共查询到20条相似文献,搜索用时 15 毫秒
1.
Interspecific variation of photosynthesis and leaf characteristics in canopy trees of five species of Dipterocarpaceae in a tropical rain forest 总被引:1,自引:0,他引:1
Kenzo T Ichie T Yoneda R Kitahashi Y Watanabe Y Ninomiya I Koike T 《Tree physiology》2004,24(10):1187-1192
Photosynthetic rate, nitrogen concentration and morphological properties of canopy leaves were studied in 18 trees, comprising five dipterocarp species, in a tropical rain forest in Sarawak, Malaysia. Photosynthetic rate at light saturation (Pmax) differed significantly across species, varying from 7 to 18 micro mol m(-2) s(-1). Leaf nitrogen concentration and morphological properties, such as leaf blade and palisade layer thickness, leaf mass per area (LMA) and surface area of mesophyll cells per unit leaf area (Ames/A), also varied significantly across species. Among the relationships with leaf characteristics, Pmax had the strongest correlation with leaf mesophyll parameters, such as palisade cell layer thickness (r2 = 0.76, P < 0.001) and Ames/A (r2 = 0.73, P < 0.001). Leaf nitrogen concentration and Pmax per unit area also had a significant but weaker correlation (r2 = 0.46, P < 0.01), whereas Pmax had no correlation, or only weakly significant correlations, with leaf blade thickness and LMA. Shorea beccariana Burck, which had the highest P(max) of the species studied, also had the thickest palisade layer, with up to five or more layers. We conclude that interspecific variation in photosynthetic capacity in tropical rain forest canopies is influenced more by leaf mesophyll structure than by leaf thickness, LMA or leaf nitrogen concentration. 相似文献
2.
By use of tree-tower and canopy-crane systems we studied variations in the water use, including transpiration, stomatal conductance, and leaf water potential, of the uppermost sun-exposed canopy leaves of four emergent dipterocarp species in an aseasonal tropical rain forest in Sarawak, Malaysia. Midday depression in stomatal conductance and leaf water potential was observed in all the species studied. Interspecific differences were clearly observed in the maxima of transpiration rates and stomatal conductance and the minima of leaf water potential among the four dipterocarp species. These interspecific variations were closely related to wood density and to factors affecting ecological patterns of distribution. Specifically, Shorea parvifolia and S. smithiana, both of which have a relatively low wood density for Dipterocarpaceae and are found on clay-rich soil, had a high transpiration rate in the daytime but had a large midday depression and a low leaf water potential. In contrast, Dryobalanops aromatica, which has a high wood density and is found in sandy soil areas, consumed less water even during the daytime. Dipterocarpus pachyphyllus, which has a high wood density and is found on clay-rich soil, stood intermediate between Shorea and D. aromatica in leaf water use. The two Shorea species had higher mortality than the others during the severe drought associated with El Ni?o in 1998, so daily pattern of leaf water use in each dipterocarp species might be correlated with its susceptibility to unusual drought events. 相似文献
3.
We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myris-ticaceae) and Tetragastris pana-mensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) >/= 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy. 相似文献
4.
New Forests - Leaf traits have been shown to explain a great fraction of differences in growth rates in trees. With this study, we evaluate if differences in growth performance of different species... 相似文献
5.
Allometry of shoot extension units (hereafter termed "current shoots") was analyzed in a Malaysian canopy species, Elateriospermum tapos Bl. (Euphorbiaceae). Changes in current shoot allometry with increasing tree height were related to growth and maintenance of tree crowns. Total biomass, biomass allocation ratio of non-photosynthetic to photosynthetic organs, and wood density of current shoots were unrelated to tree height. However, shoot structure changed with tree height. Compared with short trees, tall trees produced current shoots of the same mass but with thicker and shorter stems. Current shoots with thin and long stems enhanced height growth in short trees, whereas in tall trees, thick and short current shoots may reduce mechanical and hydraulic stresses. Furthermore, compared with short trees, tall trees produced current shoots with more leaves of lower dry mass, smaller area, and smaller specific leaf area (SLA). Short trees adapted to low light flux density by reducing mutual shading with large leaves having a large SLA. In contrast, tall trees reduced mutual shading within a shoot by producing more small leaves in distal than in proximal parts of the shoot stem. The production of a large number of small leaves promoted light penetration into the dense crowns of tall trees. All of these characteristics suggest that the change in current shoot structure with increasing tree height is adaptive in E. tapos, enabling short trees to maximize height growth and tall trees to maximize light capture. 相似文献
6.
