首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
Schultz  R.C.  Thompson  J.R. 《New Forests》1997,13(1-3):301-314
The Hardwood Quality Nursery Cooperative (bareroot forest nurseries in 5 midwestern states) initiated a series of studies in 1987 to evaluate red oak (Quercus rubra L.), and black walnut (Juglans nigra L.) seedling performance as a function of cultural treatments and seedling root system morphology.Seedlings were grown at three densities (32, 64, and 128 stems m-2for red oak; 32, 64, and 96 stems m-2for black walnut), and half of the density plots were undercut. Seedlings received fertilizer, weeding, and irrigation treatments customary to their respective nurseries. Seedlings were lifted, measured, and outplanted in their respective states as completely random individual tree plots during spring 1988. Survival, height, and diameter were evaluated annually through 1992.Seedling height, diameter, and number of permanent first-order lateral roots (FOLR) decreased with increasing bed density. At a given density, undercutting produced smaller seedlings (for both height and diameter) that had greater numbers of FOLR. Numbers of FOLR influenced seedling performance after outplanting. Red oak seedlings with at least 5 FOLR and black walnut with at least 7 FOLR had better survival and growth than seedlings with fewer roots.  相似文献   

2.
Dey  Daniel C.  Parker  William C. 《New Forests》1997,14(2):145-156
The value of initial stem diameter near the root collar, shoot length and number of first-order lateral roots (FOLR) as morphological indicators of stock quality and field performance was examined for bareroot (1+0, undercut) red oak (Quercus rubra L.) underplanted in a shelterwood in central Ontario. These three attributes were measured on more than 400 seedlings prior to planting, and their relationship with height and basal diameter growth two years after planting was determined using correlation and regression analysis. Initial diameter, shoot length and number of FOLR were positively and significantly correlated with second-year height and diameter. These relationships were strongest for diameter, but this variable explained less than 25% of the total variation in growth. Of the three indicators, diameter was also the best predictor of several physical characteristics of root systems two years after planting. Initial diameter was significantly correlated with root volume, root area and lateral root, taproot and total root dry mass. Weaker relationships existed between initial shoot length and number of FOLR and second-year root system features. Stem diameter two years after planting was more strongly related to root volume, area and dry mass than was initial diameter, the probable result of adjustment in root-shoot balance of planting stock to the shelterwood environment.  相似文献   

3.
Abstract

Seedling morphological quality standards are lacking for bottomland hardwood restoration plantings in the Lower Mississippi River Alluvial Valley, USA, which may contribute toward variable restoration success. We measured initial seedling morphology (shoot height, root collar diameter, number of first order lateral roots, fresh mass, and root volume), second year field heights and diameters, survival, browse, and top dieback of five species – cherrybark oak (Quercus pagoda Raf.), green ash (Fraxinus pennsylvanica Marsh.), Nuttall oak (Q. nuttallii Palmer), sweet pecan (Carya illinoensis (Wangenh.) K. Koch), and water oak (Q. nigra L.). Seedlings were obtained from three regional nurseries (Arkansas, Louisiana, and Mississippi), planted on three sites (Arkansas, Louisiana, and Mississippi), and treated with or without chemical weed control. Site×nursery interaction and weed control (without interactions) usually affected survival, whereas site×weed control interaction and nursery (without interactions) influenced second year heights and diameters. Weed control generally increased survival rates, as well as second year height and diameter. Effects of initial morphological characteristics on field survival and height and diameter growth were generally dependent on the other morphological parameters. Target morphological characteristics were identified as 99, 84, and 82 in height/diameter ratios (equal units) for cherrybark oak, green ash, and Nuttall oak, respectively; mean initial height of 40–43 cm in sweet pecan; and mean initial fresh mass/root volume of 2.7 g ml?1 in water oak. Seedlings with means above these values may be more susceptible to dieback or mortality after outplanting, likely associated with excessive shoot relative to root biomass.  相似文献   

