首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White and blue corns of Mexican and American origins were lime-cooked to obtain nixtamals with optimal moisture (48–50%) for tortillas and chips. Blue kernels had less bulk density, softer endosperm and, consequently, required less cooking time than the white kernels. The optimum cooking regime for the white kernels was 100°C for 20 min, while the optimum for both pigmented genotypes was 90°C for 0 min (until the lime-cooking solution reached 90°C). Doughs, tortillas, and chips were characterized by total soluble phenolics (TSP), anthocyanins (ACN), and antioxidant capacity (AOX). A dough acidification procedure using fumaric acid (pH 5.2) was assessed as a means to improve TSP, ACN, and AOX retention. The Mexican blue corn had higher AOX (16%) than the American blue genotype, although the latter had a threefold higher TSP content (12.1 g/kg, dwb). Mexican and American blue corns had higher AOX capacity (29.6 and 25.6 μM trolox equivalents [TE]/g dwb), respectively, than the white corn (17.4 μM TE/g). White corns did not have detectable amounts of ACN, while blue Mexican and American kernels contained 342 and 261 mg/kg. Lime cooking had the greatest negative impact on the stability of TSP, ACN, and AOX. However, the acidification reduced ACN, TSP, and AOX losses by 8–23, 3–14, and 4–15%, respectively. Similar ACN losses were observed for both types of blue kernels when processed into nixtamal/dough (47%); however, ACN losses in tortillas and chips manufactured from the American blue genotype were higher (63 and 81%, respectively) than those of Mexican blue corn products (54 and 75%). ACN losses were highly correlated to TSP (r = 0.91) and AOX capacity losses (r = 0.94).  相似文献   

2.
The phytochemical profiles (total phenolics, anthocyanins, ferulic acid, carotenoids) and antioxidant activities of five types of corn (white, yellow, high carotenoid, blue, and red) processed into masa, tortillas, and tortilla chips were studied. The nixtamalization process significantly (p < 0.05) reduced total phenolics and antioxidant activities when compared to raw grains. Nixtamalized grains exhibited higher concentration of free phenolics and soluble conjugated ferulic acid and had lower concentrations of bound phenolics and ferulic acid than unprocessed grains. Among processed products, there was little difference in the phytochemical contents and antioxidant activities. Among types of corn, the highest concentrations of total phenolics, ferulic acid, and antioxidant activity were observed in the high-carotenoid genotype followed by the regular yellow counterpart. The white corn contained the lowest amount of total phenolics and antioxidant activity. The pigmented blue corn had the highest anthocyanin concentration followed by the red counterpart. These findings suggest that lime-cooking significantly reduced the phytochemical content of nixtamalized products but released phenolics and ferulic acid.  相似文献   

3.
Although yellow maize (Zea mays) fractions and products are a source of dietary carotenoids, only limited information is available on the bioavailability of these pigments from maize-based foods. To better understand the distribution and bioavailability of carotenoid pigments from yellow maize (Z. mays) products, commercial milled maize fractions were screened for carotenoid content as were model foods including extruded puff, bread, and wet cooked porridge. Carotenoid content of maize fractions ranged from a low of 1.77-6.50 mg/kg in yellow maize bran (YCB) to 12.04-17.94 mg/kg in yellow corn meal (YCM). Lutein and zeaxanthin were major carotenoid species in maize milled fractions, accounting for approximately 70% of total carotenoid content. Following screening, carotenoid bioaccessibility was assessed from model foods using a simulated three-stage in vitro digestion process designed to measure transfer of carotenoids from the food matrix to bile salt lipid micelles (micellarization). Micellarization efficiency of xanthophylls was similar from YCM extruded puff and bread (63 and 69%), but lower from YCM porridge (48%). Xanthophyll micellarization from whole yellow corn meal (WYCM) products was highest in bread (85%) and similar in extruded puff and porridge (46 and 47%). For extruded puffs and breads, beta-carotene micellarization was 10-23%, but higher in porridge (40-63%), indicating that wet cooking may positively influence bioaccessibility of apolar carotenes. The results suggest that maize-based food products are good dietary sources of bioaccessible carotenoids and that specific food preparation methods may influence the relative bioaccessibility of individual carotenoid species.  相似文献   