The degree to which variation in species distribution is predictable from topographic variation is of considerable current interest. In this paper, canonical correspondence analysis (CCA), linear regression and principal coordinates of neighbour matrices (PCNM) models were used to explain the variation in the distributions of the 13 dominant species in a 20-ha tropical rain-forest plot in China. The results showed that: (1) Tree distribution maps show that some species are mainly found in the gullies of the plot, whereas others occur on the slopes. Which indicates topographic variables are important factors for the distribution pattern of species. (2) Both linear regression and CCA results show that convexity and elevation are the most important variables effecting distribution of trees. For saplings, elevation, convexity and aspect explain 15.3%, 9.0% and 10.1% of the total variation of species abundance. For poles, elevation and convexity explain 19.3% and 11.4% respectively. However, only 5.3% of the total variation is explained for adults. (3) The PCNM results showed that topography alone explained 20%, 24% and 5% of the total variation of species abundance for saplings, poles and adults, respectively. Overall evidence for topographic control of the tropical tree distribution is strong, but the explanatory power of topographic variables was a small part of the total of variation. 相似文献
7.
热带雨林濒危树种望天树的致危原因及保护策略 总被引:2,自引:0,他引:2
望天树自身的开花结实特点、种子顽拗性和低成苗率、幼苗生长缓慢、过度砍伐和生境破碎化等导致其更新困难,以致陷入濒危的境地。加强自然保护区管理与法制建设、在天然林保护和次生林恢复工作中辅以人工抚育、防治病虫害和人工接种菌根菌以及实施迁地保护等措施可有效地保护望天树种质资源。 相似文献
8.
The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax) and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and Jmax at a common temperature of 25 degrees C (Vcmax(25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax(25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter. 相似文献
9.
We examined the effects of artificially altering leaf angle of the tropical tree species Acacia crassicarpa (A. Cunn. ex Benth., Fabaceae) on light interception, leaf temperature and photosynthesis in the wet and dry seasons of tropical Australia. Reducing leaf angle from the natural near-vertical angle (90 degrees ) to 67.5, 45, 22.5 and 0 degrees greatly increased light interception and leaf temperature, and decreased photosynthetic activity. Compared with the 90 degrees phyllodes, net photosynthetic rates in the horizontal phyllodes decreased by 18 and 42% by the second day of leaf angle change in the wet and dry seasons, respectively. The corresponding values for Day 7 were 46 and 66%. Leaf angle reduction also altered the diurnal pattern of photosynthesis (from two peaks to one peak) and reduced daily CO2 fixation by 23-50% by Day 2 and by 50-75% by Day 7 in the dry season. In contrast, the xanthophyll cycle pool size in the phyllodes increased with leaf angle reduction. Thus, there are at least five major advantages to maintaining high leaf angle orientation in tropical tree species. First, it reduces excessive light interception. Second, it lowers leaf temperature. Third, it protects the photosynthetic apparatus against photodamage by excessive light. Fourth, it minimizes xanthophyll cycle activity and reduces the cost for xanthophyll biosynthesis. Finally, it enhances photosynthetic activity and helps to sustain high plant productivity. 相似文献
10.
11.