4.
Recurrent problems with regeneration of oaks (Quercus spp.) have been documented across a wide range of ecosystems. In oak-dominated forests of the central and Appalachian hardwood regions of the United States, a lack of competitive oak regeneration has been tied, in part, to fire suppression in these landscapes, and managers throughout the region are using prescribed fire to address this concern. To examine fire effects on oak regeneration, researchers have generally relied on inventories or population studies of existing seedlings. These studies are valuable but do not permit examination of the role of fire in enhancing the establishment and growth of new oak seedlings stemming from oak mast events. In this study, white (Quercus alba) and chestnut oak (Quercus prinus) acorn mast crops serendipitously occurred in year three (fall 2005) of a landscape-scale prescribed fire experiment. We examined establishment, survival, height and diameter of new seedlings on sites on the Cumberland Plateau in eastern Kentucky. Treatments were fire exclusion, a single prescribed fire (1x-burn; 2003), and repeated prescribed fire (3x-burn; 2003, 2004, and after acorn drop in 2006), all conducted in late spring. Initial densities of newly established chestnut and white oak seedlings were statistically similar across treatments (P = 0.42), despite fires on the 3x-burn site having occurred after acorns were on the ground. Oak seedling density was significantly predicted by oak basal area on all sites (R2 = 0.12–0.46), except for chestnut oak on fire-excluded sites (R2 = 0.04). Litter depth was less on 3x-burn sites compared to 1x-burn and fire-excluded sites, whereas canopy openness was greater on both burn treatments compared to fire-excluded sites. Seedling mortality was generally higher on fire-excluded sites compared to burn sites, especially for white oak. Oak seedling mortality in the first two growing seasons was significantly predicted by initial litter depth and open sky, with greater litter depth and lower percent open sky leading to higher mortality. In the third growing season none of the measured variables predicted chestnut oak seedling survival; for white oak, percent open sky remained a significant predictor of mortality. Initially, seedlings on the fire-excluded sites had similar height but smaller diameter; after three growing seasons there were few differences in seedling height or diameter among treatments. Our findings suggest a potential role for prescribed fire in establishing forest floor and light conditions that may enhance the success of new oak germinants, although different responses among species may suggest the need to target management for individual oak species.  相似文献   

5.
Field performance can be predicted by evaluating nursery stock quality, but optimal morphological variables for use in these assessments may vary by species especially under dry Mediterranean conditions. Our objective was to identify initial seedling morphological characteristics that successfully predict field performance of five Mediterranean species (Pinus halepensis, Quercus ilex, Quercus coccifera, Ceratonia silqua and Pistacia lentiscus). Container seedling morphology was evaluated following the nursery phase, and then seedlings were outplanted in the field where field survival was monitored for two successive years. Results indicate that survival can successfully be predicted from seedling initial morphological characteristics for all these species, yet not all the initial characteristics were good predictors. Survival of P. halepensis and Pist. lentiscus seedlings was positively correlated to initial seedling root-collar diameter, total dry weight and Dickson’s quality index, and can be reliably predicted by these variables. In contrast, seedling field survival of the two Mediterranean evergreen oak species was correlated with few initial morphological attributes; initial diameter provided an accurate index to predict second-year outplanting survival for both species while height/diameter was a good survival predictor for Q. coccifera seedlings. For C. siliqua seedlings, seedlings with larger initial diameter and total biomass survive better in the field. Thus, diameter was the common variable that accurately predicted survival for all species, which should be >5 mm for P. halepensis seedlings and >7 mm for the remaining species.  相似文献   

