首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Adult earthworms (Aporrectodea longa) were maintained for 199 days in soil columns (h=30 cm; ø=10 cm) where the water potential ranged from -7 to-65 kPa and compaction from 50 to 350 kPa. The weight of casts on the soil surface was measured at the end of two periods of activity (spring and autumn). Cast production increased with bulk density, but the activity of earthworms was limited both by the mechanical strength of the soil and by decreasing water potential. The results obtained in the laboratory conditions of this study were consistent with field observations on casting and burrowing activities. The effects of water potential and soil compaction on these activities were estimated.  相似文献   

2.
The presence of earthworms in relation to clay soil structure problems in arable fields in the Flevopolders (the Netherlands) was studied. Recently, farmers in this area have had difficulty in harvesting potatoes in predominantly wet years. After a dry period, soil particles in the top layer of the potato ridges form a platy structure and are difficult to sieve. Locally, this resulted in many clods, and sometimes harvesting proved impossible. In the field, significantly more earthworms (mainly Aporrectodea caliginosa and A. rosea) were observed in the problem parts than in the non-problem parts. A macrocosm study showed significantly more settlement and soil stickiness and an increasing number of large clods caused by greater numbers of A. caliginosa. The results of this study reveal earthworms to be the main factor affecting the state of the soil and causing the harvesting problems.  相似文献   

3.
The fate of fertilizer sulphur (S) applied as single superphosphate (SSP) to grazed pasture was examined in a field experiment for a period of 18 months using 35S-labelled SSP. Four sites were selected on the basis of contrasting fertilizer history and land slope. The fertilizer histories since 1981 for the sites were 125 (LF) and 375 (HF) kg ha-1 a-1 SSP and the slope gradients were low (LS, 0-12°) and medium (MS, 13–26°). The amount of fertilizer S taken up by pasture as a fraction of total applied was greater at the LF (12%) than the HF (6%) site, suggesting that pasture at the LF site depended more on fertilizer than pasture at the HF site. At the LF site, fertilizer application did not significantly increase leaching losses of S (13 and 8.6 kg S ha-1 for fertilized and unfertilized plots, respectively). At the HF site, fertilizer application significantly increased leaching losses of S (38 and 21 kg S ha-1 for fertilized and unfertilized plots, respectively). The amount of fertilizer S lost by leaching as a fraction of total applied was greater at the HF (20%) than the LF site (7.6%). Most fertilizer S remained as soil organic matter. Plant uptake and leaching losses of fertilizer S were greater in the first year after application. The amount of N lost by leaching was very small in terms of N cycled through soil-plant system (1 to 6 kg N ha-1). The majority (> 80%) of the S and N taken up by pasture and lost by leaching was derived from the mineralization of soil organic matter and not from freshly applied fertilizer.  相似文献   

4.
A soil microcosm experiment was performed to assess (1) the C- and N- turnover of residues from biogas plants in soils in the presence of three earthworm species (Lumbricus terrestris, Aporrectodea longa and Aporrectodea caliginosa) and (2) the resulting changes in soil chemical and microbiological properties when using these residues as fertilizer in comparison to conventional slurry. Earthworms were exposed in soils, fertilized with an equivalent amount of 120 kg of NH4-N ha?1 from: (1) conventional cattle slurry and (2) a fermented residue derived from cattle slurry, grass (silage) and maize. Additional treatments without slurry and earthworms were used as controls.There was considerable evidence that soils fertilized by fermented slurry comprised fewer amounts of readily available nutrients for microbial C and N turnover. We observed significant stimulation of microbial biomass, basal respiration and nitrification in treatments with conventional slurry, especially in the presence of earthworms. However, the stimulation of microbial activity by manure and earthworms were significantly lower in treatments with fermented slurry. Moreover, the results showed clear interactions between different earthworm species and manures. While the biomass of the anecic species (L. terrestris and A. longa) increased in both slurry treatments, the biomass of A. caliginosa (endogeic) decreased, with a significantly stronger biomass decline in treatments with fermented slurry. The metabolic quotients revealed microbial stress metabolism in fermented slurry treatments, predominantly in treatments with A. caliginosa. We conclude that particularly A. caliginosa and soil microorganisms competed for labile C sources in treatments with fermented slurry. An application of these residues as fertilizer might result in a reduction of microbial activity in agricultural soils and in a decline of endogeic earthworms.  相似文献   