4.
Starch digestibility was evaluated in freshly prepared tortillas elaborated from masa obtained from different procedures (laboratory‐made masa, commercial masa, and nixtamalized corn flour) and from laboratory‐made masa with added commercial hydrocolloid, and stored for 24, 48, and 74 hr. Tortillas prepared with commercial masa had the highest available starch (AS) content and the commercial tortillas had the lowest, showing a decrease in AS content when storage time increased. Tortilla of commercial masa showed the lowest resistant starch (RS) content that agrees with the AS measured. However, tortilla of laboratory‐made masa presented the highest AS and RS contents. RS increased with storage time, a pattern that is related to the starch retrogradation phenomenon observed when retrograded resistant starch (RRS) was quantified. Commercial tortillas showed predicted glycemic index (pGI) values of 62–75% using a chewing/dialysis procedure (semi in vitro method). Index values were lower than those determined in vitro. The pGI of tortillas decreased, and the values were different depending on the method used to prepare the masa and tortilla. Commercial tortilla and tortilla of NCF had the lowest pGI. Therefore, the procedure to obtain masa and thereafter obtain tortillas influenced the starch digestibility of the product.  相似文献   

5.
Degradation of added folic acid and native folates in micronutrient‐fortified corn masa and tortillas was evaluated using masa prepared from either nixtamalized corn flour or fresh nixtamal. Variations in masa pH, masa holding time at an elevated temperature, and iron source failed to show significant differences in folate loss in corn flour masa prepared in the laboratory. Masa was subsequently prepared from fresh nixtamal in a commercial mill in Mexico, and fortified with one of two different micronutrient premixes containing iron, zinc, B‐vitamins, and either unencapsulated or lipid‐encapsulated folic acid. Folate loss in commercial masa increased significantly with prebake masa holding time for both premixes. Unencapsulated folic acid showed a 73% loss after 4 hr of holding, compared to 60% loss for encapsulated. The difference was statistically significant, indicating a protective effect from the lipid coating. No significant differences in folate levels were found between prebake masa and baked tortillas. Holding baked tortillas for up to 12 hr also had no effect on folate levels. Native folate showed no significant losses throughout the process. Results from the commercial tortilla mill indicate that most of the loss in added folic acid occurs during prebake holding of masa, possibly from microbial degradation.  相似文献   

6.
《Cereal Chemistry》2017,94(2):277-283
Sorghum bran (SB) is a good source of phenolic compounds with high antioxidant capacity that increases the antioxidant activity (AOX) of tortillas prepared with extruded nixtamalized corn flour. The objective of this research was to study the effects of bran addition (0, 5, or 10%) before (ENBESB) or after (ENAFSB) extrusion, in the features and composition of baked tortillas in terms of total phenolic compounds (TPC), AOX, color (L , a , b, hue, chroma, and E value), and tortilla firmness. It was possible to retain more than 81.8 and 89.9% of TPC and AOX, respectively, in ENBESB‐10% flour. Tortillas prepared with ENAFSB‐10% flour retained more than 92 and 76% of TPC and AOX, respectively, compared with ENBESB. However, tortillas elaborated with ENAFSB flour showed a higher firmness and lower flexibility than counterparts produced from ENBESB. The use of extrusion to produce nixtamalized corn flours and the strategy of adding the SB to the corn meal before extrusion were essential to retain TPC and AOX and, additionally, to enhance texture of tortillas.  相似文献   

7.
Sorghum is a critical source of food in the semiarid regions of sub-Saharan Africa and India and a potential source of dietary phytochemicals including carotenoids. The objective of this study was to determine the carotenoid profiles of sorghum cultivars, selected on the basis of their yellow-endosperm kernels, at various developmental stages. Following extraction from sorghum flours, carotenoids were separated by high-performance liquid chromatography (HPLC) with diode array detection. Total carotenoid content in fully matured yellow-endosperm sorghum kernels (0.112-0.315 mg/kg) was significantly lower (p < 0.05) than that in yellow maize (1.152 mg/kg) at physiological maturity. Variation in total carotenoids and within individual carotenoid species was observed in fully mature sorghum cultivars. For developing kernels, large increases in carotenoid content occurred between 10 and 30 days after half bloom (DAHB), resulting in a peak accumulation between 6.06 and 28.53 microg of total carotenoids per thousand kernels (TK). A significant (p < 0.05) decline was noted from 30 to 50 DAHB, resulting in a final carotenoid content of 2.62-15.02 microg/TK total carotenoids. (all-E)-Zeaxanthin was the most abundant carotenoid, ranging from 2.22 to 13.29 microg/TK at 30 DAHB. (all-E)-Beta-carotene was present in modest amounts (0.15-3.83 microg/TK). These data suggest the presence of genetic variation among sorghum cultivars for carotenoid accumulation in developing and mature kernels.  相似文献   