6.
Forest grazing has been recognised as being a useful tool in fire-risk reduction, in addition to having the potential to preserve or enhance forest biodiversity if managed correctly. Concern for natural regeneration of forest trees in Europe has also prompted interest in the effects of large herbivores on seedling and sapling growth and mortality. An investigation was carried out into sapling damage and density of natural regeneration of oak (Quercus robur) in a mature, pony-grazed, Pinus radiata forest in Galicia, NW Spain under two different grazing regimes (continuous and rotational). In all treatments significantly more oak seedlings and saplings were recorded in areas of grass sward than areas dominated by taller ground flora species. Damage to oak saplings was assessed from the form (height and canopy) relative to stem diameter. The height and average canopy diameter of similar-aged saplings were found to be significantly greater in ungrazed (control) than both continuous and rotationally grazed treatments. Height and canopy diameters of similar-aged oak were not significantly different between the two grazing treatments. Significant differences were observed in tree form, with unbrowsed saplings having the greatest height to canopy width ratio and those in the continuously browsed plots having the smallest. An obvious decrease in the goodness of fit (R2) of regression analyses were found in continuously grazed areas compared to rotational and control plots for both height and canopy data. The differences in damage observed were not significantly different enough to suggest one method of grazing over the other as being better for minimising sapling damage. Management requirements are more likely to dictate grazing regime. Overall, stock density is likely to have a more significant effect on damage than stocking system.  相似文献   

7.
Foliar nutrient imbalances, including the hyperaccumulation of manganese (Mn), are correlated with symptoms of declining health in sensitive tree species growing on acidic forest soils. The objectives of this study were to: (1) compare foliar nutrient accumulation patterns of six deciduous (sugar maple (Acer saccharum Marsh.), red maple (Acer rubrum L.), red oak (Quercus rubra L.), white oak (Quercus alba L.), black cherry (Prunus serotina Ehrh.) and white ash (Fraxinus americana L.)) and three evergreen (eastern hemlock (Tsuga canadensis L.), white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss.)) tree species growing on acidic forest soils; and (2) examine how leaf phenology and other traits that distinguish evergreen and deciduous tree species influence foliar Mn accumulation rates and sensitivity to excess Mn. For the first objective, leaf samples of seedlings from five acidic, non-glaciated field sites on Pennsylvania's Allegheny Plateau were collected and analyzed for leaf element concentrations. In a second study, we examined growth and photosynthetic responses of seedlings exposed to excess Mn in sand culture. In field samples, Mn in deciduous foliage hyperaccumulated to concentrations more than twice as high as those found in evergreen needles. Among species, sugar maple was the most sensitive to excess Mn based on growth and photosynthetic measurements. Photosynthesis in red maple and red oak was also sensitive to excess Mn, whereas white oak, black cherry, white ash and the three evergreen species were tolerant of excess Mn. Among the nine species, relative rates of photosynthesis were negatively correlated with foliar Mn concentrations, suggesting that photosynthetic sensitivity to Mn is a function of its rate of accumulation in seedling foliage.  相似文献   

8.
This study investigated the effects of clear-cutting and several other commonly used silvicultural systems on regeneration at seven sites in the Appalachian Mountains of Virginia and West Virginia. These even-aged oak dominated stands ranged in age from 63 to 100 yr and were located on medium quality oak sites (site indices from 18 to 23 m, base age 50). The treatments evaluated included a clear-cut, commercial harvest, shelterwood, leave-tree, group selection, preharvest herbicide, and control.

Mixed model ANOVA was used to analyze treatment response in five species groups: (a) oak (Quercus spp.); (b) maple (Acer spp.); (c) black cherry (Prunus serotina Ehrh.), and yellow-poplar (Liriodendron tulipifera L.); (d) miscellaneous overstory hardwoods; and (e) midstory species that typically do not occupy main canopy positions in mature stands. Response variables included stem density, importance value, average height for all regeneration, and the tallest 365 stems ha?1. Comparisons were made among treatments, species groups, and between regeneration of sprout and seedling origin.

