首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米Fe3O4/微生物联合体系对2,4-D和阿特拉津降解的研究   总被引:1,自引:0,他引:1  
采用纳米Fe3O4/微生物联合体系降解溶液中2,4-D和阿特拉津,考察了不同2,4-D和阿特拉津初始浓度、微生物接种量、纳米Fe3O4投加量、溶液pH值等对降解效果的影响。结果表明,纳米Fe3O4/微生物联合体系对2,4-D和阿特拉津的降解率显著高于纳米Fe3O4和微生物单一体系;2,4-D和阿特拉津初始浓度在0~10mg·L-1、微生物接种量在0~12mg·L-1、纳米Fe3O4的投加量在0~200mg·L-1范围内,2,4-D和阿特拉津的降解率随其初始浓度、微生物接种量和纳米Fe3O4投加量的增大而增加。溶液pH3.0左右、2,4-D和阿特拉津初始浓度10mg·L-1、微生物接种量12mg·L-1、纳米Fe3O4投加量200mg·L-1,是反应的最佳条件,此实验条件下反应7d,2,4-D和阿特拉津的残留率分别降低至35.7%和54.0%。  相似文献   

2.
研究了微波无极紫外(MWEUV)光助Fenton法对有机农药废水的强化降解作用,比较了单独MW、单独Fenton、紫外汞灯光助Fenton(UV/Fenton)和MWEUV光助Fenton(MWEUV/Fenton)4种体系的处理效果,考察了初始pH、H2O2投加量和Fe2+投加量对COD降解率的影响。结果表明,MWEUV比紫外汞灯具有更高的强化降解作用。在H2O2投加量为60 mmol/L,Fe2+投加量为0.5 mmol/L,初始pH为2~5的条件下,有机农药废水可被完全降解。  相似文献   

3.
为了确定电芬顿降解印染废水的最适宜影响因素,在实验室水平下,选取罗丹明B作为降解印染废水的典型目标降解物,研究电芬顿反应的电解电压、电流密度、初始p H值、Na2SO4浓度、罗丹明B初始浓度、温度、Fe2+浓度以及曝气量对罗丹明B降解的影响。结果表明:电压为8 V、电流密度为30 m A/cm2、p H=3、初始罗丹明B浓度为10 mg/L、Fe SO4浓度为15 mmol/L、曝气量为0.3 L/min、室温条件下,罗丹明B的去除率可以达到97.5%。  相似文献   

4.
以酵母菌为载体,废弃烟叶提取物为还原剂,制备酵母菌载纳米铁(TB–Fe/SCNPs),并探究其去除水中2, 4, 6–三氯酚(2, 4, 6–TCP)的性能。结果表明:负载在酵母菌上的纳米铁为粒径(77.6±16.1) nm的球形颗粒;TB–Fe/SC NPs去除2, 4, 6–TCP主要包括吸附和氧化降解2种途径,符合拟二级反应动力学模型;溶解氧和羟自由基在TB–Fe/SC NPs氧化降解2, 4, 6–TCP中起重要作用;TB–Fe/SC NPs对2, 4, 6–TCP的去除率随温度的升高而增大,随2, 4,6–TCP初始浓度的增大而减少,而反应体系的pH值对TB–Fe/SCNPs去除2,4,6–TCP的影响较小;TB–Fe/SCNPs用量为1.0~3.0g/L时,2,4,6–TCP的去除率随TB–Fe/SCNPs用量的增大而增大;Fe3+、Mg2+、Ca2+和SO42–能促进TB–Fe/SCNPs去除2,4,6–TCP的反应,HPO42–、HCO3–和腐殖酸则对反应有抑制作用,而K+、NO3–和Cl–对2, 4, 6–TCP的去除影响不明显;TB–Fe/SC NPs能在室温下稳定...  相似文献   