8.
A high‐amylose, non‐floury corn, a floury corn, and a 1:1 blend were made into masa and then tortillas. The masa flour made with the high‐amylose corn had a greater amount of resistant starch (RS 28.8%) and a greater amount of total dietary fiber (TDF 42.1%) than that with the floury corn (RS 2.9%, TDF 9.6%), producing a high‐fiber tortilla. The masa was evaluated for pasting properties using a Rapid ViscoAnalyser (RVA). The high‐amylose masa slurry gelatinized little at 95°C. The floury masa had the greatest peak viscosity, whereas the 1:1 blend was intermediate in value. Sensory evaluations of the tortillas for the textural attributes showed the floury tortillas to be chewier, more rollable, and grittier than the high‐amylose tortillas, whereas the blend tortillas were intermediate for most attributes. The cutting force of the high‐amylose tortillas, measured on a texture analyzer, was very low; the blend and floury tortillas required more force. Chewiness was correlated to rollability (r = 0.99, P = 0.05). The %RS and %TDF were correlated to rollability (r = –0.99), and cutting force (r = 0.99). The floury and blend tortillas had firm textures expected of desirable tortillas, whereas the high‐amylose tortillas broke under little force, and would not roll. The high‐amylose tortillas had high amounts of RS and TDF but poor texture. The blend tortillas retained most floury tortilla textural properties, making them suitable products for consumer use.  相似文献   

9.
Studies were undertaken to determine the fate of the mycotoxins, fumonisins, during the process of alkaline cooking (nixtamalization), using normal-appearing corn that was naturally contaminated with fumonisin B(1) (FB(1)) at 8.79 ppm. Corn was processed into tortillas, starting with raw corn that was cooked with lime and allowed to steep overnight; the steeped corn (nixtamal) was washed and ground into masa, which was used to make tortillas. Calculations to determine how much of the original fumonisin remained in the finished products took into consideration that FB(1) will be converted to hydrolyzed fumonisin B(1) (HFB(1)) by the process of alkaline cooking. All fractions, including steeping and washing water, were weighed, and percent moisture and fumonisin content were determined. Tortillas contained approximately 0.50 ppm of FB(1), plus 0.36 ppm of HFB(1), which represented 18.5% of the initial FB(1) concentration. Three-fourths of the original amount of fumonisin was present in the liquid fractions, primarily as HFB(1). Nixtamalization significantly reduced the amount of fumonisin in maize.  相似文献   

10.
Nixtamalization is the process of steeping dried corn in hot water with calcium hydroxide (lime) with subsequent removal of all or most of the pericarp through washing. The resulting product is called nixtamal. Approximately 60% of corn tortillas in Mexico are produced from nixtamal, with the remainder prepared from nixtamalized corn flour. Nixtamal was fortified with micronutrient premix containing iron, zinc, folic acid, niacin, riboflavin, and thiamin. Premix composition followed a proposed Mexican regulation for corn flour fortification, adjusted for moisture. Effects of premix on masa adhesiveness, hardness, and pH, as well as tortilla sensory properties, stretchability, rollability, and color were measured. Micronutrient levels were tested in the dry corn, nixtamal, masa, and tortillas. There were no significant differences in masa texture or pH, tortilla rollability, or consumer acceptance of tortillas when comparing unfortified control and fortified treatments. Added thiamin was almost entirely degraded during processing. Folic acid and riboflavin decreased 26 and 45%, respectively, through the masa‐tortilla manufacturing process. Niacin showed no significant loss. Despite processing losses, fortification resulted in significant nutrient increases compared with control tortillas. Folic acid increased 974%, riboflavin increased 300%, niacin increased 141%, iron increased 156%, and zinc increased 153% in fortified tortillas.  相似文献   

