首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Refrigerated doughs develop syruping upon prolonged storage. To assess the role of arabinoxylans (AX), in this phenomenon, the evolution of the AX population and syruping in refrigerated doughs during storage were studied. When doughs were kept at 6 degrees C for up to 34 days of storage, dough syruping increased from 0% (fresh dough) to 22% of dough weight, reaching a plateau after 16 days of storage. High-performance size exclusion chromatography and gas-liquid chromatography showed hydrolysis of water-unextractable AX in the refrigerated dough, resulting in increased levels of solubilized AX in the first 2 days of storage. Longer storage resulted in further degradation of solubilized and water-extractable AX. Increased syruping was accompanied by a decrease in farinograph dough consistency. The results support the hypothesis that loss of water-holding capacity due to degradation of AX by endogenous xylanases is responsible for dough syruping.  相似文献   

2.
Arabinoxylans (AX) are the main nonstarch polysaccharides found in wheat flour. Structural changes of AX in refrigerated dough are linked to deleterious effects on refrigerated dough quality during storage. The purpose of this research was to evaluate the effect of cultivar and growing environment on dough syruping during refrigerated storage in relation to apparent xylanase activity and AX chemistry in hard red spring (HRS) wheat. Eight HRS cultivars that were grown at six locations over two years in North Dakota were evaluated for dough syruping during 15 days of refrigerated storage. When compared with genotypic effect, growing environment had a greater impact on apparent xylanase activity and dough syruping; they were found to have significant associations by log‐linear regression analysis. Specifically, wheat samples produced in a dry environment had lower apparent xylanase activity and degree of dough syruping than those from a wet environment. Some HRS cultivars were identified to be consistently lower in apparent xylanase activity and dough syruping across all growing environments, indicating that those cultivars had more stability over growing environment than other cultivars. These results indicate that certain cultivars that are grown in relatively dry environments in North Dakota are more suitable for use in refrigerated dough formulations.  相似文献   

3.
The relationship between syruping in refrigerated doughs upon prolonged storage and different aspects of arabinoxylan (AX) hydrolysis was investigated using Triticum aestivum xylanase inhibitor (TAXI) and different xylanases in the dough formula. Dough characteristics were evaluated with strong emphasis on the AX population and its fate as a function of storage time. Selective reduction of part of the flour endogenous xylanase activity in dough by added TAXI reduced dough syruping after 12 and 20 days of storage by 50%, providing straightforward evidence for the involvement of xylanases and, thus, AX in the syruping phenomenon. Addition of xylanases with different inhibitor sensitivities [an inhibition-sensitive Bacillus subtilis xylanase (XBS(i)) as well as a noninhibited mutant (XBS(ni)) thereof] to dough confirmed the importance of xylanases in dough syruping, on one hand, and the power of wheat flour TAXI to constitute a significant barrier against xylanase-mediated dough syruping, on the other hand. Use of xylanases with different substrate selectivities [an Aspergillus aculeatusxylanase (XAA) versus XBS(ni)] showed degradation of water-extractable AX (WE-AX) and solubilized AX to low molecular weight molecules rather than the conversion of water-unextractable AX (WU-AX) to high molecular weight water extractable components to be the main factor influencing dough syruping.  相似文献   

4.
Improvement of food processing quality has become a major breeding objective in China. Nineteen Chinese leading winter wheat cultivars with improved quality and two Australian cultivars with high bread and noodle-making qualities were sown in four locations for two years to investigate dough properties, pan bread, and Chinese white salted noodle (CWSN) qualities, and their association with the quantity of protein fractions. The results indicated that genotype, environment, and genotype-by-environment interaction significantly affected most of quality traits and amount of protein fractions. Genotype mainly determined the quantity of gluten protein fractions and pan bread quality parameters, while environment was the most important source of variation for the noodle quality parameters. Chinese cultivars were characterized by acceptable protein content (11.1–13.4%), medium to strong dough strength (maximum resistance 176.9–746.5 BU), medium to poor dough extensibility (166.5–216.4 mm), fair to very good pan bread qualities, and good to very good CWSN qualities. Gliadin contributed more in quantity to protein content (r = 0.80, P < 0.001), however, glutenin and its subgroups were more important to dough strength. The quantity of glutenin, HMW-GS, and LMW-GS were highly and significantly correlated with dough strength-related traits such as farinograph development time, stability, extensigraph maximum resistance, and extension area (r = 0.70–0.91, 0.65–0.89, and 0.70–0.91, respectively; P < 0.001). The quantity of LMW-GS could explain 82.8% of the total variation of dough maximum resistance. The quantity of gliadin and the ratio of HMW-GS to LMW-GS determined dough extensibility (r = 0.75 and r = –0.59, respectively; P < 0.001 and P < 0.01, respectively). Higher quantity of glutenin and lower ratio of gliadin to glutenin resulted in higher bread score with r = 0.70 (P < 0.001) and r = –0.74 (P < 0.001), respectively. However, protein content and its fractions have a moderate undesirable effect on CWSN parameters such as color, firmness, and taste. Therefore, both allelic variation and quantity of storage protein fractions should be considered in breeding cultivars with improved pan bread making quality.  相似文献   