Variability of leaf traits related to photosynthesis was assessed in seedlings from 14 tree species growing in the tropical rain forest of French Guiana. Leaf photosynthetic capacity (maximum rate of carboxylation and maximum rate of electron transport) was estimated by fitting a biochemical model of photosynthesis to response curves of net CO2 assimilation rate versus intercellular CO2 mole fraction. Leaf morphology described by leaf mass per unit leaf area (LMA), density and thickness, as well as area- and mass-based nitrogen (N) and carbon (C) concentrations, were recorded on the same leaves. Large interspecific variability was detected in photosynthetic capacity as well as in leaf structure and leaf N and C concentrations. No correlation was found between leaf thickness and density. The correlations between area- and mass-based leaf N concentration and photosynthetic capacity were poor. Conversely, the species differed greatly in relative N allocation to carboxylation and bioenergetics. Principal component analysis (PCA) revealed that, of the recorded traits, only the computed fraction of total leaf N invested in photosynthesis was tightly correlated to photosynthetic capacity. We also used PCA to test to what extent species with similar shade tolerances displayed converging leaf traits related to photosynthesis. No clear-cut ranking could be detected among the shade-tolerant groups, as confirmed by a one-way ANOVA. We conclude that the large interspecific diversity in photosynthetic capacity was mostly explained by differences in the relative allocation of N to photosynthesis and not by leaf N concentration, and that leaf traits related to photosynthetic capacity did not discriminate shade-tolerance ranking of these tropical tree species. 相似文献
12.
Hirobe Muneto Sabang John Bhatta Balram K. Takeda Hiroshi 《Journal of Forest Research》2004,9(4):341-346
In a lowland tropical rain forest in Sarawak, leaf-litter decomposition and the initial litter chemistry of 15 tree species
were studied. During 13 months of field experiment, weight loss of litter samples was between 44% and 91%, and calculated
decomposition rate constants (k) ranged from 0.38 to 2.36 year−1. The initial litter chemistry also varied widely (coefficients of variation: 19%–74%) and showed low N and P concentrations
and high acid-insoluble residue (AIS) concentration. For nutrient-related litter chemistry, correlations with the decomposition
rate were significant only for P concentration, C/P ratio, and AIS/P ratio (r
s
= 0.59, −0.62, and −0.68, n = 15, P < 0.05, respectively). For organic constituents, correlations were significant for concentrations of AIS and total carbohydrates,
and AIS/acid-soluble carbohydrate ratio (r
s
= −0.81, 0.51, and −0.76, n = 15, P < 0.05, respectively). These results suggested that the relatively slow mean rate of decomposition (k = 1.10) was presumably due to the low litter quality (low P concentration and high AIS concentration), and that P might influence
the decomposition rate; but organic constituents, especially the concentration of AIS, were more important components of initial
litter chemistry than nutrient concentrations. 相似文献
13.
Liu TW Wu FH Wang WH Chen J Li ZJ Dong XJ Patton J Pei ZM Zheng HL 《Tree physiology》2011,31(4):402-413
We selected six tree species, Pinus massoniana Lamb., Cryptomeria fortunei Hooibr. ex Otto et Dietr., Cunninghamia lanceolata (Lamb.) Hook., Liquidambar formosana Hance, Pinus armandii Franch. and Castanopsis chinensis Hance, which are widely distributed as dominant species in the forest of southern China where acid deposition is becoming more and more serious in recent years. We investigated the effects and potential interactions between simulated acid rain (SiAR) and three calcium (Ca) levels on seed germination, radicle length, seedling growth, chlorophyll content, photosynthesis and Ca content in leaves of these six species. We found that the six species showed different responses to SiAR and different Ca levels. Pinus armandii and C. chinensis were very tolerant to SiAR, whereas the others were more sensitive. The results of significant SiAR?×?Ca interactions on different physiological parameters of the six species demonstrate that additional Ca had a dramatic rescue effect on the seed germination and seedling growth for the sensitive species under SiAR. Altogether, we conclude that the negative effects of SiAR on seed germination, seedling growth and photosynthesis of the four sensitive species could be ameliorated by Ca addition. In contrast, the physiological processes of the two tolerant species were much less affected by both SiAR and Ca treatments. This conclusion implies that the degree of forest decline caused by long-term acid deposition may be attributed not only to the sensitivity of tree species to acid deposition, but also to the Ca level in the soil. 相似文献
14.