5.
采用振荡培养实验研究了纳米Fe0对溶液中3,3′,4,4′-四氯联苯(PCB77)的降解情况,结果表明, PCB77起始浓度为5mg/L、溶液初始pH值为6.8,反应64 h后,纳米Fe0投加量为10.0g/L时,PCB77残留浓度最低,残留率仅为29.3%;纳米Si0投加量为0.5g/L时,PCB77残留浓度最低,残留率为67%;纳米Si0投加量为1.0g/L,即纳米Si0:纳米Fe0=1∶10时,PCB77残留浓度最低,残留率仅为22.2%。溶液中PCB77降解产物中除联苯外未发现其他降解产物,可能是PCB77在纳米Fe0表面连续脱氯的原因造成的。  相似文献   

6.
[目的]研究UV/Fenton/TiO2光催化氧化降解供水水源深水湖库水体中微囊藻毒素MC-RR和MC-LR的效果。[方法]以Fen-ton-TiO2作为光催化剂,考察不同反应时间、初始pH值、H2O2浓度、Fe2+浓度、TiO2投加量、光照强度、藻毒素起始浓度对UV/TiO2/Fen-ton多相光催化氧化降解微囊藻毒素的影响,并对多相光催化氧化与UV光分解对藻毒素的去除效果进行比较。[结果]在H2O2起始浓度为0.1mmol/L、[H2O2]/[FeSO4]为15∶1、pH值为4.0、反应液距UV灯管1cm、TiO2投加量为0.05g/L和反应温度为(16±2)℃的条件下,反应3min后,浓度为0.35mg/L的MC-RR和浓度为0.29mg/L的MC-LR去除率可分别达到91.5%和90.2%。[结论]UV/Fen-ton/TiO2光催化氧化法能高效降解微囊藻毒素。  相似文献   

7.
采用Fe/C微电解耦合H_2O_2工艺对印染综合废水进行预处理,通过单因素试验,考察了H_2O_2投加量、初始pH值、Fe/C投加量和反应时间对COD和色度去除率的影响,同时对Fe/C微电解和Fe/C微电解耦合H_2O_2工艺进行对比。试验结果表明,H_2O_2投加量为8mg/L,反应时间为180min,pH值为2、Fe/C投加量为800g/L的条件下,COD的去除率为66.55%,色度的去除率为67.23%,H_2O_2对Fe/C微电解作用有明显增强的作用。该研究可为印染废水预处理技术提供依据。  相似文献   

8.
董泽琴  张琳  张维  杨再荣 《安徽农业科学》2010,38(21):11658-11660
[目的]研究Fenton法氧化降解微污染水体水中微囊藻毒素MC-LR的效果。[方法]采用Fenton氧化法对微污染水中MC-LR的降解效果进行试验研究,考察H2O2与Fe2+投加浓度、pH值、藻毒素初始浓度、反应时间等各种因素对降解效果的影响。同时,对影响水中MC-LR的Fenton氧化过程的相关因素进行初步探讨。[结果]在藻毒素MC-LR浓度0.31mg/L时,试验得到的最佳去除工艺条件为H2O2起始浓度0.30mmol/L,[H2O2]/[FeSO4]摩尔比30∶1,pH值4.0,反应温度(24±2)℃,反应60min后,去除率可达到90.30%。[结论]Fenton法在一定反应条件下可有效降解微囊藻毒素MC-LR。  相似文献   

9.
分别采用Fenton氧化和UV/Fenton氧化对油墨废水处理进行研究,通过单因素试验和正交试验,考察了FeSO4投加量、H2O2投加量、初始pH值和反应时间等因素对COD去除率的影响,确定了反应的最佳操作条件.结果表明,在初始pH值2.5、H2 O2投加量800 mg/L、FeSO4投加量800 mg/L、处理时间为180 min的最佳条件下,油墨废水的COD去除率达83.1%;在UV/Fenton条件下,H2O2投加量可降低至600 mg/L,反应时间可缩短至60 min,COD去除率可达84.1%,效果明显.  相似文献   

