首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.  相似文献   

2.
The Mediterranean diet appears to be associated with a reduced risk of several chronic diseases including cancer and cardiovascular and Alzheimer's diseases. Olive products (mainly olive oil and table olives) are important components of the Mediterranean diet. Olives contain a range of phenolic compounds; these natural antioxidants may contribute to the prevention of these chronic conditions. Consequently, the consumption of table olives and olive oil continues to increase worldwide by health-conscious consumers. There are numerous factors that can affect the phenolics in table olives including the cultivar, degree of ripening, and, importantly, the methods used for curing and processing table olives. The predominant phenolic compound found in fresh olive is the bitter secoiridoid oleuropein. Table olive processing decreases levels of oleuropein with concomitant increases in the hydrolysis products hydroxytyrosol and tyrosol. Many of the health benefits reported for olives are thought to be associated with the levels of hydroxytyrosol. Herein the pre- and post-harvest factors influencing the phenolics in olives, debittering methods, and health benefits of phenolics in table olives are reviewed.  相似文献   

3.
This investigation was designed to characterize phenolic metabolism of the olive cultivar, Hardy's Mammoth, by examining its constitutive tissues. The phenolic profiles of pulp, seed, stone, and new and old season leaves were monitored over two fruiting seasons, to investigate possible relationships between tissues and phenol content and to determine the impact of alternate fruit bearing. No major qualitative differences in phenolic composition were found between the various tissues; however, distinct differences between the tissues with respect to quantifiable phenols were established. Relationships between 2-(3,4-dihydroxyphenyl)ethyl (3E,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate ester, oleuropein, and hydroxytyrosol in pulp and leaf were identified and found to be related to alternate bearing. Concentrations of 5-caffeoylquinic acid in old season leaves differed dramatically between seasons, confirming earlier studies.  相似文献   

4.
Olives (Olea europaea cv. Chondrolia) were stored under a CO2 atmosphere immediately after harvesting for a period of 12 days. Samples obtained at 24-h intervals were analyzed by HPLC to identify components that may reflect changes in the biochemical behavior of the tissue. Four substances were shown to undergo significant fluctuations during storage, while their evolution was found to be different in olives stored under CO2 from those stored under regular atmospheric conditions (control). On the basis of data provided by liquid chromatography-electrospray ionization mass spectrometry, these substances were tentatively identified as hydroxytyrosol glucoside, demethylated ligstroside aglycone, ibotalactone A methyl ester, and verbascoside. The data are discussed in relation to the effect of postharvest treatments of olives for purposes of manipulating their polyphenolic content and plausible development of novel debittering processes.  相似文献   

5.
In the harsh environmental conditions of Kuwait, plants are frequently exposed to high temperatures, low relative humidity and drought. Because water resources available for agriculture are limited, an efficient irrigation strategy is vital for sustainable olive production. In view of these facts, a study to determine the behavior and water requirement of young olive plants under Kuwait's environmental conditions was carried out. The investigation included five cultivars (cvs. Arbequina, Barnea, Coratina, Koroneiki and UC13A6) and three levels of irrigation (50, 75 and 100% of ETc) with brackish water (ECe 5.0 dS m?1). One-year-old grafted plants were used in this study. With the exception of UC13A6, the cultivars showed good adaptation to the harsh weather conditions in Kuwait and to brackish water irrigation during the first 18 months after the beginning of the irrigation treatments. Indeed, they showed good height and shoot growth, with cultivars Barnea, Arbequina and Coratina showing the highest values. Cultivar Barnea was the most vigorous variety under Kuwait's environmental conditions. Vegetative growth in these varieties was not significantly reduced in the 50% ETc treatment. This indicates huge opportunities to improve the water-use-efficiency through further investigations aimed at optimizing the amount of water supplied with irrigation.  相似文献   

