首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
To date, most studies about mercury (Hg) methylation and bioaccumulation have focused on aquatic ecosystems. In contrast, information regarding the biogeochemical cycle of Hg in terrestrial ecosystems is scarce. Considering the relevance of earthworms in soils, it is very important to study their role in the bioaccumulation and transformation of Hg species (inorganic Hg, IHg, and monomethylmercury, MeHg). The aim of this experimental study was to compare the uptake and bioaccumulation of MeHg and IHg in the earthworm Lumbricus terrestris exposed to soils freshly spiked with inorganic Hg as well as historically contaminated soils. The study consisted of a 28-day uptake phase in Hg (spiked and natural) contaminated and non-contaminated soils followed by a 14-day depuration phase in non-contaminated soils. Soils were characterized by determining not only Hg concentrations (total Hg, MeHg and acid-labile Hg) but also analysed for other physicochemical parameters that can influence the fate of Hg within the earthworm–soil system. Mercury species were determined in earthworms (whole organism) exposed to Hg contaminated and non-contaminated soils. Mercury availability in soils seems to be the main factor controlling the uptake and bioaccumulation of Hg species because, according to kinetic data, the spiked IHg was more readily assimilated and methylated by earthworms. Bioaccumulation factors (BAFs) for MeHg and total Hg were also higher in spiked than in naturally Hg-contaminated soils. In addition, BAFs for MeHg (ranging from 0.8 to 17.3) were higher than those for total Hg (between 0.02 and 0.62) which suggests that MeHg was more easily bioaccumulated by this earthworm species and also that earthworms may actively contribute to MeHg production in soils.  相似文献   

2.
In alpine areas, shifts in traditional grazing activities are globally affecting ecosystem properties and rural livelihoods. The ongoing decrease in extensive husbandry, with a decline in sheep numbers and a relative increase in cattle stocking rates, has resulted in the abandonment of large alpine grazing areas. This pastoral change has been recently associated with increased disturbances of wild boar (Sus scrofa), mainly within cattle-stocked ranges. In turn, cattle areas favor earthworm communities, a preferred trophic resource for wild boars in mountain environments. However, it is unknown whether wild boar disturbances, together with grazing activities, can affect earthworm communities. Our aim is to analyze the abundance, richness and ecological categories of earthworms and soil parameters (soil C and N concentrations, moisture, and C:N ratio) in relation to the occurrence of wild boar disturbances and grazing activities at different stocking pressures. We sampled two different grazing scenarios differing in the distribution of cattle along a grazing gradient, which was represented by three levels of stocking pressure (high, intermediate and low). Our results showed a complex effect of grazing activities and disturbances on the abundance and richness of earthworms, along with variations in C:N ratio and soil moisture, especially with increasing cattle presence. At high-stocking pressures differences in earthworm abundance and richness between disturbed and undisturbed areas were limited, whereas at intermediate-stocking pressures earthworms were favored by wild boar disturbances. Ecological categories of earthworms responded differently; endogeic species were the most affected by grazing pressures and wild boar rooting, with highest occurrence at high-stocking pressures and within boar disturbed areas. In sum, pastoral use and soil disturbances affected earthworm community structure and composition in complex ways. These results indicate an interaction of processes that is relevant to understand current changes in alpine ecosystems.  相似文献   

3.
Earthworms may take up chemicals from soil and pore water, both through their skin (dermal) and by ingestion (oral). It remains unclear, however, what the relative importance of these pathways is. To assess bioavailability of pollutants in soil to earthworms, it is necessary that the contribution of each pathway is known. Lumbricus rubellus were sealed by means of medical histoacryl glue, to block ingestion of soil particles and pore water. For 6 d, these earthworms showed good survival and vitality and no soil ingestion was found. Equal metal uptake was found by sealed and unsealed earthworms exposed to an inert sand matrix continuously flushed with contaminated water. Therefore, pore water uptake via ingestion contributes little to metal accumulation. Uptake rates of Cd, Cu and Pb in sealed and unsealed earthworms exposed to two contaminated field soils were similar. Uptake and elimination kinetics of Zn were significantly lower in sealed earthworms exposed to one of the two field soils. Body concentrations of Cu and Pb could be completely attributed to the dermal route. For internal Cd and Zn concentrations, however, 0-17 and 21-30%, respectively, were derived from ingestion. It is concluded that for metals the dermal route is the uptake route of importance. The sealing method described here may be useful in a variety of earthworm nutrition and contamination-effect studies.  相似文献   