5.
Oxidation increased the strength of the dough. Addition of ascorbic acid or azodicabonamide (ADA) to dough increased both elastic modulus (G′) and viscous modulus (G″), while addition of cysteine decreased both values. Hydrogen peroxide, from either calcium peroxide or glucose oxidase, increased G′ and G″ and decreased tan δ (G″/G′) values. In addition to strengthening the dough, hydrogen peroxide dried the dough, but ADA did not. The absorption of doughs containing 20 GU of glucose oxidase (source of hydrogen peroxide) could be increased by ≈5% without altering the rheological properties. Presumably, the mobility of water in the gel formed by oxidative gelation decreased, thereby causing a drying of the dough.  相似文献   

6.
This is the first use of a longitudinal ultrasonic technique to address the rheological properties of cooked noodles. Ultrasound (11 MHz) was utilized to investigate the influence of glucose oxidase (GOx) at the 1.5 U/g of flour level on the rheological properties of cooked alkaline noodles before and after 72 h of storage at 4°C. Cooked noodle dough samples were studied by simultaneously conducting stress relaxation and transmission ultrasonic measurements, yielding Peleg's K1 and K2 parameters (initial rate of relaxation and extent of relaxation, respectively) and ultrasonic information on noodle texture properties. Ultrasonic phase velocities and attenuation coefficients did not show significant differences between control and GOx noodles either before or after 72 h of refrigeration. However, refrigerated storage of control and GOx noodles did result in a significant increase in wave velocity and storage modulus (M′) as well as a decrease in attenuation and tanδL (ratio of longitudinal loss modulus to longitudinal storage modulus), indicating increased firmness of noodle structure with storage time. Stress relaxation results on fresh unrefrigerated noodles showed an increase in Peleg's K1 and K2 parameters with GOx addition but did not resolve any significant changes in these parameters after 72 h of storage. This small amount of GOx did not improve cooked noodle texture, although noodle matrix changes during storage were clearly revealed by the noninvasive ultrasonic data.  相似文献   

7.
The mechanism of glucose oxidase action in breadmaking was investigated by studying the baking performance of glucose oxidase, the active ingredient that it produced, and its effect on the rheological properties of dough. Glucose oxidase improved the loaf volume of bread made by 45-, 70-, and 90-min fermentation processes. Although the increase in loaf volume was significant, it was less than that obtained with an optimum level of KBrO3. With the 90-min fermentation process, the crumb grain of bread was similar for loaves oxidized with optimum levels of glucose oxidase or KBrO3. The rheological properties of doughs containing glucose oxidase and doughs containing no oxidant were compared. Doughs made with glucose oxidase had higher G′ and G″ and lower tan δ values than doughs made without an oxidant. Hydrogen peroxide was responsible for a drying effect in doughs. This drying effect of glucose oxidase was reduced significantly by incorporation of free radical scavengers into the dough.  相似文献   