6.
The phenolic composition of olive fruits (Olea europaea L.) (cv. Picual, Villalonga, Alfafarenca, and Cornicabra) grown in different areas of Spain was studied by high performance liquid chromatography-mass spectrometry. Different levels of tyrosol, catechin, p-coumaric acid, rutin, luteolin, and oleuropein were observed in the different varieties analyzed. Treating the fruit with 0.3% Brotomax 50 days after anthesis had a beneficial effect on fruit size, oil content, levels of polyphenolic compounds, and Trolox-equivalent antioxidant activity (TEAC) in all the varieties analyzed.  相似文献   

7.
The purpose of this study was to understand the effect produced by the addition of the herbicides terbuthylazine (N(2)-tert-butyl-6-chloro-N(4)-ethyl-1,3,5-triazine-2,4-diamine) and glyphosate (N-(phosphonomethyl)glycine) on photosystem II photochemistry of young plants of Olea europaea L. under greenhouse conditions. The effect of soil amendment with an organic residue from olive oil production was also assessed. Terbuthylazine reduced the efficiency of photosystem II photochemistry of plants due to chronic photoinhibition, and this effect was counterbalanced by soil amendment with the organic waste, whereas the photosystem II photochemistry of olive plants was not affected by glyphosate or by glyphosate and organic waste addition. In this study, we have shown that the soil application of terbuthylazine is a source of indirect phytotoxicity for olive plants. We have also observed that the olive plants were not affected by higher amounts of glyphosate in the soil.  相似文献   

8.
Proteins of olive fruit mesocarp are not very well-known at present. However, they have been shown to pass, at least partially, to the olive oil during its elaboration and therefore might be contributing to some of the special characteristics of this vegetable oil. In this study, protein content and composition were determined in olive fruits, cv. Arbequina and Picual, at three stages of ripening: green, spotted, and purple. Mesocarp proteins constituted 1.3-1.8% of the dry weight of the olive fruit, and cultivar and fruit ripening did not produce important changes in mesocarp protein content or composition. In addition, this composition was also similar to the amino acid composition of a 4.6-kDa polypeptide, which is the major protein component of olive oils and of oil bodies of olive fruit mesocarp, suggesting that this polypeptide is likely to be a major component of mesocarp proteins. There was, also, a relationship between the oil content of the olive fruit and the protein content determined, suggesting a stabilizing function of these proteins in the oil bodies of the olive fruit, analogously to the role suggested for oleosins. This stabilizing function does not seem to be extended to olive oils because when the polypeptides isolated were added at 20 ppm to soybean oil, the stability of the oil increased only slightly, suggesting that if these compounds play some role in the stability of the oils, this should be mostly a consequence of the possible interactions among these protein components and other olive oil antioxidant constituents.  相似文献   

9.
Ionizing treatments were applied at 0.5 kGy, 1.5 kGy, and 2.5 kGy to edible mature mushrooms (Agaricus bisporus, albidus) in order to assess the effect of the gamma-irradiation on some biochemical parameters. Irradiation at doses of 1.5 kGy and 2.5 kGy reduced significantly (p < or = 0.05) the rate of respiration of the mushrooms, compared to that of samples irradiated at 0.5 kGy and nonirradiated control samples (C). Ionizing treatments increased significantly (p < or = 0.05) the phenylalanine ammonia-lyase (PAL) activity and total phenols concentration between days 1 and 4. From days 3-4, to the end of the storage period (day 12), both PAL activity and total phenols in the irradiated samples (I) collapsed to lower values. In contrast, the activity of polyphenol oxidase (PPO) increased until days 7, 9, and 12 for samples treated at 0.5, 1, and 2 kGy, respectively. Color measurements showed a loss of whiteness (L value) during storage. After day 4, however, the effectiveness of gamma-irradiation became apparent, and highest L values were obtained for I only.  相似文献   