5.
Large leaching losses of sulphate contribute to the inefficient use of sulphur (S) fertilizer in some grazed hill country pastures in New Zealand. Laboratory mineralization studies were conducted to measure S, nitrogen (N) and carbon (C) mineralization rates and the potential for S leaching from surface soils of low (LS, 0–12°) and medium (MS, 13–25°) slope positions on hill country pastures. The soils differed in C, N and S contents as a result of different fertilizer histories and the uneven redistribution of nutrients by the grazing animal. Soils were incubated in columns for 140 d and leached periodically with 0.01 M KCl to remove mineralized sulphate, nitrate and ammonium. The net amounts of N and S mineralized were greater in soils on low slopes than medium slopes and in soils from pastures which had received fertilizer continuously, compared with those hill pastures that had not received single superphosphate fertilizer in the previous 7 years. In both cases more mineralization was associated with smaller soil C:nutrient ratios. However, the amounts of C mineralized were greater in soils from medium slopes where C:nutrient ratios were larger. In general, the ratio of N:S mineralized was smaller than the N:S ratio of the soil organic matter, suggesting that N is conserved while S remains in the soil solution susceptible to leaching. It is suggested that the extent of S leaching loss under field conditions will reflect S mineralization potential.  相似文献   

6.
Endogeic and juvenile anecic earthworm abundance was measured in soil samples and anecic populations were studied by counting midden numbers at the sites of two long-term cropping systems trials in South-central Wisconsin. The three grain and three forage systems at each site were designed to reflect a range of Midwestern USA production strategies. The primary objectives of this work were to determine if the abundance of endogeic or anecic earthworms varied among cropping systems or crop phases within a cropping system and were there specific management practices that impacted endogeic or anecic earthworm numbers. The earthworms present in the surface soil were: Aporrectodea tuberculata (Eisen), A. caliginosa (Savigny), A. trapezoides (Dugés); and juvenile Lumbricus terrestris (L.). True endogeic abundance was greatest in rotationally grazed pasture [188 m?2 at Arlington (ARL) and 299 m?2 at Elkhorn (ELK)], and smallest in conventional continuous corn (27 m?2 at ARL and 32 m?2 at ELK). The only type of anecic earthworm found was L. terrestris L. There was an average of 1.2 middens per adult anecic earthworm and the population of anecics was greatest in the no-till cash grain system (28 middens m?2 at ARL, 18 m?2 at ELK) and smallest in the conventional continuous corn system (3 middens m?2 at ARL, 1 m?2 at ELK). Earthworm numbers in individual crop phases within a cropping system were too variable from year-to-year to recommend using a single phase to characterize a whole cropping system. Indices for five management factors (tillage, manure inputs, solid stand, pesticide use, and crop diversity) were examined, and manure use and tillage were the most important impacting earthworm numbers across the range of cropping systems. Manure use was the most important management factor affecting endogeic earthworm numbers; but no-tillage was the most important for the juvenile and adult anecic groups and had a significantly positive influence on endogeic earthworm counts as well. The pesticides used, which were among the most commonly applied pesticides in the Midwestern USA, and increasing crop diversity did not have a significant effect on either the endogeic or anecic earthworm groups in this study. Consequently, designing cropping systems that reduce tillage and include manure with less regard to omitting pesticides or increasing crop diversity should enhance earthworm populations and probably improve sustainability.  相似文献   