4.
Background, Aims and Scope  Endpoints in earthworm ecotoxicology scheduled in guidelines are mortality and reproduction rates. However, not only the direct influence of pollutants on population parameters but also changes in behaviour such as substrate avoidance can have an important impact on soil ecosystems. In practice two different avoidance response tests are applied in earthworm ecotoxicology: (i) a six-chamber test system and (ii) a two-chamber test system. Both avoidance response-test systems were compared to establish their respective advantages and disadvantages in order to advance the standardisation of behavioural tests. The earthworm avoidance-response tests were applied in addition to the standard acute and chronic earthworm toxicity tests (ISO 11268) in order to compare the sensitivity of the test endpoints. Methods  Test substrates were contaminated with crude oil and 2,4,6-Trinitrotoluene (TNT), respectively. The test species wasEisenia fetida. The earthworms were exposed to the contaminated substrates and their mortality (14 d), reproduction rates (number of cocoons after 28 d, juvenile hatching after 56 d), and substrate preference (48 h) determined. Results and Discussion  Whereas 1000 mg/kg TPH (Total Petroleum Hydrocarbons) did not show any lethal effects, 100% mortality occurred in soil with comparable TNT concentration. The acute tests consistently produced the highest effect concentrations whereas reproduction and substrate avoidance were the more sensitive test parameters. Both behavioural test systems, when compared, showed similar substrate avoidance after an incubation time of 48 h. The six-chamber test system provides the potential to test six different substrates/concentrations at one time. It was observed, however, that earthworms did not migrate among all test chambers within a test unit in order to select the most appropriate substrate. Orientation was observed only between directly neighbouring test compartments, which complicates the interpretation of the test results. Conclusion  Substrate avoidance and reproduction variables were clearly more sensitive test endpoints than mortality. Therefore avoidance-response tests proved to be useful test methods in detecting effects of sublethal concentrations of pollutants on earthworms. The test duration of the avoidance tests is much shorter compared to the standard acute and chronic earthworm toxicity tests, which makes them a quick screening tool for identifying potential soil toxicity. Both avoidance-response test systems showed comparable results regarding the test sensitivity. Nonetheless, the incomplete substrate use in the six-chamber avoidance test due to the reduced migration possibilities (orientation only to neighbouring chambers) might reduce the distinctness of test results as it allows only reliable information on the most avoided and therefore most toxic substrate but not on 1 a clear dose-response pattern. Thus, to gain valid results, the number of replicates and the arrangement of the different substrates must be adopted. The two-chamber test system is less time-consuming due to easy handling and test results can be quantified more easily. Recommendations and Outlook  In consequence of the better validity of test results, lower expenses for test containers and less time for handling, the use of the two-chamber system is preferred over the six-chamber test system to assess the toxicity of polluted soil. Because of the ecosystem consequences of behavioural effects and the fact that avoidance response tests can reveal the toxic potential of pollutants in low concentrations, such tests should be included into ecotoxicological test protocols.  相似文献   

5.
Lead (Pb) is recorded as the second most hazardous pollutant of the environment. Previous cases of Pb bioremediation has been reported using single biosystem, but very few reports are available in biological approaches using multi-biosystems to achieve an enhanced bioremoval of Pb. The present study evaluated the capacity of a unique association of Pennisetum purpureum, a hyperaccumulator plant, and Lumbricus terrestris (earthworm) bioaugmented with a Pb-resistant bacterium, obtained from an industrially contaminated site and identified as isolate VITMVCJ1 Klebsiella variicola, to bioremediate Pb. The Pb-resistant gene was amplified in the bacterial isolate VITMVCJ1. The study was conducted for 60 d. Results verified that the bioaugmentation process enhanced 1) root and shoot length of the plants, 2) chlorophyll content of the plants, and 3) biofilm-producing ability of the microbes from the rhizosphere region of the plants. The total phenolic and flavonoid contents were found to be lower in the plants in the bioaugmented setup. The study also observed a reduction in the toxic effects of Pb on earthworm and plant. The earthworm was used to assess the Pb-induced stress syndrome after exposure to sublethal concentrations of Pb in the soil. A reduction in the content of malondialdehyde, a potential biomarker, on exposure to Pb demonstrated the role of the inoculum to alleviate heavy metal-induced stress in earthworms. All three symbionts accumulated Pb; Pb was accumulated mainly in the root of the plant, and poorly in the shoot of the plant and body mass of the earthworm. The bioaugmentation system exhibited stable and excellent uptake of Pb from the contaminated soils. The results of the present study suggest the positive effect of the synergistic association of the plant and earthworm with appropriate microbes for the bioremoval of Pb.  相似文献   