Alternative systems with residual trees reduced the regenerations overall mean height growth compared to the clear-cut by 0.34 to 0.74 m. Current conditions indicate oak will be a lesser component of the future stand, represented mostly through stump sprouting, and maple will likely increase in proportion among all treatments.  相似文献   

9.
This study explores the indirect relationship between forest structural measures and initial seedling survival and growth along a structural gradient between 64% to 92% canopy closure. The gradient was created by applying various levels of midstory removal to fifty 0.05 ha areas located within a mixed-hardwood riparian forest corridor. Twelve yellow-poplar (Liriodendron tulipifera L.) and cherrybark oak (Quercus pagoda Raf.) containerized seedling pairs were underplanted within each area. Canopy closure was estimated using hemispherical photography; height-to-canopy and basal area were recorded at each seedling pair. Survival, basal diameter, and height were monitored through two growing seasons. Species-specific mortality and height growth models were developed for one and two growing seasons following underplanting. The interaction of height-to-canopy and basal area along with canopy closure were found to be the most strongly related to mortality. Height to the forest canopy and initial seedling size explained the most variance in height increment. Although the height increment models possess limited predictive power (R2 range from 0.22 to 0.36), both mortality and growth analyses emphasize the importance of quantifying vertical canopy structure, along with the more commonly considered horizontal measures of forest structure (basal area and stem density), when evaluating seedling development beneath a forest canopy.  相似文献   

10.
Dubois  Mark R.  Chappelka  Arthur H.  Robbins  Efrem  Somers  Greg  Baker  Karl 《New Forests》2000,20(2):105-118
In the southern USA oaks (Quercusspp.) are often favored by forest owners havingmultiple objectives for forest ownership as oaksprovide mast for wildlife, are consideredaesthetically pleasing, and are valuable for timberproducts. Regeneration and early seedling growth isa concern to those forest owners interested insustaining oaks as a component of their forests. Theeffects of tree shelters and herbaceous weed controlon second-year seedling survival, browse by deer andrabbits, and seedling growth of hand-plantedcherrybark oak (Quercus pagoda Raf.) wereexamined. The study was established on a cutovermixed pine-hardwood forest in Alabama. Fourtreatments were: weed control only, tree shelter only,tree shelter with weed control, and a controlconsisting of a seedling without a tree shelter orweed control. No significant difference in seedlingsurvival was found among the treatments after twoyears. Tree shelters were effective in preventingbrowsing. No seedlings in the tree-shelter-onlytreatment were browsed. There was no significant,difference, however, in the percentage of seedlingsbrowsed between the control treatment and the weedcontrol treatment. The use of tree shelters with weedcontrol was the most effective treatment for promoting2-year ground-line diameter, height, and stem volumegrowth.  相似文献   

11.
Bareroot hardwood seedling production involves intensive soil management. To increase soil organic matter (OM), nurseries commonly grow a cover crop for 1 year after every 1–2 year of seedling production. Raising soil OM levels can also be achieved through addition of soil amendments. We studied the influence of chicken manure (CM) and composted leaf, tree, and lawn trimmings (Cp) on soil properties and morphology of green ash (Fraxinus pennsylvanica Marsh.) and northern red oak (Quercus rubra L.) seedlings. CM was applied at 725, 1450, or 2900 kg ha−1 (CM725, CM1450, and CM2900, respectively) and Cp was applied at 200 m3 ha−1. Addition of CM and Cp significantly raised soil OM levels and altered soil chemical properties compared to the control (Ctrl). Root-collar diameter increased with addition of CM1450, CM2900, or Cp compared to CM725 or Ctrl plots for northern red oak, but was largest in soils amended with CM2900 for green ash. Conversely, height was greatest with addition of CM725 for northern red oak, but green ash seedlings were shorter in Ctrl plots than in all amendments except for CM725. Root volume of green ash and northern red oak seedlings was positively influenced by addition of CM or Cp. Seedling responses to nursery soil amendments vary with different forms and amounts of OM. Benefits to seedling growth through application of appropriate materials in the proper balance can improve seedling morphological quality and positively influence soil chemical properties.  相似文献   