10.
This study reports the HPLC profiles of phenolic compounds of virgin olive oils obtained from young olive trees (Olea europaea L. cv. Arbequina) and how the application of a linear irrigation strategy affected these. Hydroxytyrosol, tyrosol, vanillic acid, vanillin, 4-(acetoxyethyl)-1,2-dihydroxybenzene, p-coumaric acid, the dialdehydic form of elenolic acid linked to hydroxytyrosol and to tyrosol, lignans, and the oleuropein aglycon were found in all the oils. Hydroxytyrosol, tyrosol, vanillic acid, and p-coumaric acid contents in the oils were unaffected by linear irrigation. The concentration of lignans was lower in the oils from the least irrigated treatment and the concentration of vanillin increased as the amount of irrigation water applied to olive trees increased. However, 4-(acetoxyethyl)-1,2-dihydroxybenzene, the dialdehydic form of elenolic acid linked to hydroxytyrosol and to tyrosol, and the oleuropein aglycon, all of them hydroxyphenyl derivatives, decreased as the level of irrigation water increased. The latter three compounds represented the most considerable part of the phenolic fraction of the oils and they were shown to be correlated to the oxidative stability, the bitter index (K(225)), and the bitter, pungent, and sweet sensory attributes. Linear irrigation strategy changed the profile of the oil phenolic compounds and, therefore, changed both the organoleptic properties and the antioxidant capacity of the product.  相似文献   

11.
The HPLC phenolic profile of virgin olive oils obtained from young olive trees (Arbequina cv.) grown under different deficit irrigation strategies was studied. Deficit irrigation (RDI) did not affect all the phenolic compounds in the same way. Lignans, vanillic acid, vanillin, and the unknown phenolic compound named P24 increased in the oils from the most irrigated treatments. The secoiridoid derivatives and the unknown phenolic compound named P19 increased in the oils from the most stressed irrigation treatments. The period of growth where a water stress significantly affects the phenolic profile of oils was between pit hardening and the first stages of fruit growth and oil accumulation, independently of the water applied during the previous period to harvest. The phenolic profile and those parameters related to phenol content, oxidative stability, and the bitter index were significantly affected only in the most severe RDI strategies. Other strategies produced important savings in irrigation requirements and an increase in the water use efficiency without noticeably affecting the phenolic profile.  相似文献   

12.
13.
The objective of this study is to investigate the effect of different time and rates of boron (B) foliar application on olive (Olea europaea L.) tree's tissue boron concentration, total phenol, chlorophyll, total soluble sugars, and endogenous hormones. A field experiment was conducted during two successive seasons 2010/2011 and 2011/2012 using 20 years old olive trees cv. Frantoio. The trees are grown in sandy soil planted at 5 × 5 m apart under drip irrigation system at the Nuclear Research Center Experimental Farm, Inshas, El-Qaliubiya Governorate, Egypt. Boron was applied foliarly as boric acid at the following rates (0.0, 100, 200, 300, 400, 500 mg L?1) at flower initiation and after 1 and 2 months from flower initiation. Results showed that boron was significantly effective in increasing leaf, bud, and fruit boron concentration. Total phenol concentration in leaves and buds were significantly highest in the control treatment, significantly decreased as the boron application rate increased. Total chlorophyll, chlorophyll a and b, and total soluble sugars significantly increased as the boron application rate increased and the highest increase was achieved at 200 mg L?1 boron concentration rate. Leaf and bud endogenous indole acetic acid (IAA) and abscisic acid (ABA) were highest in the control treatment; they decreased as the boron application rate increased. However, gibberellic acid (GA3) increased in response to boron treatments compared with the control. The maximum increase was observed at 200 mg L?1 boron rate. We concluded that boron is mobile in olive tree as reproductive organs accumulated more boron than vegetative organs. There is evidence that boron is involved in reduction of phenols, increase in fruit set, and in sugar transport. A balance in endogenous hormones (IAA, GA, ABA) concentrations in olive tree has induced the maximum fruit set and yield.  相似文献   