8.
《Cereal Chemistry》2017,94(4):752-759
The effect of salt (NaCl) on the breadmaking quality of 37 varieties of Canadian Western Red Spring wheat (Triticum aestivum L.) was investigated along with dough stickiness for a 20 variety subset. A principal components analysis indicated that dough development time (DDT), mixing tolerance index (MTI), and stability (STA) were highly correlated. DDT showed an inverse relationship with MTI (r = –0.73) and a positive relationship with STA (r = 0.89). STA was also negatively related to MTI (r = –0.76). A reduction of salt from 2.0 to 1.1% (based on flour weight) was considered from a practical perspective. Each variety responded differently to salt reduction. Obtaining an optimal dough consistency with less salt required less work input and shorter mixing time. Overall, decreasing loaf volume with reducing salt content was observed, although certain varieties produced the opposite effect. This suggests that for a particular flour, depending on the inherent flour strength, there is a level of NaCl that produces an optimum between gluten strength and gas‐holding capacity of the dough, resulting in a loaf with good crumb texture and an even distribution of bubble sizes. A stickiness test was performed on selected varieties to evaluate the dough handling properties at 1.1 and 2.0% salt levels. The overall trend showed an increase in stickiness with a decrease in the salt content; however, certain varieties showed no change.  相似文献   

9.
Dough extensibility affects processing ease, gas retention, and loaf volume of finished products. The Kieffer dough extensibility test was developed to assess extensibility of small dough samples and is therefore adapted for use in breeding programs. Information is lacking on relationships between wheat growing environments and dough properties measured by the Kieffer dough extensibility test. This study documents the variability of dough extensibility (Ext), maximum resistance to extension (Rmax), and area under the extensibility curve (Area) in relation to breadmaking quality, and the effect of wheat growing environments. Mixograph, Kieffer dough extensibility, and bake tests were performed on flour milled from 19 hard red spring wheat (Triticum aestivum L.) genotypes grown during three growing seasons (2007‐2009) at six South Dakota locations. Although both genotype and environment had significant effects on Kieffer dough extensibility variables, environment represented the largest source of variation. Among genotype means, Area was most correlated (r = 0.63) with loaf volume, suggesting that by selecting lines with increased Area, loaf volume should improve. Rmax was positively correlated (r = 0.58) with loaf volume among genotype means but negatively correlated (r = –0.80) among environmental means. Ext was positively correlated (r = 0.90) with loaf volume among environmental means. Weather variables were correlated with Rmax, Ext and loaf volume and therefore could help predict end‐use quality.  相似文献   

10.
The improving effects of transglutaminase (TGase) were investigated on the frozen dough system and its breadmaking quality. Rheological properties and microstructure of fresh and frozen doughs were measured using a Rapid Visco‐Analyser (RVA), dynamic rheometer, and scanning electron microscopy (SEM). The frozen doughs with three storage periods (1, 3, and 5 weeks at –18°C) were studied at three levels (0.5, 1.0, and 1.5%) of TGase. As the amount of TGase increased, hot pasting peak viscosity and final viscosity from the RVA decreased, but breakdown value increased. The TGase content showed a positive correlation with both storage modulus G′ (elastic modulus) and the loss modulus G″ (viscous modulus): G′ was higher than G″ at any given frequency. The SEM micrographs showed that TGase strengthened the gluten network of fresh, unfrozen dough. After five weeks of frozen storage at –18°C, the gluten structure in the control dough appeared less continuous, more disrupted, and separated from the starch granules, while the dough containing 0.5% TGase showed less fractured gluten network. Addition of TGase increased specific volume of bread significantly (P < 0.05) with softer bread texture. Even after the five weeks of frozen storage, bread volume from dough with 1.5% TGase was similar to that of the fresh control bread (P < 0.05). The improving effects of TGase on frozen dough were likely the result of the ability of TGase to polymerize proteins to stabilize the gluten structure embedded by starch granules in frozen doughs.  相似文献   

11.
A negative relationship between dough strength and dough extensibility would pose a problem for breeding hard wheats, as both dough strength and dough extensibility are desirable. We derived 77 recombinant inbred lines (RIL) from a cross between hard red spring wheat cultivars McNeal and Thatcher. McNeal produces flour with stronger dough and lower extensibility than does Thatcher. RIL were evaluated for strength‐related properties using mixograph analysis and extensibility parameters using the Kieffer attachment to the TA.XT2 texture analyzer. Additionally, the RIL were test baked. Measurements using the mixograph and the Kieffer attachment were highly heritable. Maximum dough extensibility (Extmax) was negatively correlated with resistance to extension (Rmax) (r = ‐0.74) and with mixograph tolerance (r = ‐0.45). Loaf volume was correlated with both Rmax (r = 0.42) and area under the extensigraph curve (r = 0.44) based on partial correlation analysis adjusted for protein differences. Extmax was negatively correlated with loaf volume (r = ‐0.26). The McNeal allele for polymorphism at the Gli1‐B1 locus on chromosome 1BS caused high dough‐mixing tolerance and low dough extensibility. Our results suggest that traditional selection criteria in hard red spring wheat, including tolerance to dough mixing and high loaf volume, may result in reduced dough extensibility.  相似文献   