12.
Using the physiological single tree growth model BALANCE, vitality of forest stands was simulated in dependence of the site-related factors, climate and stand structure. At six level II plots in southern Germany with the main tree species beech (Fagus sylvatica L.), oak (Quercus robur L.), spruce (Picea abies [L.] Karst.), and pine (Pinus sylvestris L.), simulated results were compared to measured values (soil water content, bud burst and leaf colouring, diameter at breast height, tree height and crown density) in order to validate the model. Sensitivity tests were done to examine the influence and the interactions of the environmental parameters. The validation results show that BALANCE is capable of realistically simulating the growth and vitality of forest stands for central European regions for medium term time spans (several years). The validation of the water balance module produces mean absolute errors based on field capacity between 2.7 and 6.9% in dependence of sites and forest stands. Senescence of foliage as well as crown density is reproduced with a correlation coefficient of 0.70 compared to measurements. Differences between measured and simulated diameter values were smaller than 1% for spruce and smaller than 6.5% for beech after 7 years of simulation, and smaller than 1% for oak after 8 years of simulation. On the other hand, the simulations for pine trees conform less with the measurements (difference: 22.6% after 8 years). The sensitivity of the model on environmental changes and on combinations of these parameters could be demonstrated. The responses of the forest stands were quite different.  相似文献   

13.
Six broadleaved tree species and Picea abies (L.) Karst. wereplanted under spruce plantations of varying densities, in Sweden.Treatments included control (994 stems ha–1), dense (538stems ha–1), sparse (294 stems ha–1) and gap (0stems ha–1) overstory treatments. There was an increasein height and diameter growth from control to sparse overstorytreatment of all underplanted tree species except for ash (Fraxinusexcelsior L.) and Norway maple (Acer platanoides L.). Site conditionsmay have hampered the growth of these species, as well as wildcherry (Prunus avium L.). Both oak (Quercus robur L.) and sprucehad greater growth in the gap treatment, relative to the othertreatments. Insecticide application did not influence seedlinggrowth or survival. The performance of beech (Fagus sylvaticaL.), lime (Tilia cordata Mill.), spruce and oak was consistentwith shade tolerance ranking. Beech and lime had a very highsurvival rate, even under the densest canopy. The growth andmortality of ash, maple and wild cherry differed significantlyfrom what was expected. This experiment demonstrated significantvariation in interspecific growth and mortality between sevenplanted tree species in relation to canopy density. Correctsite and species selection is crucial when underplanting inshelterwood systems.  相似文献   

14.
Growing interest worldwide in bottomland hardwood restoration necessitates improved ecological understanding of flooding effects on forest tree seedlings using methodology that accurately reflects field conditions. We examined hardwood seedling survival and growth in an outdoor laboratory where the timing, depth, duration, and flow rate of flood water can be carefully controlled while simulating natural soil conditions occurring in floodplains. Flooding treatments were initiated in mid-May and included partial inundation (15–20?cm) during the growing season for 5-week flowing, 5-week standing, 3-week flowing, and control. We monitored the vigor, survival, and growth (changes in basal diameter and stem length) of six hardwood species representing a wide range in expected flood tolerance including eastern cottonwood (Populus deltoides Bartr. Ex Marsh.), pin oak (Quercus palustris Muenchh.), swamp white oak (Q. bicolor Willd.), bur oak (Q. macrocarpa Michx.), black walnut (Juglans nigra L.), and pecan [Carya illinoensis (Wangenh.) K. Koch]. All stock was 1-0 bareroot except that cuttings were used for eastern cottonwood. Five species—eastern cottonwood, bur oak, swamp white oak, pin oak, and pecan—exhibited high survival probabilities (>0.62 for cottonwood; >0.77 for the others) regardless of flood treatment. But of the survivors, only eastern cottonwood and swamp white oak maintained positive growth and healthy green foliage. Despite high survival, bur oak and pin oak suffered stem growth losses and exhibited chlorotic foliage in flood treatments suggesting greater vulnerability to other abiotic or biotic stresses if outplanted on flood-prone sites. Pecan also suffered stem dieback in controls suggesting vulnerability to competition and browsing when outplanted despite high survival after flooding. Our quantitative data helps to confirm and/or refine previously published qualitative flood tolerance ratings for these species, and describes operation of an in situ outdoor flood experiment laboratory that may prove effective in guiding future flood tolerance research.  相似文献   