14.
To enhance the shelf life of edible mature mushrooms, Agaricus bisporus, 2 kGy ionizing treatments were applied at two different dose rates: 4.5 kGy/h (I(-)) and 32 kGy/h (I(+)). Both I(+) and I(-) showed a 2 and 4 day shelf-life enhancement compared to the control (C). Before day 9, no significant difference (p>0.05) in L value was detected in irradiated mushrooms. However, after day 9, the highest observed L value (whiteness) was obtained for the mushrooms irradiated in I(-). Analyses of phenolic compounds revealed that mushrooms in I(-) contained more phenols than I(+) and C, the latter containing the lower level of phenols. The fluctuation of the precursors of glutaminyl-4-hydroxyaniline (GHB) was less in I(-) than in I(+). The polyphenol oxidase (PPO) activities of irradiated mushrooms, analyzed via catechol oxidase, dopa oxidase, and tyrosine hydroxylase substrates, were found to be significantly lowered (p = 0.05) compared to C, with a further decrease in I(+). Analyses of the enzymes indicated that PPO activity was lower in I(+), contrasting with its lower phenols concentration. The observation of mushrooms' cellular membranes, by electronic microscopy, revealed a better preserved integrity in I(-) than in I(+). It is thus assumed that the browning effect observed in I(+) was caused by both the decompartmentation of vacuolar phenol and the entry of molecular oxygen into the cell cytoplasm. The synergetic effect of the residual active PPO and the molecular oxygen, in contact with the phenols, allowed an increased oxidation rate and, therefore, a more pronounced browning I(+) than in I(-).  相似文献   

15.
The influence of inoculation of olive trees with arbuscular mycorrhizal (AM) fungi, Glomus (G) intraradices, on microbial communities and sugar concentrations, were examined in rhizosphere of olive trees (Olea europaea L.). Analyses of phospholipid and neutral lipid fatty acids (PLFA and NLFA, respectively) were then used to detect changes in microbial community structure in response to inoculation of plantlets with G. intraradices.Microscopic observations studies revealed that the extraradical mycelium of the fungus showed formation of branched absorbing structures (BAS) in rhizosphere of olive tree. Root colonization with the AM fungi G. intraradices induced significant changes in the bacterial community structure of olive tree rhizosphere compared to non-mycorrhizal plants. The largest proportional increase was found for the fatty acid 10Me18:0, which indicated an increase in the number of actinomycetes in mycorrhizal rhizosphere soil, whereas the PLFAs i15:0, a15:0, i16:0, 16:1ω7 and cy17:0 which were used as indicators of bacteria decreased in mycorrhizal treatment compared to non-mycorrhizal control treatment. A highest concentration of glucose and trehalose and a lowest concentration of fructose, galactose, sucrose, raffinose and mannitol were detected in mycorrhizal rhizosphere soil. This mycorrhizal effect on rhizosphere communities may be a consequence of changes in characteristics in the environment close to mycorrhizal roots.  相似文献   