Canopy dynamics and aboveground production of five tree species with different leaf longevities 总被引:1,自引:0,他引:1
Canopy dynamics and aboveground net primary production (ANPP) were studied in replicated monospecific and dual-species plantations comprised of species with different leaf longevities. In the monospecific plantations, leaf longevity averaged 5, 6, 36, 46 and 66 months for Quercus rubra L., Larix decidua Miller, Pinus strobus L., Pinus resinosa Ait. and Picea abies (L.) Karst., respectively. Specific leaf area, maximum net photosynthesis per unit mass (A/mass), leaf N per unit mass (N(leaf)/mass) and maximum net photosynthesis on a leaf N basis (A/N(leaf)) were inversely correlated to leaf longevity (r(2) = 0.92-0.97, 0.91, 0.88 and 0.80, respectively). Maximum net photosynthesis per unit area (A/area) was not correlated to leaf longevity, whereas leaf N per unit area (N(leaf)/area) was positively correlated to leaf longevity (r(2) = 0.95). For a similar-diameter conifer, species with long-lived foliage supported a greater foliage mass than species with short-lived foliage; however, Quercus rubra did not follow this pattern. At the stand level, total foliage mass ranged from 3.3 to 30.5 Mg ha(-1) and was positively correlated (r(2) = 0.97) to leaf longevity. Leaf area index (LAI) was also positively correlated (r(2) = 0.82) to leaf longevity. Production efficiency (ANPP/LAI) was inversely related to leaf longevity and positively related to A/mass. Aboveground biomass and net primary production differed significantly (P < 0.05) among the five species but were not correlated to leaf longevity, total foliage mass or leaf area. In monospecific plantations, stem NPP for Larix decidua was 17% greater than for Pinus strobus and 14% less than for Picea abies, but in mixed-species plantations stem NPP for Larix decidua was 62 and 85% greater than for Pinus strobus and Picea abies, respectively. Similar aboveground net primary production rates can be attained by tree species with different leaf longevities because of trade-offs resulting from different structural and physiological leaf and canopy characteristics that are correlated to each other and to leaf longevity. 相似文献
15.
Testing techniques to reduce weed infestation is a crucial step in developing direct tree seeding systems. The use of pre-emergence herbicides may be an alternative to manual weeding techniques, but so far, information on how they affect the seeds of native tree species is scarce. We established a greenhouse experiment to evaluate the effects of four pre-emergence herbicides (atrazine, diuron, isoxaflutole and oxyfluorfen) on weed suppression and seedling emergence and early growth of seven tropical forest tree species (Annona coriacea Mart., Citharexylum myrianthum Cham., Cordia ecalyculata Vell., Peltophorum dubium (Spreng.) Taub., Psidium guajava L., Pterogyne nitens Tul. and Schinus terebinthifolia Raddi). The experimental design was a randomized complete block design with five treatments and five replicates. The treatments consisted of a single dose of each pre-emergence herbicide and a control. Throughout the 60 days after sowing we evaluated weed cover and seedling emergence and early growth of tree species. Overall, our results suggest that all tested herbicides reduced weed cover; however, they also negatively affected tree species seedling emergence. Of the four herbicides tested, atrazine and diuron showed the greatest effects on tree seedling emergence, oxyfluorfen was least aggressive towards native species and isoxaflutole was most effective in weed control. Native tree species varied in their responses to herbicides, indicating that future experiments should increase the number of species tested as well as investigate how seed traits can affect the species responses to different herbicides. 相似文献
16.