6.
Goal, Scope and Background   In a preliminary ecological risk assessment, potential adverse effects of contaminants are often evaluated by measuring chemical residues and comparing these with regulatory guidelines. However limitations with this approach with regards to establishing actual effects have resulted in the increasing usage of sublethal effects-based assays, including biomarkers, to evaluate the hazard posed by contaminants in the environment. In this study a number of effects-based endpoints in the earthworm Aporrectodea caliginosa were evaluated to determine their comparative sensitivity for assessment of adverse effects of soil contaminated with petroleum hydrocarbons. Methods   Adult and juvenile earthworms were exposed for 4 weeks to sublethal concentrations of soil collected before and after remediation of a petroleum-contaminated site. A suite of endpoints were measured in these earthworms, including mortality, fecundity, growth, and juvenile maturation, and two less traditional endpoints, the biomarker, the neutral red retention assay (NRRA) and an avoidance behaviour test. Results and Discussion   Cocoon viability in this species is not a reliable parameter to measure, due to low viability in controls and a high coefficient of variation. Growth in adult earthworms was a more sensitive parameter than cocoon production. Maturation and growth of juveniles have been proposed as more sensitive endpoints than adult cocoon production and growth respectively. This was not apparent in the growth parameters, but maturation of juveniles did appear to be more sensitive than cocoon production by adults. The NRRA was a more sensitive parameter than cocoon production, and the NRRA and growth were both affected at the lowest concentration tested. The NRRA response appeared to be more sensitive than growth, but NRRT was only evaluated in one soil only, while the other parameters were assessed in two soils. However, the NRRA has previously been found to be more sensitive than growth after exposure to a number of contaminants. The avoidance behaviour assay exhibited similar sensitivity to growth and fecundity and could therefore be useful as a simple pre-screening test. Conclusion   The chronic endpoints, growth, cocoon production, and juvenile maturation parameters, were all sensitive endpoints for detecting exposure to the petroleum-hydrocarbon-contaminated soil. The NRRA was the most sensitive of the endpoints assessed and could be used as an early-warning indicator to predict adverse impacts. Avoidance behaviour could be used as a simple pre-screening test to evaluate contaminated soils prior to more extensive and invasive testing. Recommendations and Perspective   Measuring chemical concentrations in environmental samples is not always useful, as the toxicological impacts of exposure to these concentrations are not always discernible. However, the use of effects-based endpoints, either in situ or in the laboratory using laboratory-reared earthworms, can account for the bioavailability of chemicals in the soil, and can therefore provide information on the toxicological impacts of exposure. The assays tested in this research were sensitive indicators of exposure, and therefore can be used to determine potential ecological risks at contaminated sites and to monitor the progress of remediation at these sites.  相似文献   

7.
Earthworms play an important role in the functioning of many terrestrial ecosystems, and while their importance is frequently acknowledged significant challenges still remain in determining their operant roles within the soil. This lack of knowledge becomes increasingly important as the spatial scale of analysis increases from individuals to populations within the landscape. To effectively develop understanding, research techniques must be able to determine the effects that earthworms have on the soil system, as well as to establish how many and which species are present. A range of techniques are required to facilitate meaningful analysis from the micro-scale within a soil profile (e.g. drilosphere effects) to a field scale or landscape scale. Furthermore, an additional framework of understanding is required to investigate the role of earthworms in the biogeochemical cycles.By critically evaluating recent advances in methods and data analysis techniques in three areas of earthworm research we highlight that combinations of common approaches often offer the most significant insights into the functional roles of earthworms within a soil system. Through particular reference to earthworm sampling and identification, biochemical functions and persistent pollutant ecotoxicology of temperate ecosystems we emphasise how a range of investigation methods can be a hindrance to developing a whole-system level understanding. The complex and diverse nature of soil systems means that a traditional compartmentalised approach studying single species using a single research technique is no longer sufficient to gain further insights into the earthworm contribution to ecosystem goods and services delivered at the whole landscape scale. The integration of technologically advanced methods in combination with systems based modelling will be critical to develop landscape scale understanding of the functions of earthworms as individuals and as populations within in their ecosystems.  相似文献   