10.
蒋皎梅  杨丽  洪颖  高旬 《安徽农业科学》2010,38(28):15688-15689
利用Fenton试剂预处理有机磷农药废水,通过单因素和正交试验,考察H2O2投加量、[Fe2+]/[H2O2]、初始pH值、反应时间等因素对废水COD去除率的影响。结果表明,Fenton试剂预处理甲胺磷模拟废水的反应符合一级反应模型,优化条件为H2O2投加量为9/5理论投加量,[Fe2+]/[H2O2](摩尔浓度比)=1∶3,pH=4,反应时间为40min。此条件下,废水COD去除率可达88.1%。  相似文献   

11.
[目的]研究Fenton氧化降解活性艳红X-3B的条件及历程。[方法]利用Fenton氧化工艺,分析3种不同初始浓度的活性艳红X-3B废水的降解条件,同时利用GC-MS对其降解产物及历程进行研究。[结果]当H2O2∶Fe2+(摩尔比)=3.1时,COD去除效果最好,随着Fe2+投加量的增加,废水会变成铁红色,同时沉淀物增加;对于COD分别为200、400和800 mg/L的废水,H2O2投加量分别为0.5、1.0、3.5 ml,废水的初始pH为4~5时,COD的去除率最高。Fenton氧化反应的速度非常快,大部分的降解都发生在初始的5 min之内。[结论]Fenton氧化技术是一种高效降解难降解染料的实用技术。  相似文献   

12.
【目的】针对1,2-二氟-1,1,2,2-四氯乙烷(F112)具有高能量碳氟键,很难被光解、水解及微生物降解的特点,研究紫外光条件下类Fenton氧化法催化F112脱氟的最佳条件,旨在为含氟有机物的降解提供参考。【方法】在紫外线高压汞灯的作用下,以类Fenton氧化法中的Fe3+/H2O2为催化剂,研究溶液初始pH、Fe3+投加量、H2O2投加量、反应温度、紫外光源与溶液距离对F112脱氟率的影响。【结果】在溶液初始pH=1、Fe3+投加量为7.5mmol/L、H2O2投加量为500mmol/L、反应温度40℃、紫外光源与液面距离为12cm的条件下,F112脱氟率均最大,脱氟效果均最佳。【结论】得到了紫外光条件下类Fenton氧化法催化F112脱氟的最佳条件,为含氟有机物的降低提供了参考。  相似文献   

13.
为研究铁炭微电解/Fenton联合处理榨菜废水高COD含量的可行性,通过静态烧杯试验确定铁炭微电解的最佳反应pH、反应时间和铁炭体积比,Fenton的最佳反应时间、H2O2投加量和初始Fe~(2+)浓度。结果表明,铁炭微电解技术最佳条件为pH=3.00、铁炭比1∶1和反应时间30 min,Fenton最佳反应时间120min、H2O2投加量3.5 m L、Fe~(2+)浓度为70 mmol/L。铁炭微电解对废水COD去除率达到39.30%,Fenton技术对废水残留COD去除率为78.54%,两种技术联合处理后榨菜废水COD去除率达到91.03%,对氨氮、Cl~-、色度、SS的去除率分别为70.41%、40.33%、97.35%、57.14%。  相似文献   

14.
利用零价铁活化过硫酸钠产生SO_4~-降解喹诺酮类抗生素。考察了零价铁投加、过硫酸钠浓度、温度、无机盐离子对3种喹诺酮类抗生素降解效果的影响。结果表明,温度升高,有利于测试抗生素的降解;当测试抗生素起始浓度为5mg/L时,最佳降解条件为零价铁投加量为0.4g/L,氧化剂过硫酸钠投加量设为0.5mmol/L;当反应体系中存在Cl~-和SO_4~(2-)时会对测试抗生素的降解产生抑制作用。  相似文献   