7.
Soil erosion assumes a different form in Australia and New Zealand. Sheet, rill and gully erosion are common in eastern Australia and wind erosion in the dry cropland areas. In New Zealand, mass movement dominates the erosion landscape but other kinds, including wind erosion, do occur. It is unclear how much of the mass movement is a natural phenomenon and how much is human-induced. In either case, it causes long-term reductions in soil productivity. A landmark analysis of the soil productivity loss due to land degradation was conducted by the Australian state of New South Wales. Water erosion was a greater problem than wind erosion, but soil structure deterioration was more costly than either kind of erosion.  相似文献   

8.
The question of whether the response of earthworms to soil moisture is governed by their reaction to soil wetness (moisture content) or to soil water energy (matric suction) was examined in two species of earthworm using moisture gradients in three contrasting soil types with clay contents varying from 4 to 39%. Gravimetric moisture gradients ranging over 5–30% were established in horizontal cores comprising 12 or 14 sections containing loosely packed soil. Earthworms were introduced to each section at the beginning of each experiment. The earthworms moved from sections containing dry soil into adjacent sections containing moister soil. Clear effects were evident after 6 h but these became more obvious after 96 h. For the earthworm Aporrectodea rosea, the threshold soil mositure level at which earthworms were induced to move away from dry soil was a matric suction of about 300 kPa (pF 3.4) and was independent of soil type. In contrast, for A. trapezoides, the threshold soil moisture varied with soil type (sandy loam 15 kPa, loam 25 kPa, clay 300 kPa). We conclude that, for the earthworm A. rosea, matric suction and not water content of soil provided the cue by which the earthworm recognized dry soil. For A. trapezoides, there was an interaction between matric suction and soil type in which the response of A. trapezoides to soil moisture varied with soil texture and the threshold for avoidance of dry soil ranged from a matric suction of 300 kPa (20% w/w) in clay to 15 kPa (10% w/w) in sandy loam.  相似文献   

9.
Summary An open incubation technique was used to measure S mineralisation in a range of New Zealand soils. For most of the soils studied, the release of S as sulphate was curvilinear with time, and during a 10-week incubation, the amounts of S mineralised ranged from less than 3 g S g-1 soil to more than 26 g S g-1 soil. The best predictor of mineralised S appeared to be the amount of C-bonded S in the soil (explaining 59% of the variation in mineralised S between soils). Examination of the soils after incubation also revealed that the bulk of the mineralised S was derived from the C-bonded S pool. Hydriodic acid-reducible forms of organic S appeared to make little contribution to mineralised S.Attempts were made to predict total potentially mineralisable S (S o) from incubation data using an exponential equation and a reciprocal-plot technique. However, the dependence of estimated values of S o on the length and temperature of incubation cast doubts on the validity of this approach.  相似文献   

10.
Previous studies have shown that soil fungal biomass increases towards more natural, mature systems. Shifts to a fungal-based soil food web have previously been observed with abandonment of agricultural fields and extensification of agriculture. In a previous field experiment we found increased fungal biomass with reduced N fertilisation. Here, we explore relationships between fungi, bacteria, N input and grassland age on real dairy farms in the Netherlands. We hypothesised that also in pastures that are still in production there is a negative relationship between fungal biomass and fertilisation, and that fungal biomass increases with grassland age in pastures that are still in production. We expected the fungal/bacterial biomass ratio to show the same responses, as this ratio has often been used as an indicator for management changes. We sampled 48 pastures from eight organic dairy farms. Sites differed in age and fertilisation rate. We determined fungal and bacterial biomass, as well as ergosterol (a fungal biomarker). Fungal and bacterial biomass and ergosterol, showed a negative relationship with N application rate, and correlated positively with organic matter percentage. In old pastures, fungal biomass and ergosterol were higher than in younger pastures. Because bacterial biomass responded in the same way as fungal biomass, the F/B ratio remained constant, and can therefore—in our data set—not be used as an indicator for changing management. We conclude that the changes in fungal and bacterial biomass were driven by changes in organic matter quality and quantity. The negative relationship we found between N application rate and fungal biomass adds to earlier work and confirms the presence of this relationship in pastures with relatively small differences in management intensities. Earlier studies on shifts in fungal biomass focused on ex-agricultural fields or restoration projects. Here we show that fungal biomass is also higher in older agricultural pastures.  相似文献   