8.
采用人工土壤法测定了不同浓度莫能菌素对蚯蚓的急性毒性和对蚯蚓生长、生存、繁殖以及超氧化物歧化酶(SOD)、谷胱甘肽-硫转移酶(GSH-S)、腺三磷酸酶(ATPase)、乙酰胆碱酯酶(T-CHE)活性的影响。结果表明,莫能菌素对蚯蚓14d的LC50为75.883mg·kg-1;当莫能菌素含量达到50mg·kg-1时显著影响蚯蚓的生存(P〈0.05),死亡率达到20%;当莫能菌素含量达到25mg·kg-1时显著影响蚯蚓的生长(P〈0.05);药物的染毒浓度与对蚯蚓生存和繁殖的抑制存在明显的剂量-效应关系。染毒21d后,低浓度的兽药莫能菌素就能显著影响蚯蚓体内SOD、GSH-S、ATPase、T-CHE的活性,药物浓度和酶活性间具有明显的剂量-效应关系。莫能菌素对土壤动物蚯蚓显示有毒性作用,对土壤环境具有潜在的生态风险。  相似文献   

9.
Ralf Kautenburger   《Pedobiologia》2006,50(3):257-266
Earthworms are being used as bio-indicators to assess terrestrial pollution. However, it is often not known whether their populations possess a uniform genetic structure, which would allow comparison of residues or biological properties of earthworms from different sampling locations. In order to investigate this point, random amplified polymorphic DNA (RAPD) variation was surveyed in earthworms (Lumbricus terrestris) from five different sampling sites in Germany. Forty oligonucleotide RAPD primers (10 base pairs in length) were screened, three of which produced high polymorphic band patterns. A total of 61 DNA fragments were detected in 90 individuals of L. terrestris from five sampling sites with 49 (80.3%) RAPD markers being polymorphic. The genetic similarities within (band sharing rates between 0.756 and 0.795) and among the L. terrestris populations (0.635) were similar even at widely separate locations. Inter-population variation in the RAPD pattern for all five earthworm populations accounted for 37.9% of the total variation, while intra-population variation for three adjacent Saarland populations accounted for only 18.0% of the total variation. Principal component analysis (PCA) and the genetic distances of the populations confirm these results. Twenty-four percent of the genetic distance is caused by geographical isolation as shown by a test for isolation by distance. These results show that L. terrestris fulfils the genetic qualifications for a bio-indicator particularly at closely located sampling sites. However, the results also suggest that earthworm studies of widely separated locations should include genetic characterisation of the earthworm samples.  相似文献   