16.
光周期对两种色型豌豆蚜生长发育的影响   总被引:1,自引:1,他引:1  
为探讨光周期对两种色型豌豆蚜生长发育的影响,本研究设定了低(103μmol-m-2-s-1)、中(212μmol-m-2-s-1)和高(313μmol-m-2-s-1)3个光照强度,3个光周期(10L∶14D、16L∶8D和22L∶2D),测定了两种色型豌豆蚜的龄期、发育历期、体重差、相对日均体重增长率等生物学参数的变化特征。结果表明:在低光照强度下,光周期10L∶14D时,绿色型比红色型豌豆蚜4龄期延长0.21 d(P0.05),发育历期延长,其他各项指标无显著差异(P0.05);光周期16L∶8D时,红色型比绿色型豌豆蚜3龄期延长0.52 d(P0.05),发育历期延长;光周期22L∶2D时,绿色型比红色型豌豆蚜2龄期、4龄期延长0.12 d、0.22 d,差异显著(P0.05),其他指标无显著差异(P0.05)。中光照强度下,光周期10L∶14D时,绿色型比红色型豌豆蚜体重差减轻6.76%,相对日均体重增长率减小14.63%,均为差异显著(P0.05),发育历期无显著差异(P0.05);光周期16L∶8D时,绿色型比红色型豌豆蚜1龄期、2龄期、4龄期延长0.23 d、0.60 d、0.33 d,发育历期延长,体重差减轻28.84%,相对日均体重增长率减小37.21%,均为差异显著(P0.05);光周期22L∶2D时,红色型比绿色型豌豆蚜相对日均体重增长率增高12%(P0.05)。高光照强度下,光周期10L∶14D时,绿色型比红色型豌豆蚜4龄期延长0.58 d(P0.05);光周期16L∶8D时,绿色型比红色型豌豆蚜1龄期延长1.63 d(P0.05);光周期22L∶2D时,红色型豌豆蚜发育历期延长,体重差和相对日均体重增长率无显著差异(P0.05)。综上,在不同光照强度下,光照时间越长,两种色型豌豆蚜生长发育越好;光照强度越强,光周期越短,两种色型豌豆蚜生长发育显著迟缓。由此可见,光周期对两种色型豌豆蚜生长发育的影响与光照强度相关,且红色和绿色型豌豆蚜对光周期的反应均不相同。  相似文献   

17.
《Soil biology & biochemistry》2001,33(4-5):503-509
The distribution of vegetation types in Venezuelan Guyana (in the ‘Canaima’ National Park) represents a transitional stage in a long term process of savannization, a process considered to be conditioned by a combined chemical and intermittent drought stress. All types of woody vegetation in this environment accumulate large amounts of litter and soil organic carbon (SOC). We hypothesized that this accumulation is caused by low microbial activity. During 1 year we measured microbial biomass carbon (Cmic), microbial respiration and soil respiration of stony Oxisols (Acrohumox) at a tall, a medium and a low forest and with three chemical modifications of site conditions by the addition of NO3, Ca2+ and PO43− as possible limiting elements. Due to high SOC contents, mean Cmic was 1 mg g soil−1 in the mineral topsoil and 3 mg g soil−1 in the forest floor. Mean microbial respiration in the mineral topsoil and the forest floor were 165 and 192 μg CO2-C g soil−1 d−1, respectively. We calculated high mean metabolic quotients (qCO2) of 200 mg CO2-C g Cmic−1 d−1 in the litter layer and 166 mg CO2-C g Cmic−1 d−1 in the mineral topsoil, while the Cmic-to-SOC ratios were as low as 1.0% in the litter layer and 0.8% in the mineral topsoil. Annual soil respiration was 9, 12 and 10 Mg CO2-C ha−1 yr−1 in the tall, medium and low forest, respectively. CO2 production was significantly increased by CaHPO4 fertilization, but no consistent effects were caused by Ca2+ and NO3, fertilization. Our findings indicate that Cmic and microbial respiration are reduced by low nutrient concentrations and low litter and SOC quality. Reduced microbial decomposition may have contributed to SOC accumulation in these forests.  相似文献   

18.
The changes of the antioxidant (AOA) and antiradical activities (ARA) and the total contents of phenolics, anthocyanins, flavonols, and hydroxybenzoic acid in roots and different aerial sections of Echinacea purpurea, nettle, and dandelion, after treatment with ornithine decarboxylase inhibitor, a polyamine inhibitor (O-phosphoethanolamine, KF), and a phenol biosynthesis stimulator (carboxymethyl chitin glucan, CCHG) were analyzed spectrophotometrically; hydroxycinnamic acids content was analyzed by RP-HPLC with UV detection. Both regulators increased the AOA measured as inhibition of peroxidation (IP) in all herb sections, with the exception of Echinacea stems after treatment with KF. In root tissues IP was dramatically elevated mainly after CCHG application: 8.5-fold in Echinacea, 4.14-fold in nettle, and 2.08-fold in dandelion. ARA decrease of Echinacea leaves treated with regulators was in direct relation only with cichoric acid and caftaric acid contents. Both regulators uphold the formation of cinnamic acid conjugates, the most expressive being that of cichoric acid after treatment with CCHG in Echinacea roots from 2.71 to 20.92 mg g(-1). There was a strong relationship between increase of the total phenolics in all sections of Echinacea, as well as in the studied sections of dandelion, and the anthocyanin content.  相似文献   