11.
罗天相  胡锋  李辉信  刘莎 《土壤》2013,45(6):1003-1008
通过田间试验研究了秸秆不同施用方式下接种蚯蚓(威廉腔环蚓,Metaphire guillelmi)对水稻旱作土壤N2O排放通量的影响。结果显示施加秸秆和接种蚯蚓增加了N2O的排放量。在秸秆表施的情况下,接种蚯蚓处理显著提高了N2O的排放量,从12.54 kg/hm2提高到14.94 kg/hm2 (P<0.05);但是在秸秆混施的情况下,接种蚯蚓处理未显著提高N2O的排放量。蚯蚓的存在使土壤NO3--N的含量显著提高,尤其是在混施秸秆的情况下。由于栽培期内NH4+-N变化幅度较小,不同处理NO3--N含量的变化决定了土壤矿质氮的分异。农田生态系统中蚯蚓对N2O排放的贡献主要体现在促进秸秆混入土壤,从而加快秸秆的分解和N2O的排放。  相似文献   

12.
Few earthworms are present in production agricultural fields in the semi-arid plains of Colorado, where earthworm populations may be constrained by limited water and/or organic matter resources. We conducted a 12-week laboratory incubation study to determine the potential of a non-native endogeic earthworm (Aporrectodea caliginosa) to survive in a low-organic matter Colorado soil (1.4% organic C content), supplemented with or without biosolids, and to determine the effects of A. caliginosa on soil microbial biomass and soil nutrient availability. A factorial design with three main effects of A. caliginosa, biosolids addition, and time was used. Data was collected through destructively sampling at one, two, four, eight, and twelve weeks. During the 12-week study, 97.5% of the worms in the soil survived, and the survival of the earthworms was not significantly affected by the addition of biosolids. The addition of biosolids, however, did significantly reduce the gain in mass of the earthworms (8% mass gain compared to 18% in soil without biosolids). The presence of A. caliginosa significantly increased soil NH4-N, and NO3-N concentrations by 31% and 4%, respectively, which was less than the six fold increases in both soil NH4-N, and NO3-N concentrations supplied from biosolids. Microbial biomass carbon was not affected by A. caliginosa, but microbial biomass N was affected by an earthworm × biosolids interaction at week 1 and 12. We concluded that A. caliginosa can survive in a low-organic matter Colorado soil under optimal moisture content and that once established, A. caliginosa can provide modest increases in inorganic N availability to crops Colorado agroecosystems.  相似文献   

13.
Abstract

Results from 2 pastoral field lime trials showed that liming reduced exchangeable Mg. This effect increased with increasing rate of lime and with time following lime application, and was greatest in the top 0–50 mm depth. Soil solutions, sampled 2 years after liming, showed that solution Mg increased in increasing rate of lime. This effect was greatest in the top 20 mm of soil.

Lime incubation studies indicated that Mg fixation did occur on some of the soil studied, at pH >6.2. However, this did not account for the size of the observed effects of liming on exchangeable Mg in the field or explain the observed effects of liming at pH <6.2.

It is suggested therefore, that the major mechanism by which liming reduces exchangeable Mg, on these soils, is through displacement of exchangeable Mg into solution by the added Ca in lime, and subsequent leaching.