10.
【目的】蚯蚓和丛枝菌根真菌处于不同的营养级,但在促进植物生长和提高土壤肥力等方面却都发挥着积极作用。单独对土壤微生物或土壤动物的研究较多,但对土壤微生物与土壤动物之间相互作用的研究很少。因此研究它们对土壤和植物生长的作用可为挖掘土壤生物的潜力和提高土壤生物肥力提供依据。【方法】采用盆栽试验,研究了蚯蚓(Eisenia fetida)与丛枝菌根真菌(Rhizophagus irregularis)互作对甘薯生长和养分吸收的影响。试验采用两因素完全随机试验设计,分为接种和不接种菌根真菌及添加和不添加蚯蚓。试验共4个处理: 不加菌根和蚯蚓(CK); 接种菌根真菌(AM); 添加蚯蚓(E); 添加蚯蚓和菌根真菌(E+AM),每个处理4次重复。调查了甘薯养分吸收、 根系形态及土壤养分变化,采用Canoco4.5软件对土壤生物与植物对应关系进行RDA (redundancy analysis)分析。【结果】接种菌根真菌显著提高了甘薯地上和地下部生物量(P0.05),而添加蚯蚓的处理仅提高了甘薯地上部生物量。同时添加蚯蚓和菌根的处理显著提高了甘薯地上地下部生物量,并且高于其他三个处理(P0.05)。与对照相比,接种菌根真菌显著提高了土壤磷酸酶活性(P0.01),增幅近一倍; 同时提高了土壤磷的植物有效性,土壤有效磷含量下降了30%左右。添加蚯蚓后土壤脲酶活性从5.45 mg NH+4-N/g显著增加到8.71 mg NH+4-N/g,土壤碱解氮的含量从5.82 mg/kg显著增加到6.89 mg/kg (P0.05)。RDA分析表明蚯蚓菌根互作对甘薯地上和地下部氮磷含量、 根表面积、 根体积、 根平均直径和根尖数均存在显著的正交互效应。蚯蚓菌根互作通过调控土壤酶和改变土壤养分有效性促进甘薯对土壤氮磷养分的吸收。【结论】蚯蚓(Eisenia fetida)通过调控土壤脲酶和碱性磷酸酶增加了土壤中氮磷的有效性从而促进甘薯地上部生长。丛枝菌根真菌(Rhizophagus irregularis)通过调控土壤磷酸酶和增加植株地上地下部吸磷量从而促进甘薯生长。添加蚯蚓或接种菌根真菌均能增加根系吸收面积和根体积从而促进甘薯对养分的吸收。蚯蚓和菌根真菌相互作用通过调控土壤酶和改变土壤养分有效性以及促进根系发育从而互补的促进甘薯养分吸收和生长。  相似文献   

11.
Background. Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity. Objective  The objectives of this research were to: i) develop LD50s (total earthworm metal concentration associated with 50% mortality) for Cd, Pb, and Zn; ii) evaluate the LD50 for Zn in a lethal Zn-smelter soil; iii) evaluate the lethal mixture toxicity of Cd, Pb, and Zn using earthworm metal concentrations and the toxic unit (TU) approach; and iv) evaluate total and fractionated earthworm concentrations as indicators of sublethal exposure. Methods  Earthworms (Eisenia fetida (Savigny)) were exposed to artificial soils spiked with Cd, Pb, Zn, and a Cd-Pb-Zn equitoxic mixture to estimate lethal CBRs and mixture toxicity. To evaluate the CBR developed for Zn, earthworms were also exposed to Zn-contaminated field soils receiving three different remediation treatments. Earthworm metal concentrations were measured using a procedure devised to isolate toxicologically active metal burdens via separation into cytosolic and pellet fractions. Results and Discussion  Lethal CBRs inducing 50% mortality (LD50, 95% CI) were calculated to be 5.72 (3.54-7.31), 3.33 (2.97-3.69), and 8.19 (4.78-11.6) mmol/kg for Cd, Pb, and Zn, respectively. Zn concentrations of dead earthworms exposed to a lethal remediated Zn-smelter soil were 3-fold above the LD50 for Zn and comparable to earthworm concentrations in lethal Zn-spiked artificial soils, despite a 14-fold difference in total soil Zn concentration between lethal field and artificial soils. An evaluation of the acute mixture toxicity of Cd, Pb, and Zn in artificial soils using the Toxic Unit (TU) approach revealed an LD50 (95% CI) of 0.99 (0.57-1.41) TU, indicating additive toxicity. Conclusions  Total Cd, Pb, and Zn concentrations in earthworms were good indicators of lethal metal exposure, and enabled the calculation at LD50s for lethality. The Zn-LD50 developed in artificial soil was applicable to earthworms exposed to remediated Zn-smelter soil, despite a 14-fold difference in total soil Zn concentrations. Mixture toxicity evaluated using LD50s from each single metal test indicated additive mixture toxicity among Cd, Pb, and Zn. Fractionation of earth worm tissues into cytosolic and pellet digests yielded mixed results for detecting differences in exposure at the sublethal level Recommendation and Outlook  CBRs are useful in describing acute Cd, Pb, and Zn toxicity in earthworms, but linking sublethal exposure to total and/or fractionated residues may be more difficult. More research on detoxification, regulation, and tissue and subcellular partitioning of heavy metals in earthworms and other invertebrates is needed to establish the link between body residue and sublethal exposure and toxicity. Keywords: Bioavailability; Cd; critical body residues; earthworms; metals; Pb; soil; Zn An erratum to this article is available at .  相似文献   