15.
To determine if inoculation increases nodulation and yield of bare-root red alder (Alnus rubra Bong.), fumigated nursery plots were treated with inoculum and ammonium sulfate (28 kg N ha–1) in a factorial experiment. Inoculum was alder soil with 100 infective units of Frankia g–1. Seedlings were evaluated for nodulation at age 10 wk and when lifted, at age 9 mo. Inoculation produced earlier and more extensive nodulation and increased seedling root collar diameter, height, and dry weight. Fertilization decreased seedling height, but did not decrease nodulation. No interaction of fertilization with inoculation was found. Inoculated unfertilized plots had the highest yield of packable seedlings (257 m–2), and uninoculated fertilized seedlings had the lowest yield (126 m–2).  相似文献   

16.
Abstract

The effects of fencing and site preparation on performance of birch (Betula pendula Roth), oak (Quercus robur L.), pine (Pinus sylvestris L.) and spruce [Picea abies (L.) Karst.] seedlings were studied over four growing seasons in southern Sweden. The experiment was composed of four browsing treatments, from which roe deer (Capreolus capreolus L.) were excluded for 0, 12, 24 or 42 months, and four soil treatments. Natural browsing was combined with artificial browsing (clipping). It was demonstrated that browsing by roe deer could be isolated from browsing by moose (Alces alces L.) by selective fencing. Except for birch, browsing had little effect on seedling survival. Browsing reduced height growth by more than 100% for oak and pine, and more than 60% of pine seedling developed multiple stems. Except for oak, site preparation increased seedling survival. Inverting site preparation, in combination with or without fertilization, produced positive growth responses in seedlings, whereas patch scarification did not. There was no interaction between browsing and soil treatments on seedling performance. It was concluded that long-term protection against browsing by roe deer is needed for oak and pine, whereas short-term fences might be used for birch, and that spruce is relatively unaffected by browsing.  相似文献   

17.
Litter decomposition was studied for 2 years in a mixed forest serving as a water protection area (Rhine-Neckar conurbation, SW Germany). Two experiments differing in initial dry weight equivalent in litterbags were set up: one to compare decomposition of European beech leaves (Fagus sylvatica) with common oak leaves (Quercus robur), and the other comparing decomposition of Scots pine needles (Pinus sylvestris) with black cherry leaves (Prunus serotina Ehrh.), respectively. Mass losses were greater for oak litter than for beech (75.0 versus 34.6%), and for cherry litter than for pine (94.6 versus 68.3%). In both experiments, a strong initial loss of soluble compounds occurred. The changes in litter N and P concentrations and the decrease in C-to-N ratio coincided with changes in residual mass. However, neither tannin and phenolic concentrations nor NMR could explain the pronounced variation in mass loss after 2 years. Differences in litter palatability and toughness, nutrient contents and other organic compounds may be responsible for the considerable differences in residual mass between litter types. The fast decay of black cherry leaves appears to play a major role in the present humus dynamics at the studied site. Since black cherry has a high N demand, which is mainly met by root uptake from the forest floor, this species is crucial for internal N cycling at this conurbation forest site. These effects together may significantly contribute to prevent nitrate leaching from the forest ecosystem which is subject to a continuous N deposition on an elevated level.  相似文献   