Results from other field trials suggest that liming will decrease exchangeable Mg if the change in pH‐dependent CEC (?ECEC) per unit change in soil pH is <15 me 100 g‐1.  相似文献   

14.
Tools to manage the emission of the greenhouse gas nitrous oxide (N2O), an intermediate of both nitrification and denitrification, from soils are limited. To date, the nitrification inhibitor dicyandiamide (DCD) is one of the most effective tools available to livestock farmers for reducing N2O emissions and minimizing leaching of nitrogen in response to increased urine deposition in grazed pasture systems. Despite its effectiveness in decreasing N losses from animal urine by inhibiting N processes in soils, the effect of DCD on the population structure of denitrifiers and overall bacterial community composition is still uncertain. Here we use three New Zealand dairy-grazed pasture soils to determine the effects of DCD application on microbial community richness and composition at both functional (genes involved in the denitrification process) and phylogenetic (overall bacterial community composition based on 16S rRNA profiling) levels. Results further confirm that the effects on microbial populations are minimal and transient in nature. The impact of DCD on microbial community structure was soil dependent, and a greater effect was attributed to intrinsic soil properties like soil texture, with community response to DCD in combination with urine being comparable to that under urine alone. Addition of DCD to cattle urine also reduced N2O emission between 23 and 67%.  相似文献   

15.
毛娜    刘通  江恒  李祥东    程炯  魏孝荣  邵明安 《水土保持研究》2023,30(1):70-76,82
生态修复是南方红壤丘陵区土地退化治理的有效手段之一,但现有研究较少关注土壤动物在生态修复过程中的作用。以退化的赤红壤为研究对象,基于盆栽试验,采用全因子设计方法模拟多种生态系统(裸土vs.黑麦草)×蚯蚓(不接种vs.接种蚯蚓)×水分(湿润vs.干旱),以揭示蚯蚓对干旱条件下退化土壤植被修复前后土壤理化性质和植被生产力的调控作用。结果表明:蚯蚓显著提高了湿润和干旱条件下黑麦草生物量。蚯蚓对土壤有机碳影响不显著,蚯蚓活动提高了裸土生态系统土壤总氮、硝态氮、铵态氮含量,以及黑麦草生态系统土壤速效磷含量。干旱胁迫降低黑麦草生物量,对土壤有机碳影响不显著,但显著改善蚯蚓存在土壤的pH值。黑麦草生物量与土壤总磷、硝态氮、铵态氮和速效磷显著正相关。偏最小二乘路径分析表明蚯蚓活动显著提高土壤全量和速效养分含量,湿润条件下速效养分对植被生物量具有显著正效应,干旱条件下其作用不显著。综上,蚯蚓活动改善土壤肥力状况,促进植被生长,蚯蚓活动可缓解干旱对植被生长的不利影响。研究结果对深入认识蚯蚓对生态系统作用具有重要意义,为退化土地生态修复管理提供科学依据。  相似文献   

16.
Historically, New Zealand was dominated by forest below the alpine treeline, but about 1000 years of Polynesian and European colonisation has resulted in the destruction of nearly three-quarters of the indigenous forest cover. In this study, the historical patterns of deforestation and forest fragmentation were assessed in relation to major topographical, climatic and anthropogenic variables that may drive forest loss. Deforestation has occurred almost equally on the two main islands, the North and South Islands, although the remaining indigenous forest is more fragmented in the North Island. Most deforestation has occurred in regions with a high-density of road networks, although gradients in climatic water availability and soil fertility also had weak effects. Deforestation rates over the period 1997-2002 were very low (nationwide deforestation rate of just −0.01% p.a.), but varied widely among political districts. Expansion of plantation forestry was the single most important driver of recent deforestation. Only 10 of 73 political districts are afforded long-term protection of native forest cover (having more than 30% forest cover that is managed by the Department of Conservation). Forest cover in the majority of New Zealand landscapes has been reduced below the level of an expected ‘extinction threshold’ (circa 30% native habitat cover) in 55 political districts, and long-term trajectories predict that ongoing deforestation threatens to force another five districts below the critical threshold within the next 45 years. Except for the most heavily deforested regions, relatively modest annual rates of habitat restoration could bring forest cover back above the extinction threshold by the year 2050.  相似文献   