15.
零价铁处理4-氯硝基苯影响因素的研究   总被引:1,自引:0,他引:1  
[目的]去除废水中有机污染物4-氯硝基苯(4-ClNB)。[方法]采用零价铁还原技术,研究初始pH值、4-ClNB初始浓度和Fe0投加量3个因素对Fe0还原4-ClNB的影响。[结果]pH值对Fe0还原4-ClNB影响较大,初始pH值为3和5时,4-ClNB还原率达100%;pH值为7时,4-ClNB还原率达90%左右,而pH值为9和12时,4-ClNB还原率为80.7%和33.3%。4-ClNB还原转化速率随4-ClNB初始浓度的增加而减小。试验范围内,Fe0投加量越大,4-ClNB的去除率越高。[结论]零价铁还原技术可以有效去除废水中的4-ClNB。  相似文献   

16.
[目的]了解Fenton氧化法处理偶氮染料的降解工艺及降解历程和机理。[方法]利用Fenton氧化工艺处理不同浓度的偶氮蓝113,测定处理后的COD,同时利用GC-MS对其降解产物进行分析。[结果]当[H2O2]∶[Fe2+](摩尔比)=2.29时,COD去除效果最好,随着Fe2+投加量的增加,废水会变成铁红色,同时沉淀物增加;COD分别为250、525和996 mg/L的3种不同浓度的废水,H2O2最佳投加量分别为0.9、1.8、16.0 ml;废水初始pH=3时,COD的去除率最高。[结论]Fenton氧化技术是一种高效降解难降解染料的实用技术。  相似文献   

17.
响应曲面法优化Fenton氧化处理头孢类制药废水   总被引:1,自引:0,他引:1  
以头孢类制药废水为研究对象,选择pH值、H2O2与Fe2+摩尔比、FeSO4投加量为自变量,以废水COD去除率为响应值,采用响应面分析法研究了各自变量及其交互作用对制药废水COD去除率的影响,通过对回归方程求解和响应面分析,得到多元二次回归方程的预测模型。结果表明:pH值、H2O2与Fe2+摩尔比、FeSO4投加量与COD去除率存在显著相关性;优化后的Fenton氧化条件为pH值为4.02、H2O2与Fe2+摩尔比为2、FeSO4浓度为8 mmol/L;在该优化条件下,废水COD去除率可达61.45%。  相似文献   

18.
活性污泥的驯化及其降解高浓度苯酚废水的效果   总被引:1,自引:0,他引:1  
以苯酚为碳源培养驯化活性污泥,使其逐渐适应并能有效降解高浓度(1 500 mg/L)苯酚废水,并对降解期的苯酚浓度、污泥浓度、pH值条件进行了较为系统的研究。结果表明:活性污泥降解苯酚效果良好,24 h内COD去除率达85%以上。污泥投加量6 g/L、水体pH值6条件下,处理初始浓度为855 mg/L的模拟苯酚废水,酚浓度降至5~6 mg/L。  相似文献   

19.
对水合氢氧化铁(HFO)用于水中四环素的去除进行研究.通过XRD、BET和FTIR对自制的HFO进行表征.探讨不同反应条件对HFO去除四环素的影响.试验结果表明,当初始四环素(TC)溶液pH为6.5,HFO投加量为l g/L,反应18 h时,TC的去除率达92.3%,表明HFO能有效去除水中的TC.初始pH为酸性、偏中性的条件下TC的去除效果较碱性条件下好.pH >6.5时发现,随着pH的增大,TC的去除率逐渐减小.同时对HFO去除TC的机理进行了初步探讨.  相似文献   

20.
通过单因素试验和正交试验探讨了Fe S0_4溶液用量、水杨酸-乙醇溶液用量、H_20_2溶液浓度、反应温度、反应时间对Fenton反应体系的影响,筛选出羟自由基反应体系的最优反应条件,并检测了乙醇体积分数、p H对反应体系的影响。结果表明,最佳反应条件为1.8 mmol/L的Fe S0_4溶液2.50 m L,1.8 mmol/L的水杨酸-乙醇溶液2.00 m L,0.05%H_20_2溶液0.10 m L,蒸馏水0.50 m L,20℃水浴10 min。反应体系的p H及待测液乙醇体积分数对反应体系有明显影响,建议待测液含乙醇时,应做相同体积分数乙醇对照组进行修正。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号