12.
苗桓  许加明  虞悦  卜元卿  王艮梅  周蓉 《土壤》2023,55(6):1316-1322
通过研究三种不同森林土壤中蚯蚓对莠去津暴露的响应,为莠去津在林业上的科学使用和保护生态环境提供科学依据。采用室内实验的方法研究三种不同类型的森林土壤中莠去津对蚯蚓的影响,以40、80、160、320、480 mg/kg作为暴露浓度,暴露后于第0天,第7天,第14天,第21天,第28天,第35天分别测定土壤中蚯蚓鲜重和死亡率,于第0天和第35天测定土壤中蚯蚓体宽。结果表明,三种森林土壤中莠去津暴露浓度越高,暴露时间越长,对蚯蚓致死效应越强,对蚯蚓鲜重和体宽的抑制效应也越强,呈明显的时间-效应关系和剂量-效应关系。暴露浓度相同时,三种土壤中莠去津对蚯蚓死亡率、鲜重和体重的影响均表现为黄棕壤>雏形土>石灰土。莠去津对蚯蚓的毒性效应与土壤中有机质的含量之间具有明显负相关性,与全磷和有效磷的含量之间具有明显正相关性。研究结果揭示不同类型土壤中莠去津对蚯蚓的毒性作用具有明显差异,且与土壤的肥力具有显著相关性,其可为评估莠去津在农林业上使用的环境风险提供基础参考数据。  相似文献   

13.
As, Cd, Cu, Pb, Sb and Zn concentrations were determined in two earthworm species (Allolobophora rosea and Nicodrilus caliginosus) from a mining and industrial area in northern Kosovo and compared with their contents in the bulk soil and the main soil fractions. Earthworm specimens were collected at fifteen sites located at different distances from a Pb–Zn smelter along a gradient of decreasing contamination. Individuals of A. rosea and N. caliginosus showed similar tissue levels of As, Cd, Cu, Pb, Sb and Zn, suggesting that earthworm species belonging to the same eco-physiological group have a similar propensity to uptake and bioaccumulate heavy elements. Cd, Pb, Sb and Zn concentrations in both earthworm species were positively correlated with the respective total soil contents and generally decreased with distance from the smelter. The bioaccumulation factor (BAF) revealed that Cd and Zn were the only elements bioaccumulated by earthworms. The rank order of BAF values for both species was as follows: Cd > > Zn > > Cu > As = Pb = Sb. The absorption of Cd, Pb, Sb and Zn by earthworms mostly depended on the extractable, reducible and oxidable soil fractions, suggesting that the intestine is likely the most important uptake route. The extractable soil fraction constantly influenced the uptake of these heavy elements, whereas the reducible fraction was important mainly for Pb and Zn. The water soluble fraction had an important role especially for the most mobile heavy elements such as Cd and Zn, suggesting that dermal uptake is not negligible. As a whole, the analytical data indicate that soil fractionation patterns influence the uptake of heavy elements by earthworms, and the extractable fraction is a good predictor of heavy element bioavailability to these invertebrates in soil.  相似文献   

14.
《Applied soil ecology》2007,35(2):302-310
Most of the studies focusing on metal transfer from soil to biota ignore the possible non-trophic influence of an organism on pollutant transfer to other species. We hypothesised that an earthworm (Aporrectodea tuberculata) might modify the bioavailability of metals in soil and thus, their transfer to the snail Helix aspersa. Snails were exposed for 2 weeks to a multicontaminated field soil with or without earthworms, under controlled conditions. When exposed with earthworms, snails had higher concentrations of Cd, Cu and Zn than when they were exposed alone, while no difference was detected for Pb. For Cd only, the difference in snail bioaccumulation corresponded to an increase in its water-soluble fraction. Internal concentrations of metals in earthworms remained similar in the presence or absence of snails. Two non-exclusive possible mechanisms, including variations in bioavailable fractions and/or total accessible pools of metals, are proposed to explain how earthworms could modulate the transfer of metals from soil to snails. This work demonstrated that metal transfer from soil to one invertebrate species was influenced by another invertebrate. We conclude that the concept of intermediary species, usually used to describe interactions among species, should be extended to the interactions between biota and pollutants in non-biotic compartments.  相似文献   