11.
Kernels of two carotenoid‐rich cultivars, sweet corn Jingtian 5 and field corn Suyu 29, were compared in terms of carotenoid composition during corn kernel development. The results showed that eight principal carotenoids were characterized by HPLC with diode array detection and atmospheric pressure chemical ionization tandem mass spectrometry with a C30 column. During kernel development, there was a similar trend in the change of total carotenoids for both corn cultivars, and the variation of individual carotenoids was also somewhat similar; violaxanthin, zeaxanthin, lutein, α‐cryptoxanthin, and β‐cryptoxanthin contents had upward trends, whereas neoxanthin content declined all the time, and α‐carotene and β‐carotene had no significant changes. However, the highest levels of the major carotenoids lutein (41.61 µg/g, dry weight) and zeaxanthin (39.59 µg/g, dry weight) obtained in field corn Suyu 29 during the milk stage were higher than those in sweet corn Jingtian 5, whereas the other individual carotenoid levels were significantly lower. Compared with the grain color, highly significant positive correlations were observed between zeaxanthin, lutein, and violaxanthin contents and deeper yellow/orange coloration indicators for field corn Suyu 29, but these relationships were weak for sweet corn Jingtian 5. Potential genetic variation might exist for carotenoid accumulation in sweet and field corn kernels.  相似文献   

12.
Soybean proteins are ideally suited to enhance the essential amino acid balance of cereal‐based foods. The aim of this investigation was to assess the functionality of different soybean proteins in maize tortillas with yield and with sensorial and textural shelf‐life characteristics as criteria to select the best supplement. Four different defatted soybean flours (SBF1, SBF2, SBF3, and SBF4) and one soybean protein concentrate (SBC) were added to increase protein content of dry masa flour between 25 and 30%. The evaluated soybean ingredients displayed urease activity of 0.1–2.25, water absorption index of 4.02–8.34, protein dispersibility index of 23–75%, and fat absorption index ranging from 2.5 to 3.1. Moisture, crude protein, crude fat, and rollability were not different among enriched tortillas, but maximum force after five days of storage was higher for SBF1 and lower for SBF 3. The control and SBF1 followed by SBC were the best evaluated overall according to the most relevant parameters for consumers and producers. Correlation analyses displayed a negative association among yield‐related parameters and protein dispersibility index, urease activity, and water solubility, opposite to the relationship for texture‐related properties. The best soybean proteins to be used in maize tortilla supplementation should have, preferably, reduced water solubility, urease activity, and protein dispersibility index.  相似文献   

13.
Naturally aflatoxin-contaminated corn (Zea mays L.) was made into tortillas, tortilla chips, and corn chips by the traditional and commercial alkaline cooking processes. The traditional nixtamalization (alkaline-cooking) process involved cooking and steeping the corn, whereas the commercial nixtamalization process only steeps the corn in a hot alkaline solution (initially boiling). A pilot plant that includes the cooker, stone grinder, celorio cutter, and oven was used for the experiments. The traditional process eliminated 51.7, 84.5, and 78.8% of the aflatoxins content in tortilla, tortilla chips, and corn chips, respectively. The commercial process was less effective: it removed 29.5, 71.2, and 71.2 of the aflatoxin in the same products. Intermediate and final products did not reach a high enough pH to allow permanent aflatoxin reduction during thermal processing. The cooking or steeping liquor (nejayote) is the only component of the system with a sufficiently high pH (10.2-10.7) to allow modification and detoxification of aflatoxins present in the corn grain. The importance of removal of tip, pericarp, and germ during nixtamalization for aflatoxin reduction in tortilla is evident.  相似文献   

14.
The nutrient losses of corn containing 0–30% damaged kernels that occurred during alkaline cooking into tortillas were examined. Samples from different stages during processing were tested for chemical composition and protein fractionation. The most prevalent type of kernel damage was mechanical, followed in decreasing order by molds, insects, heat, and rodent damage. Corn with higher content of damaged kernels was susceptible to overcooking, resulting in cracked or fully open nixtamal kernels and sticky masa that were difficult to handle during processing. Nutrient losses increased with increasing levels of kernel damage. Most nutrient losses from sound corn kernels occurred during washing as the pericarp and attached solids were removed. During simmering, damaged corn kernels were fully cooked into physically opened kernels with more nutrients being extracted into the water. About 15% of total solids and 50% of both crude fiber and fat were lost during cooking of corn with 30% kernel damage. The greatest losses were consistently observed for albumins and globulins from both sound and damaged kernels at all stages of cooking. Appropriate control of kernel damage level is required to improve yield of product with consistent quality. The susceptibility to overcooking of excessively damaged corn increases the complexity to consistently meet product quality specifications. Excess dry matter losses in the cooking liquor can significantly increase the risk of environmental contamination and cost of sewage water treatment.  相似文献   