19.
In studying the basal respiration, microbial biomass (substrate-induced respiration, SIR), and metabolic quotient (qCO2) in western red cedar (Thuja plicata Donn ex D. Don)-western hemlock [(Tsuga heterophylla Raf.) Sarg.] ecosystems (old-growth forests, 3- and 10-year-old plantations) on northern Vancouver Island, British Columbia, Canada, we predicted that (1) soil basal respiration would be reduced by harvesting and burning, reflecting the reduction in microbial biomass and activities; (2) the microbial biomass would be reduced by harvesting and slash-burning, due to the excessive heat of the burning or due to reduced substrate availability; (3) microbial biomass in the plantations would tend to recover to the preharvesting levels with growth of the trees and increased substrate availability; and (4) microbial biomass measured by the SIR method would compare well with that measured by the fumigation-extraction (FE) method. Decaying litter layer (F), woody F (Fw) and humus layer (H) materials were sampled four times in the summer of 1992. The results obtained supported the four predictions. Microbial biomass was reduced in the harvested and slash-burned plots. Both SIR and FE methods provided equally good estimates of microbial biomass in the samples [SIR microbial C (mg g-1)=0.227+0.458 FE microbial C (mg g-1), r=0.63, P=0.0001] and proved suitable for microbial biomass measurements in this strongly acidic soil. Basal respiration was significantly greater in the old-growth forests than in the young plantations (P<0.05) in both F and H layers, but not in the Fw layer. For the 3- and 10-year-old plantations, there was no difference in basal respiration in F, Fw, and H layers. Basal respiration was related to changes in air temperature, precipitation, and the soil moisture contant at the time of sampling. The qCO2 values were higher in the old-growth stands than in the plantations. Clear-cutting followed by prescribed burning did not increase soil microbial respiration, but CO2 released from slash-burning and that contributed from other sources may be of concern to increasing atmospheric CO2 concentrations.  相似文献   

20.
The phenolic composition of heartwood from Robinia pseudoacacia, commonly known as false acacia, before and after toasting in cooperage was studied by HPLC-DAD and HPLC-DAD/ESI-MS/MS. A total of 41 flavonoid and nonflavonoid compounds were identified, some tentatively, and quantified. Seasoned acacia wood showed high concentrations of flavonoid and low levels of nonflavonoid compounds, the main compounds being the dihydroflavonols dihydrorobinetin, fustin, tetrahydroxy, and trihydroxymethoxy dihydroflavonol, the flavonol robinetin, the flavanones robtin and butin, and a leucorobinetinidin, none of which are found in oak wood. The low molecular weight (LMW) phenolic compounds present also differed from those found in oak, since compounds with a β-resorcylic structure, gallic related compounds, protocatechuic aldehyde, and some hydroxycinnamic compounds are included, but only a little gallic and ellagic acid. Toasting changed the chromatographic profiles of extracts spectacularly. Thus, the toasted acacia wood contributed flavonoids and condensed tannins (prorobinetin type) in inverse proportion to toasting intensity, while LMW phenolic compounds were directly proportional to toasting intensity, except for gallic and ellagic acid and related compounds. Even though toasting reduced differences between oak and acacia, particular characteristics of this wood must be taken into account when considering its use in cooperage: the presence of flavonoids and compounds with β-resorcylic structure and the absence of hydrolyzable tannins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号