and map carbon stock of different agricultural land‐uses in a sub‐watershed of Thailand and to assess the land‐use sustainability with respect to carbon management. A quadrat sampling methodology was adopted to estimate the biomass and its carbon content of 11 different land‐uses in the study area. Existing soil data were used to calculate the soil carbon. GIS was used for integrating biomass carbon, soil carbon and carbon stock mapping. Roth carbon model was used to project the soil carbon of present land‐uses in the coming 10 years and based on which the sustainability of land‐uses was predicted. The total carbon stock of agricultural land‐uses was estimated to be 20·5 Tg, of which 41·49 per cent was biomass carbon and 58·51 per cent was soil carbon. Among the land‐uses, para rubber had the highest average biomass C (136·34 Mg C ha−1) while paddy had the lowest (7·08 Mg C ha−1). About four‐fifths of agricultural land‐uses in the watershed are sustainable in maintaining the desired level of soil carbon in coming 10 years while one‐fifths are unstable. Such information on carbon stock could be valuable to develop viable land‐use options for agricultural sustainability and carbon sequestration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Soil degradation is a serious problem in the central and northern Highlands of Ethiopia. It has been so for several decades as a result of over exploitation and mismanagement. Relocation of a portion of the population from these regions to the relatively less populated Southwestern Highlands has taken place for decades to try to address the problem. However, such mass resettlements have caused severe soil degradation problems in many destination areas in the Southwestern Highlands. The aim of this study was to assess the problem of soil degradation using the caesium‐137 isotope and to test its value for erosion study in the region. The adapted USLE was applied to compare results from the caesium‐137 isotope studies. Along a deforestation continuum, fields cultivated for various years were studied for erosion. From a reference grazing land plot, total caesium‐137 fallout of 2026 ± 176 Bq m−2 with a CV of 24·6 per cent was recorded showing the presence of sufficient fallout to apply the technique. Erosion in cultivated fields was estimated against this reference using conversion models. Results from the Proportional Model |−13·9 ± 2·7|and the adapted USLE |12·3 ± 2·6| were not significantly different (p < 0·05), meaning the technique provides reliable results. A positive relationship was observed between severity of erosion and time of cultivation after forest clearing (R2 = 0·78). The mean annual loss of soil from cultivated land, 14·9 ± 2·9 t ha−1 y−1, is already beyond the tolerable threshold and might exacerbate further clearing of forests for cultivation if the land is not properly managed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Land‐use patterns affect the quantity and quality of soil nutrients as well as microbial biomass and respiration in soil. However, few studies have been done to assess the influence of land‐use on soil and microbial characteristics of the alpine region on the northeastern Tibetan plateau. In order to understand the effect of land‐use management, we examined the chemical properties and microbial biomass of soils under three land‐use types including natural grassland, crop‐field (50 + y of biennial cropping and fallow) and abandoned old‐field (10 y) in the area. The results showed that the losses of soil organic carbon (SOC) and total nitrogen (TN) were about 45 and 43 per cent, respectively, due to cultivation for more than 50 y comparing with natural grassland. Because of the abandonment of cultivation for about a decade, SOC and TN were increased by 27 and 23 per cent, respectively, in comparison with the crop field. Microbial carbon (ranging from 357·5 to 761·6 mg kg−1 soil) in the old‐field was intermediate between the crop field and grassland. Microbial nitrogen (ranging from 29·9 to 106·7 mg kg−1 soil) and respiration (ranging from 60·4 to 96·4 mg CO2‐C g−1 Cmic d−1) were not significantly lower in the old‐field than those in the grassland. Thus it could be concluded that cultivation decreased the organic matter and microbial biomass in soils, while the adoption of abandonment has achieved some targets of grassland restoration in the alpine region of Gansu Province on the northeastern Tibetan plateau. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号