15.
In this paper, the effects of earthworms on the growth and Zn uptake of ryegrass and Indian mustard in artificially Zn-contaminated soils were studied. Earthworm inoculation increased plant shoot biomass by 29–83% for ryegrass and by 11–42% for Indian mustard, respectively, as compared to the treatments without earthworms, while the roots’ biomass of both plants were increased much more than their corresponding shoots. Earthworms also increased shoot Zn concentrations in both ryegrass and Indian mustard, although the increases in ryegrass did not show significant difference. Except for soil without Zn contamination, the Zn contents of both ryegrass and Indian mustard roots were significantly increased by earthworm addition. Generally, Zn contents of roots were relatively higher than those of shoots for both plants, which were independent of earthworms inoculation. Earthworm increased soil bioavailable metal (diethylenetriamine-pentaacetic acid–Zn) (DTPA-Zn) concentrations, which resulted in a direct increase in Zn uptake by the plants, since a significant correlation was observed between the DTPA–Zn contents and plant Zn uptake. However, the main reason for the increase in plant Zn uptake under earthworm inoculation was probably the increase in dry matter production stimulated by earthworms.  相似文献   

16.
蚯蚓对土壤温室气体排放的影响及机制研究进展   总被引:3,自引:1,他引:3  
卢明珠  武海涛  吕宪国  管强 《土壤学报》2015,52(6):1209-1225
土壤是温室气体的重要源和汇。蚯蚓是土壤物质循环的重要参与者,能够直接或间接影响土壤CO2、N2O和CH4等温室气体的产生和释放。蚯蚓呼吸产生的CO2,是土壤呼吸的重要组成部分;蚯蚓自身肠道、分泌液、消化物和排泄物等微环境促进反硝化过程释放N2O。蚯蚓还通过取食、掘穴、排泄等活动,改变土壤理化性质、微生物组成和活性及其他土壤动物的组成,影响地上植物生长,调节土壤分解、矿化、硝化、反硝化和甲烷生成及氧化等生态过程,间接影响土壤温室气体的排放。蚯蚓对土壤温室气体排放的影响逐渐受到重视,但目前研究仍以室内培养和单因子环境条件的模拟为主,缺少野外原位实验和多环境因子的交互实验研究。长期监测和同位素示踪技术,是深入探讨蚯蚓影响温室气体排放机制的重要手段。温室气体类型上,CO2和N2O是研究热点,CH4研究比较罕见。未来研究,应重视不同生态类群蚯蚓与土壤理化特征、微生物组成、其他类群土壤动物和地上植物间的交互作用,加强机制研究,并关注土壤污染环境下蚯蚓功能性状的变化;综合评价蚯蚓对土壤温室气体排放和土壤碳氮固定的影响,科学评估蚯蚓活动对土壤碳氮释放的促进或减缓作用。  相似文献   

17.
The effect of earthworms on the plant availability of phosphorus (P) in superphosphate and Chatham Rise phosphorite (CRP) was evaluated in a glasshouse experiment using perennial ryegrass over seven harvests. A mixed earthworm population of Lumbricus rubellus (Hoff.) and Allolobophora caliginosa (Savigny) was used. Increases in the yield of ryegrass in the presence of earthworms varied from 2 to 32%, whereas increases in P uptake by ryegrass ranged from 0 to 40% over seven harvests. With superphosphate, the initial increases in both ryegrass yield and P uptake by ryegrass in the presence of earthworms ranged from 20 to 40% at first harvest to less than 10% by the seventh. In marked contrast, earthworms increased the agronomic performance of pelletized CRP by 15 to 30% throughout the trial period. An increase in plant-available soil N concentrations due to earthworm activity probably explains the initial difference in the performance of superphosphate. The increased agronomic effectiveness of CRP appears to result from the incorporation and intimate mixing of the PR with the soil by earthworms. The implications of the results obtained in the present study to the interpretation of glasshouse and field trials evaluating P fertilizers are also discussed.  相似文献   