15.
Resistant starch (RS) ingredients are an attractive option to increase dietary fiber in baked products. This study determined the effect of two forms of cross‐linked and pregelatinized cross‐linked RS, Fibersym‐RW (Fsym) or FiberRite‐RW (FRite), respectively, from wheat on dough and tortilla quality and acceptability. Refined wheat tortillas with 0% (control) to 15% RS (flour basis) were made using a standard baking process. Tortillas with 100% whole white wheat were also made. Physical and rheological properties of dough and tortillas, and sensory profile of tortillas were evaluated. Dough with whole wheat and 15% FRite were significantly harder and less extensible than the control dough; this was related to high water absorption of these doughs. Tortillas with whole wheat and 10–15% FRite were less puffed and denser than the control; however these levels of FRite significantly increased tortilla weight (by up to 6.2%). Dough and tortillas with Fsym were comparable to the control. Dietary fiber (g/100 g, db) increased from 2.8 ± 0.3 in control to 14.3 ± 0.5 and 13.6 ± 0.5 in 15% Fsym and 15% FRite tortillas, respectively. Tortillas with whole wheat were less acceptable than the control in appearance, flavor, and texture, while tortillas with 15% Fsym had higher overall acceptability than the control. Incorporation of 15% cross‐linked wheat RS to increase tortilla dietary fiber is feasible without negatively affecting dough handling and tortilla quality.  相似文献   

16.
Nixtamalization is an ancient process developed by the Mesoamerican cultures. Initially, volcanic ashes were used and then calcium hydroxide in commercial production, and more recently nixtamalization with calcium salts (NCS) has been proposed. The aim of this study was to evaluate the effect of NCS on carbohydrate digestibility and antioxidant capacity in the elaboration of blue maize tortillas. NCS in blue tortillas showed a high amount of total dietary fiber (14.27 g/100 g), the main fraction being insoluble dietary fiber. The contents of resistant starch and slowly digestible starch did not change with the nixtamalization process. The predicted glycemic index value was lower in blue tortillas with the NCS process (58) than with the traditional nixtamalization process (71). In general, NCS in blue tortillas presented a higher antioxidant capacity than traditional tortillas (ferric reducing antioxidant power method), indicating that phenolics present in blue maize maintain their activity after cooking. It can be concluded that the nutraceutical features (high dietary fiber content and antioxidant capacity) of blue maize tortillas are enhanced when they are elaborated with the NCS process.  相似文献   

17.
《Cereal Chemistry》2017,94(6):917-921
Neural tube defects occur at higher rates in Hispanic populations in the United States. Such populations would benefit from folic acid fortification of corn masa flour (CMF). This study evaluated folate stability in fortified CMFs and tortillas and tortilla chips made therefrom. There was no significant loss of folate during the six‐month shelf life of fortified tortilla CMF and tortilla chip CMF. There was a 13% loss (P < 0.05) of folate during tortilla baking and no loss during tortilla chip frying. Both tortillas and tortilla chips showed significant folate losses over the two‐month shelf life for these products, with a 17% loss in fortified tortillas and a 9% loss in tortilla chips. Folate in fortified CMFs, tortillas, and tortilla chips is relatively stable and comparable to the stability of folate in wheat flour and breads.  相似文献   