17.
苗桓  许加明  虞悦  卜元卿  王艮梅  周蓉 《土壤》2023,55(6):1316-1322
通过研究三种不同森林土壤中蚯蚓对莠去津暴露的响应,为莠去津在林业上的科学使用和保护生态环境提供科学依据。采用室内实验的方法研究三种不同类型的森林土壤中莠去津对蚯蚓的影响,以40、80、160、320、480 mg/kg作为暴露浓度,暴露后于第0天,第7天,第14天,第21天,第28天,第35天分别测定土壤中蚯蚓鲜重和死亡率,于第0天和第35天测定土壤中蚯蚓体宽。结果表明,三种森林土壤中莠去津暴露浓度越高,暴露时间越长,对蚯蚓致死效应越强,对蚯蚓鲜重和体宽的抑制效应也越强,呈明显的时间-效应关系和剂量-效应关系。暴露浓度相同时,三种土壤中莠去津对蚯蚓死亡率、鲜重和体重的影响均表现为黄棕壤>雏形土>石灰土。莠去津对蚯蚓的毒性效应与土壤中有机质的含量之间具有明显负相关性,与全磷和有效磷的含量之间具有明显正相关性。研究结果揭示不同类型土壤中莠去津对蚯蚓的毒性作用具有明显差异,且与土壤的肥力具有显著相关性,其可为评估莠去津在农林业上使用的环境风险提供基础参考数据。  相似文献   

18.
Abstract

The amounts and forms of zinc in twenty surface soils from Canterbury and Southland, New Zealand were determined using a sequential fractionation scheme. Total soil zinc concentrations ranged from 38.1 mg#lbkg‐1 to 113.8 mg#lbkg‐1. Although the proportions of zinc found in individual fractions varied between soils, on average approximately 3% occurred as exchangeable zinc, 5% as organic‐bound zinc, 9%, 18%, 24% was associated with manganese, amorphous iron and crystalline iron oxides, respectively, and 40% was in the residual fraction. In a group of soils formed in greywacke alluvium or loess, exchangeable zinc was inversely related to soil pH. Within the same group of soils, those of similar age with greater concentrations of total and organic‐bound zinc were present in imperfectly‐ and poorly‐drained soils compared with well‐drained soils. Zinc extracted from the soils with a range of reagents used to assess ‘plant available’ zinc was correlated strongly with the concentrations of zinc present in the exchangeable and organic‐bound zinc fractions.  相似文献   

19.
Six soils on glacial outwash terraces and one on moraine are discussed; four are formed partly in loess of unknown age. Evidence of podzolization is apparent in all profiles, but the vertical drainage under very high rainfall is insufficient to remove surplus water. Gley processes appear to dominate, in a perched-water environment.
Podzolic B horizons were identified in the same five profiles following both the Canadian system and that used by the Soil Survey of England and Wales. However, only three of these profiles could be allocated to existing podzolic subgroups in the latter system. Spodic horizons were identified in a different group of five profiles. Differences in classification are discussed with reference to the criteria used and in relation to proposals for revision of the New Zealand Soil Classification.  相似文献   

20.
Two earthworms species, Lumbricus terrestris (epianecic) and Aporrectodea giardi (anecic) were incubated in microcosms with an epigeic 13C-labelled litter for 246 d. At the end of the experiment, different soil compartments (surface casts, walls and peripheries of burrows, and surrounding soil) were sampled for 13C analysis. Two-dimensional images acquired using X-ray computed tomography allowed to estimate the weight of the ‘burrow wall’ and ‘burrow periphery’ compartments which are required to establish C balance. In the case of L. terrestris, the formed structures were more C litter enriched compared to the other species. The permanent character of the burrow system could lead to a high and constant enrichment of the entire burrow system. As consequence, the percentage of C litter in the ‘burrow wall’ and ‘burrow periphery’ compartments was important in spite of their low volume. The denser system developed by A. giardi resulted in C litter dilution in the whole formed structures. The C litter enrichment decreased with the soil depth, but owing to the intensity of the burrowing activity, the C litter transfers into the ‘burrow walls’ and ‘burrow periphery’ were important and the C litter was homogeneously distributed throughout the whole column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号