The effects of tree species on the dynamics of nutrient transformations during leaf-litter decomposition are not well understood
in tropical rain forests. To examine differences in the dynamics of C, nutrients, and organic constituents during decomposition
among tree species, the leaf-litter decomposition of 15 trees was assessed using a litter-bag method in a lowland tropical
rain forest in Sarawak. The dynamics of C was parallel to that of weight loss. The dynamics of nutrients were grouped into
three patterns. The dynamics of K was characterized by a high leaching loss in the initial stages, and that of Ca and Mg generally
showed a gradual decrease over the course of decomposition. The dynamics of N and P showed highly different patterns with
the weight loss, and was characterized by relatively higher remaining mass at the end of the experiment. The variations or
exceptions of nutrient dynamics among tree species were considered to be related to the initial concentration of each nutrient.
For the dynamics of organic constituents, water-soluble carbohydrates disappeared quickly at the initial stages, and acid-soluble
carbohydrates were the second fastest decomposing fraction; the decomposition of acid-insoluble residue (AIS) was the slowest.
The release of limiting nutrients (N and P) generally followed the disappearance of AIS, but was independent of the disappearance
of AIS when the initial concentrations of these nutrients were very low. 相似文献
17.
Dryobalanops aromatica Gaertn. f. is a major tropical canopy species in lowland tropical rain forests in Peninsular Malaysia. Diurnal changes in net photosynthetic rate (A) and stomatal conductance to water vapor (g(s)) were measured in fully expanded young and old leaves in the uppermost canopy (35 m above ground). Maximum A was 12 and 10 micro mol m(-2) s(-1) in young and old leaves, respectively; however, because of large variation in A among leaves, mean maximum A in young and old leaves was only 6.6 and 5.5 micro mol m(-2) s(-1), respectively. Both g(s) and A declined in young leaves when T(leaf) exceeded 34 degrees C and leaf-to-air vapor pressure deficit (DeltaW) exceeded 0.025, whereas in old leaves, g(s) and A did not start to decline until T(leaf) and DeltaW exceeded 36 degrees C and 0.035, respectively. Under saturating light conditions, A was linearly related to g(s). The coefficient of variation (CV) for the difference between the CO(2) concentrations of ambient air and the leaf intercellular air space (C(a) - C(i)) was smaller than the CV for A or g(s), suggesting that maximum g(s) was mainly controlled by mesophyll assimilation (A/C(i)). Minimum C(i)/C(a) ratios were relatively high (0.72-0.73), indicating a small drought-induced stomatal limitation to A and non-conservative water use in the uppermost canopy leaves. 相似文献
18.
We hypothesized that photosynthesis and growth of tropical vegetation at its most northern distribution in Asia (Xishuangbanna, SW China) is adversely affected by seasonal drought and chilling temperatures. To test this hypothesis, we measured photosynthetic and growth characteristics of Zizyphus attopensis Pierre seedlings grown in three contrasting forest microhabitats: the understory, a small gap and a large gap. Photosynthetic capacity (light-saturated photosynthetic rate (A(max)), maximum rate of carboxylation and electron transport rate) and partitioning of leaf nitrogen (N) into carboxylation and electron transport differed significantly among seasons and microhabitats. Specific leaf area (SLA) did not change seasonally, but differed significantly among microhabitats and showed a negative linear relationship with daily integrated photon flux (PPF(i)). In contrast, leaf N concentration per unit area (N(a)) changed seasonally but did not differ among microhabitats. Measurements of maximum PSII photochemical efficiency (F(v)/F(m)) indicated that chronic photoinhibition did not occur in seedlings in any of the microhabitats during the study. Photosynthetic capacity was greatest in the wet season and lowest in the cool season. During the cool and dry seasons, the reduction in A(max) was greater in seedlings grown in the large gap than in in the understory and the small gap. Close logarithmic relationships were detected between PPF(i), leaf N(a) and photosynthetic capacity. Stem mass ratio decreased, and root mass ratio increased, in the dry season. We conclude that seasonal acclimation in growth and photosynthesis of the seedlings was associated with changes in biochemical features (particularly N(a) and partitioning of total leaf N between the different photosynthetic pools) and biomass allocation, rather than with changes in leaf morphological features (such as SLA). Local irradiance is the main factor driving seasonal variations in growth and photosynthesis in the study area, where the presence of heavy fog during the cool and dry seasons limits irradiance, but supplies water to the soil surface layers. 相似文献
19.