18.
Vermicomposting is an efficient and environmentally friendly technology to dispose of agricultural organic residues. The efficiency of organic residue decomposition during vermicomposting is directly affected by the biomass and population structure of earthworms. In this study, we investigated how the earthworm biomass and population structure responded to changes in the physicochemical properties of six types of organic residue (cattle dung, herbal waste, rice straw, soybean straw, garden waste, and tea residues) during vermicomposting. Each type of organic residues was placed in a pot with earthworms Eisenia fetida, and the physicochemical properties of the organic residues and earthworm growth dynamics were recorded at 0, 30, 60, and 90 d of vermicomposting. The biomass and population structure of earthworms were stable or increased in rice straw, garden waste, and cattle dung within 60 d of vermicomposting, whereas in tea residues and herb waste, very little earthworm activity (3 adults and 2 cocoons) was recorded on day 30. Among the physicochemical parameters, the substrate C/N ratio was negatively correlated with earthworm growth dynamics. Decomposing organic residues showed higher NH4+-N and NH3--N concentrations but a lower total organic carbon content, which negatively affected earthworm growth and reproduction. We recommend that chemical properties of vermicomposting systems should be monitored regularly. At the threshold levels of decomposing organic residue NH4+-N and NH3--N concentrations, earthworms should be removed and the vermicompost can be harvested. Small- and large-scale farmers thus need to monitor the physicochemical properties of vermicompost to sustain active earthworm populations.  相似文献   

19.
Earthworms are the major component of the soil fauna in temperate agro-ecosystems. Land use and soil management are widely reported to influence earthworm populations. We report simple laboratory experiments in which earthworm survival was tested against uniaxial loads for a range of soil conditions. Across all the experimental conditions 86% of earthworms survived. While greater loads (up to 800 kPa) over longer exposure times (up to 60 s) decreased survival; even under the most severe test conditions 33% of earthworms survived. Our results suggest that decreased earthworm populations in compacted soil are not due to uniaxial loading alone, but may be the result of shearing the soil during loading or from changes to the soil properties.  相似文献   

20.
Goal, Scope and Background   With the advent of the Green Revolution, there has been a quantum leap in the use of synthetic herbicides and pesticides throughout the world to sustain high-yielding crop varieties. Continuous use of these synthetic chemicals leads to loss of soil fertility and soil organisms. Histopathological studies may signal a damaging effect of organisms resulting from prior or ongoing exposure to toxic agents. A large number of studies have reported general histological changes in earthworms. A fewer studies have reported more specific types of histopathological studies in Eisenia foetida, Dendrodrilus rubidus, Lumbricus terrestris, Lumbricus rubellus and Octolasium transpandanum. However, no reports are available on Perionyx sansibaricus. The aim of the present study is (i) to determine the sublethal effects of the herbicide Butachlor on Perionyx sansibaricus on growth and cocoon production, (ii) to evaluate the histological changes in the exposed worms.Methods   The test substrate, namely powdered, dried cow dung, was contaminated with 0.0657, 0.1315 and 0.1973 mg kg–1 of Butachlor, and a control was maintained. Four groups of each 10-test species of Perionyx sansibaricus were used per concentration level (control, 0.0657, 0.1315 and 0.1973 mg kg–1). Various life history parameters such as biomass, cocoon production and histological changes were measured.Results   Worm growth was observed at various exposures over 60 days. While exposing the earthworm to the herbicide, no mortality was observed, not even at a higher dose. At the end of the experiment, the control group had a mean biomass of 0.0831±0.00 mg and, in the exposed group, at herbicide concentrations of 0.1973, 0.1315 and 0.0657 mg kg–1, the mean biomass was found to be 0.0497±0.00 mg, 0.0628±0.00 mg and 0.0781±0.00 mg, respectively. The mean earthworm biomass was found to be decreased with increasing herbicide concentration. Similarly, cocoon production was also reduced by the increasing herbicide concentration. All earthworms in the exposed group were found to have glandular cell enlargement and to be vacuolated. Conclusion   The results clearly indicate that Butachlor can retard the growth and cocoon production in Perionyx sansibaricus. The effect of the herbicide Butachlor can be assessed by the histological observation of the intestinal region, as evidenced by glandular cell enlargement at all the exposed concentrations, which may massively affect food intake and which in turn may indirectly inhibit the earthworm reproductive capacity.Recommendation and Outlook   Risk assessment is normally aimed at the protection of human health and the ecosystem, and the interrelationship of these two areas of protection is easy to perceive. The use of earthworms in risk assessment is to obtain more information on environmental quality and ensure environmental safety. There is an urgent need to test the chemicals causing toxicity to earthworms, because earthworms play a major role in soil fertility as well as acting as a transferring route from the soil to the terrestrial ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号