18.
The scattered tree layer that defines savannas is important for structuring the understory community and determining patterns of overstory recruitment. However, encroachment by woody plants has altered overstory tree densities and regeneration dynamics. We characterized seedling success of the savanna-forming species Quercus alba within Midwestern (USA) oak savannas that had been degraded by encroachment (control; n = 4) or experimentally restored by removal of encroaching woody vegetation (treatment; n = 4). In early 2004, 981 seedlings were transplanted along transects radiating from tree boles of overstory Q. alba trees to inter-canopy gaps and monitored for three growing seasons. Seedlings in restored sites had greater survival (>2×), height growth (by >50%), and basal diameter growth (by >20%). In general, seedling survival and growth parameters increased with distance from overstory trees and were greatest in inter-canopy gaps of restored sites. By the final growing season (2006), the seedling survival-by-distance from tree correlation was stronger in control (r2 = 0.25) than treatment sites (r2 = 0.18), due to relatively uniform (and greater) survival at all distances from trees in treatment sites. In 2006, growth parameters (seedling height, diameter, Δ height, Δ diameter, and # leaves) were significantly (and more strongly) positively correlated with distance from trees in treatment sites. However, seedling herbivory was also greater after treatment and increased with distance from overstory trees. To understand seedling/microenvironment relationships, we created logistic (survival) and linear regression models (Δ height, Δ basal diameter, # leaves in 2006). Control seedling models had consistently greater predictive power and included more variables, suggesting that savanna restoration may decouple seedlings from their microenvironments, potentially by decreasing competition for limiting resources. Encroachment of the savannas in this study is limiting regeneration of Q. alba, suggesting substantially altered regeneration dynamics from those under which these savannas originally formed. Initial responses from our test of restoration, however, were promising and mechanical encroachment removal may be a means to promote overstory regeneration of this species. Finally, the savannas in this study appear inherently unstable and a scattered canopy tree configuration is unlikely to persist without regular disturbance, even in the restoration sites. Repeated mechanical thinning treatments with selected retention of recruiting Q. alba individuals or reintroduction of understory fire or grazing animals may be potential mechanisms for promoting long-term persistence of savannas at these sites.  相似文献   

19.

• Introduction   

For Holm oak (Quercus ilex L.), a flush growing species, nutrient loading during the growing season is difficult and can lead to a low nutrient status of the seedlings. To provide insights about Holm oak nutrient dynamics during fall in the nursery and subsequent planting performance, a factorial nursery experiment was conducted in a mild fall–winter area testing the effects of timing of fertilization (early and late fall) and rate (two doses of a NPK fertilizer that applied 28 and 56 mg N per seedling), followed by an experimental plantation.  相似文献   

20.
Forest tree species in the eastern US such as American chestnut (Castanea dentata (Marsh.) Borkh) and oaks (Quercus spp.) have been negatively impacted by forest changes over the past century. Many mature, introduced pine (Pinus spp.) plantations exist in the Midwest US following establishment 50–60 years ago yet have little economic and ecological value. As oak and chestnut have similar site preferences to pines, these stands may be ideal sites for hardwood restoration plantings. We sought to determine optimal management strategies for converting pine plantations by manipulating their canopies. We underplanted hybrid American chestnut and northern red oak (Quercus rubra L.) seedlings into three canopy treatments (control, shelterwood, clearcut) and included an open field treatment. For each of two growing seasons, 0, 30, or 60 g 19N–6P–12K of controlled-release fertilizer (CRF) were also applied to seedlings. Soil chemical parameters and leaf nutrients were analyzed throughout the study. Chestnut and oak seedlings had significantly greater height after two growing seasons in the clearcut and shelterwood than the control and open field, and chestnut had significantly greater diameter as well. Chestnut height and RCD growth were threefold that of oak after two growing seasons. In general, fertilization increased seedling growth more in the clearcut and open field than shelterwood and control for both species. Soils had significantly higher pH, K, and S in the open field than in pine stands. Results suggest that pine plantations may serve as target sites for restoration of these hardwood species. Shelterwoods and clearcuts are both favorable conversion options for oak and chestnut, and addition of CRF may augment further growth increase, especially in open environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号