David Kenfack George B Chuyong Richard Condit Sabrina E Russo Duncan W Thomas 《中国林学(英文版)》2014,(4):201-213
Background: Many tree species in tropical forests have distributions tracking local ridge-slope-valley topography. Previous work in a 50-ha plot in Korup National Park, Cameroon, demonstrated that 272 species, or 63% of those tested, were significantly associated with topography. Methods: We used two censuses of 329,000 trees ≥1 cm dbh to examine demographic variation at this site that would account for those observed habitat preferences. We tested two predictions. First, within a given topographic habitat, species specializing on that habitat ('residents') should outperform species that are specialists of other habitats ('foreigners'). Second, across different topographic habitats, species should perform best in the habitat on which they specialize ('home') compared to other habitats ('away'). Species' performance was estimated using growth and mortality rates. Results: In hierarchical models with species identity as a random effect, we found no evidence of a demographic advantage to resident species. Indeed, growth rates were most often higher for foreign species. Similarly, comparisons of species on their home vs. away habitats revealed no sign of a performance advantage on the home habitat. Conclusions" We reject the hypothesis that species distributions along a ridge-valley catena at Korup are caused by species differences in trees _〉1 cm dbh. Since there must be a demographic cause for habitat specialization, we offer three alternatives. First, the demographic advantage specialists have at home occurs at the reproductive or seedling stage, in sizes smaller than we census in the forest plot. Second, species may have higher performance on their preferred habitat when density is low, but when population builds up, there are negative density-dependent feedbacks that reduce performance. Third, demographic filtering may be produced by extreme environmental conditions that we did not observe during the census interval. 相似文献
20.
We studied variations in water relations and drought response in five Himalayan tree species (Schima wallichii (DC.) Korth. (chilaune) and Castanopsis indica (Roxb.) Miq. (dhale katus) at an elevation of 1400 m, Quercus lanata Smith (banjh) and Rhododendron arboreum Smith (lali gurans) at 2020 m, and Quercus semecarpifolia Smith (khasru) at 2130 m) at Phulchowki Hill, Kathmandu, Nepal. Soil water potential at 15 (Psi(s15)) and 30 cm (Psi(s30)) depths, tree water potential at predawn (Psi(pd)) and midday (Psi(md)), and leaf conductance during the morning (g(wAM)) and afternoon (g(wPM)) were observed from December 1998 to April 2001, except during the monsoon months. There was significant variation among sites, species and months in Psi(pd), Psi(md), g(wAM) and g(wPM), and among months for all species for Psi(s15). Mean Psi(pd) and Psi(md) were lowest in Q. semecarpifolia (-0.40 and -1.18 MPa, respectively) and highest in S. wallichii (-0.20 and -0.63 MPa, respectively). The minimum Psi value for all species (-0.70 to -1.79 MPa) was observed in March 1999, after 4 months of unusually low rainfall. Some patterns of Psi(pd) were related to phenology and leaf damage. During leafing, Psi(pd) often increased. Mean g(wAM) and g(wPM) were highest in Q. semecarpifolia (172 and 190 mmol m(-2) s(-1), respectively) and lowest in C. indica (78 and 74 mmol m(-2) s(-1), respectively). Soil water potential (Psi) at 15 cm depth correlated with plant Psi in all species, but rarely with g(wAM) and not with g(wPM). Plant Psi declined with increasing elevation, whereas g(w) increased. As Psi(pd) declined, so did maximal g(w), but overall, g(w) was correlated with Psi(pd) only for R. arboreum. Schima wallichii maintained high Psi, with low stomatal conductance, as did Castanopsis indica, except that C. indica had low Psi during dry months. Rhododendron arboreum maintained high Psi(pd) and g(w), despite low soil Psi. Quercus lanata had low g(w) and low Psi(pd) in some months, but showed no correlation between tree Psi and g(w). Quercus semecarpifolia, which grows at the highest elevation, had low soil and plant Psi and high g(w). 相似文献