18.
Changes in the digestibility and the properties of the starch isolated from normal and waxy maize kernels after heat‐moisture treatment (HMT) followed by different temperature cycling (TC) or isothermal holding (IH) conditions were investigated. Moist maize kernels were heated at 80°C for 2 hr. The HMT maize kernels were subjected to various conditions designed to accelerate retrogradation of the starch within endosperm cells. Two methods were used to accelerate crystallization: TC with a low temperature of –24°C for 1 hr and a high temperature of 20, 30, or 50°C for 2, 4, or 24 hr for 1, 2, or 4 cycles, and IH at 4, 20, 30, or 50°C for 24 hr. The starch granules were then isolated from the treated kernels. The starch isolated from HMT normal maize kernels treated by TC using –24°C for 1 hr and 30°C for 2 hr for 2 cycles gave the greatest SDS content (24%) and starch yield (54%). The starch isolated from HMT waxy maize kernels treated by TC using –24°C for 1 hr and 30°C for 24 hr for 1 cycle had an SDS content of 19% and starch yield of 43%. The results suggest that TC after HMT changes the internal structure of maize starch granules in a way that results in the formation of SDS (and RS). They also suggest that thermal treatment of maize kernels is more effective in producing SDS than is the same treatment of isolated starch. All starch samples isolated from treated normal maize kernels exhibited lower peak viscosities, breakdown, and final viscosities and higher pasting temperatures than did the control (untreated normal maize starch). Although peak viscosities and breakdown of the starch isolated from treated waxy maize kernels were similar to those of the control (untreated waxy maize starch), their pasting temperatures were higher. The starch isolated from treated normal and waxy maize kernels with the highest SDS contents (described above) were further examined by DSC, X‐ray diffraction, and polarized light microscopy. Onset and peak temperatures of gelatinization of both samples were higher than those of the controls. Both retained the typical A‐type diffraction pattern of the parent starches. The relative crystallinity of the starch from the treated normal maize kernels was higher than that of the control, while the relative crystallinity of the starch from the treated waxy maize kernels was not significantly different from that of the control. Both treated starches exhibited birefringence, but the granule sizes of both starches, when placed in water, were slightly larger than those of the controls.  相似文献   

19.
The growth and brain development of laboratory rats fed typical indigenous tortilla‐based diets were determined throughout two generations. The experiment compared three different types of tortilla‐based diets: regular tortillas produced from dry masa flour (RDMF), tortillas obtained from fresh masa (FM), and tortillas produced from dry masa flour fortified with 6% defatted soybean and enriched with vitamins B1, B2, niacin, and folic acid and microminerals iron and zinc (FEDMF). Female rats were mated 58 days postweaning with males belonging to the same treatment with the objective of obtaining second generation pups that were further subjected to regular lactation and 28 day postweaned growth. A comparison between growth of first and second generation rats was determined. In addition, representative animals of each physiological stage were first exsanguineted for hematocrit determination and then slaughtered with the aim of obtaining femur and brain tissues. Cerebral DNA and number of neurons were determined in each of the brains sampled. Growth of rats fed FEDMF was significantly higher (P < 0.05) in both generations than counterparts fed RDMF or FM. The difference among treatments was more evident in second generation rats. Pregnancy rate, number of newborns per litter, litter weight, and pup's survival rate was higher for the control and FEDMF treatments. Femur growth was also higher (P < 0.05) for first‐generation male adult rats fed control and FEDMF. The concentration and total content of cerebral DNA and number of neurons in males and females belonging to the first generation was similar. However, for second generation rats, these values were lower for animals fed regular tortilla diets. This data clearly demonstrates that the negative effects of malnutrition on brain development of pups occurred during gestation and lactation.  相似文献   

20.
Carboxymethyl cellulose (CMC) is added to tortillas to maintain a pliable texture during storage. A need exists to optimize or replace CMC in masa and tortilla manufacturing with cheaper yet adequate alternatives. Change in water distribution upon gum addition may be key to understanding stability of cooked masa. Therefore, the objective of this study was to characterize the state and distribution of water in masa systems containing two types of CMC and guar gum. Masa was mixed with 10% (1% in viscosity measurements) of different gums (either one of two CMCs varying in viscosity or guar) then hydrated to 50% moisture content. Viscosity, water holding capacity (WHC), total moisture content (TGA) as well as “freezable” (FW) and “unfreezable” (UFW) water (DSC) of all samples were obtained and compared. Viscosity measurements indicated guar gum may provide a good substitution for high viscosity CMC. The two water measurements, WHC and UFW, differed as to the effect of viscosity on water entrapment. WHC represented the short‐term imbibing of gums, while UFW indicated how the hydrocolloids responded in masa given full hydration time. UFW in guar gum was lower than in medium viscosity CMC. These initial results indicate that guar gum may prove a good substitute for CMC in masa applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号