12.
Effect of storage temperature (ST) (5, 15, and 25°C) for paddy on the consumer perception of cooked rice (CR) was investigated with six major rice cultivars in Korea (Ilmibyeo, Chucheongbyeo, Ilpumbyeo, Hwayeongbyeo, Nampyeongbyeo, and Odaebyeo) after 12 months of storage. Germination rate (GR) of the paddy, grading characteristics (percentages of head rice, broken kernels, damaged kernels, colored kernels and chalky kernels) of milled rice (MR) kernels, texture profile analysis (hardness, springiness, cohesiveness, adhesiveness, and chewiness) and color (L*, a*, and b*) of CR were measured. Also, consumer testing on CR was done with 108 consumers. Consumers evaluated acceptability for odor, appearance, taste, texture, and overall purchase intent, and willingness to pay (WTP) of CR. After 12 months of storage, physicochemical characteristics of MR and CR were significantly different depending on ST. The significant difference among three ST of paddy was noted for GR, color b* value, fat acidity of MR, and overall consumer acceptability of CR. The GR was constant during 12 months of storage at 5°C, whereas a significant decrease of GR was noted for all six cultivars within 12 months of storage at 25°C. The average WTP for rice stored at 5°C for 12 months was $U.S. 45.68/20 kg, whereas WTP for rice stored at 15°C and 25°C were $U.S. 44.19/20 kg and $U.S. 41.87/20 kg, respectively, implying the importance of ST on grain quality and product value by consumers. Overall consumer acceptability had high correlation coefficient with WTP (r = 0.985). Overall consumer acceptability had highest correlation with GR of paddy (r = 0.861), followed by b* value of CR (r = –0.826), fat acidity (r = –0.768), cohesiveness (r = 0.733), and hardness (r = –0.650) of CR by TA, implying GR of paddy and b* value of CR could be used as indicators for eating quality of rice.  相似文献   

13.
《Cereal Chemistry》2017,94(2):242-250
The global market for frozen bread dough is rising; however, its quality could deteriorate during extended storage. Our previous study indicated that undesirable changes caused by freezing could be reduced by adding arabinoxylan‐rich fiber sources. The present study investigated the changes in arabinoxylan properties of yeasted dough during frozen storage. Dough samples made from refined, whole, and fiber‐enriched (15% either wheat aleurone or bran) flours were stored at –18°C for nine weeks, and structural properties of arabinoxylan were probed during storage. Water‐extractable arabinoxylan (WEAX) content in dough samples increased by about 19–33% during the first three weeks of storage. Prolonged storage of dough (weeks 6 and 9), however, correlated with a decline in WEAX content. Average molecular weight and intrinsic viscosity of WEAX decreased during storage for all frozen dough samples. Arabinose‐to‐xylose ratios also decreased by 11 and 6% for control and composite dough samples, respectively. There was a significant positive correlation (r = 0.89, P < 0.0001) between WEAX content of dough and bread quality throughout the storage period. The results demonstrated that changes in dough quality during frozen storage were related to changes in the content and structure of WEAX that took place during frozen storage.  相似文献   

14.
ABSTRACT

Root system is an important factor for crop productivity under water- and nutrient-limited environments. A pot study was conducted to evaluate root system response of three Thai rice varieties (Pathumthani 1, RD57, RD41) under three cultivation methods (dry direct seeding [DDS], wet direct seeding [WDS], transplanting [TP]) and three levels of alternate wetting and drying irrigation (–5, –15, –30 kPa). A second pot experiment examined the effect of potassium (K) rates (0, 80, 120, 160 kg ha–1) on root system response of the same varieties under DDS and TP subjected to alternate wetting and drying at –5 kPa. Pathumthani 1 was more tolerant to moisture stress; RD57 and RD41 showed an inconsistent response to moisture-deficit conditions. Rice plant under TP was more sensitive to moisture stress; rice plant performed better under DDS even at the highest soil moisture stress of –30 kPa. K application at the rate of 120 kg ha–1 as basal under DDS was optimum for root system development of Pathumthani 1, while RD57 and RD41 had higher actual root length at the same K rate regardless of cultivation methods. Alternate wetting and drying up to –30 kPa could be safely applied for the three tested varieties. The performance of root system of Pathumthani 1 was better under DDS method of cultivation. K fertilization at 120 kg ha–1 can be recommended as optimum rate under water-saving cultivation techniques for the three tested varieties.  相似文献   

15.
冷藏车温度场不均匀度对蔬菜保鲜效果的影响   总被引:2,自引:2,他引:0  
为了提高在冷藏运输过程中果蔬的品质,研究了冷藏车厢内部的温度场。冷藏车内合理的温度场,可以保证冷量的均匀分配,节约能耗,降低干耗及冻害损失,提高果蔬保鲜质量。该文以质量损失率、细胞膜渗透率、维生素C含量和叶绿素含量的变化作为评价指标,对不均匀度分别为3.71、5.68和8.36的温度场中贮藏的3种蔬菜(娃娃菜、尖椒和金针菇)品质的变化情况进行比较。结果表明,冷藏车内温度场的均匀程度与果蔬保鲜的效果成正比关系,不均匀度较低的温度场中贮藏的果蔬保持了较好的新鲜度。该文研究为冷藏车的优化设计提供了参考依据。  相似文献   

16.
The objective of this study was to evaluate protein composition and its effects on flour quality and physical dough test parameters using waxy wheat near‐isogenic lines. Partial waxy (single and double nulls) and waxy (null at all three waxy loci, Wx‐A1, Wx‐B1, and Wx‐D1) lines of N11 set (bread wheat) and Svevo (durum) were investigated. For protein composition, waxy wheats in this study had relatively lower albumins‐globulins than the hard winter wheat control. In the bread wheats (N11), dough strength as measured by mixograph peak dough development time (MDDT) (r = 0.75) and maximum resistance (Rmax) (r = 0.70) was significantly correlated with unextractable polymeric protein (UPP), whereas in durum wheats, moderate correlation was observed (r = 0.73 and 0.59, respectively). This may be due to the presence of high molecular weight glutenin subunits (HMW‐GS) Dx2+Dy12 at the Glu‐D1 locus instead of Dx5+Dy10, which are associated with dough strength. Significant correlation of initial loaf volume (ILV) to flour polymeric protein (FPP) (r = 0.75) and flour protein (FP) (r = 0.63) was found in bread wheats, whereas in durum wheats, a weak correlation of ILV was observed with FP (r = 0.09) and FPP (r =0.51). Significant correlation of ILV with FPP in bread wheats and with % polymeric protein (PPP) (r = 0.75) in durum lines indicates that this aspect of end‐use functionality is influenced by FPP and PPP, respectively, in these waxy wheat lines. High ILV was observed with 100% waxy wheat flour alone and was not affected by 50% blending with bread wheat flour. However, dark color and poor crumb structure was observed with 100% waxy flour, which was unacceptable to consumers. As the amylopectin content of the starch increases, loaf expansion increases but the crumb structure becomes increasingly unstable and collapses.  相似文献   

17.
The effects of dietary oregano essential oil and alpha-tocopheryl acetate supplementation on the oxidative stability of long-term frozen stored turkey meat were investigated. Thirty 12-week-old turkeys, randomly divided into five groups, were given a basal diet or a basal diet supplemented with 200 mg of alpha-tocopheryl acetate kg(-1), or 100 or 200 mg of oregano oil kg(-1), or 100 mg of oregano oil plus 100 mg of alpha-tocopheryl acetate kg(-1) for 4 weeks prior to slaughter. Lipid oxidation in breast and thigh meat was assessed after 1, 3, 6, and 9 months of frozen storage at -20 degrees C prior to or following 7 days of refrigerated storage at 4 degrees C. Results showed that oregano oil increased the oxidative stability of breast and thigh meat during the frozen storage. Dietary oregano oil at the inclusion level of 200 mg kg(-1) feed was significantly (p < 0.05) more effective in delaying lipid oxidation compared to the level of 100 mg kg(-1), but equivalent to dietary alpha-tocopheryl acetate supplementation at 200 mg kg(-1), which in turn was inferior to dietary supplementation of 100 mg kg(-1) oregano essential oil plus 100 mg kg(-1) alpha-tocopheryl acetate that was significantly (p < 0.05) superior to all other treatments. Thigh meat was more susceptible to oxidation than breast meat, although the former contained alpha-tocopherol at markedly higher levels. Mean alpha-tocopherol levels in breast and thigh meat from all treatments decreased during the frozen storage, the decrease being sharper between 1 and 3 months of frozen storage for breast and between 3 and 6 months for thigh meat. Oregano oil supplementation increased (p < 0.05) the retention of alpha-tocopherol in meat, the increase being positively correlated with the supplementation level. However, the retention of alpha-tocopherol in meat could only partly elucidate the antioxidant activity exhibited by dietary oregano oil supplementation.  相似文献   

18.
Empirical and fundamental rheology measurements were made on fresh and frozen dough to investigate the effects of freezing, frozen storage, and additives. These results were compared with results of a standard baking test. Four formulations were tested: a control dough, and doughs with additions of 100 ppm of ascorbic acid (AA), 0.5% sodium stearoyl lactylate (SSL), and 0.5% diacetyl tartaric acid esters of monoglycerides (DATEM). Rheological and baking tests were performed on fresh doughs and on doughs after two, five, and eight weeks of frozen storage. Resistance to extension was higher for doughs with additives in fresh and frozen doughs. There was a decrease in resistance to extension due to freezing. Complex modulus in fresh doughs was highest for doughs with SSL. There was a decrease complex modulus after freezing and thawing. In frozen doughs at 10 Hz, doughs with additives had higher complex modulus values and lower phase angle values when compared to the control. The additives used all had a positive effect on proof time, loaf volume, and crumb firmness, and all formulations deteriorated in quality during frozen storage. Resistance to extension and complex modulus were positively correlated with loaf volume (r = 0.86 and r = 0.64, P < 0.01). Phase angle was negatively correlated with loaf volume (r = -0.74, P < 0.01).  相似文献   

19.
Hexose oxidase (EC 1.1.3.5) (HOX) was purified 51-fold from the red algae Chondrus crispus, by several chromatography methods, including hydrophobic interaction, chelating Sepharose, anion exchange, gel filtration, and chromatofocusing. Purified HOX was subjected to native PAGE and activity staining with nitroblue tetrazolium. For HOX electroeluted out of the gel and digested with endoproteinase Lys-C, the internal peptide sequence determined was: D-P-G-Y-I-V-I-D-V-N-A-G-T-(V or P)-D-K-P-D-P-X. The molecular mass, determined by gel filtration, was 126 kDa, versus 65 kDa determined by SDS-PAGE. The pI was determined to 4.64 and 4.79 as a double band on an isoelectrofocusing gel. Km was determined to 2.7 mM for D-glucose, 3.6 mM for D-galactose, 20.2 mM for cellobiose, 43.7 mM for maltose, 90.3 mM for lactose, 102 mM for xylose, and 531 mM for arabinose. The oxidation of thiol groups in gluten was determined by using Ellman's reagent: 5,5′-dithiobis (2-nitrobenzoic acid). The effect of HOX was compared to that of glucose oxidase. Both enzymes caused a dose-responsive reduction in the free thiol groups. Extensigraph measurements and baking tests confirmed that HOX caused increased dough strength and increased bread volume more efficiently than glucose oxidase used in the same dosage.  相似文献   

20.
Growers are targeting hard red spring wheat (Triticum aestivum L.) (HRSW) for frozen dough end uses. Consequently, it is important to determine whether increasing nitrogen (N) fertilizer rates and grain protein content (GPC) improve frozen dough quality. Four HRSW cultivars were grown in low‐N soils at three locations over two years in North Dakota and fertilized with N rates of 0 kg/ha, 67.2 kg/ha, and 134.4 kg/ha. End use characteristics were analyzed using farinograph, extensigraph, and baking tests. Fresh and frozen doughs were analyzed to determine the effects of N treatments on frozen storage. A cultivar × N treatment interaction existed for extensigram curve area of fresh dough. A significant increase in GPC existed between the 0 and 67.2 kg/ha N treatments. Farinograph water absorption, arrival times, and peak times increased significantly at the 67.2 kg/ha N treatment. Bread loaf volume of fresh dough increased significantly with all treatments, while loaf volume of frozen dough increased significantly only at the 67.2 kg/ha N treatment. Therefore, aside from fresh dough loaf volume, there appears to be no improvement in frozen dough quality with the use of higher than typical N application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号