首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nutrients status and properties in Kenyan soils (Kiambu, Mbeere Districts) are reported with the aim to elucidate the factors of productivity decline. According to the FAO (1988) system the studied soils were classified as humic Nitisols, haplic Acrisols or luvic Arenosols. The soils were found acidic, as a result of leaching of exchangeable cations and they are poor in organic carbon. Cation exchange capacity was extremely low in the sandy soils of Mbeere. Available phosphorus and exchangeable K+ were low inducing a crucial problem of soil fertility. Among the micronutrients, manganese extracted by DTPA was most abundant element, while micronutrients extracted by 4 M HNO3 ranked as follows: Fe>Mn>Zn>Cu. Copper (DTPA) was low and manganese was extremely high in Kiambu. Iron content varied greatly, while decreased zinc was observed in Mbeere. Nitrogen mineralization over an incubation period of 30 weeks ranged from 54.64 to 145.50 mg kg?1 and represents 4.53–21.09% of the total soil nitrogen. Soil nitrogen was associated to soil organic carbon and was strongly correlated to total soil N. Water harvesting, liming, and improved management of composting and manure are amongst the measures to restore soil fertility.  相似文献   

2.
Abstract. A no-tillage (NT) system was developed in semiarid Morocco to improve the soil fertility and stabilize yield through conservation of water. Results in two long-term trials (4 and 11 years) were able to show the effects of a no-tillage system in increasing total soil organic matter and total nitrogen. Over time, the quality of the NT soil surface was improved compared with that under conventional tillage (CT) with disc harrows. This effect was the result of an increase in soil organic carbon (SOC) and a slight decline in pH. However, over time, nitrogen decreased in both tillage practices, especially in the 0–25 mm layer (from 0.59 to 0.57 t ha−1 and from 0.44 to 0.42 t ha−1 under NT and CT, respectively). After 4 years of NT an extra 5.62 t ha−1 of SOC was sequestered in the 0–25 mm layer, and after 11 years the SOC increased further to 7.21 t ha−1.  相似文献   

3.
Abstract. A long-term lysimeter experiment with undisturbed monoliths studied leaching behaviour and balances of phosphorus (P), potassium (K) and nitrogen (N) during a seven year crop rotation on four types of soil receiving inorganic fertilizers, manure and grass compost respectively. It was shown that application of manure did not lead to any direct change in nutrient leaching, unlike the application of fertilizers to soils of normal fertility. However, soil type considerably affected the nutrient concentrations in the drainage water.
Manure applied in amounts equal to the maximum animal density allowed by Swedish legislation slightly oversupplied P and N (0.5–3.5 and 18–38 kg ha−1 y−1 respectively) compared to the crop requirement and leaching losses for most of the soils. The relationship between lactate-soluble P in the topsoil and the concentrations of dissolved P in the drainage water was very strong. However the strength of this relationship was dependent on just one or two soils. P losses from a fertile sandy soil were large (1–11 kg ha−1 y−1) throughout the crop rotation and average crop removal (13 kg ha−1 y−1) plus the leaching losses were not balanced (average deficit 3–6 kg ha−1 y−1) by the addition of fertilizer, manure or grass compost. No decreasing trend was found in the P losses during seven years. However, the K deficit (average 26 kg ha−1 y−1) led to a significant reduction in the leaching trend from this soil. The other soils that had a smaller K deficit showed no significant reduction in the leaching of K.  相似文献   

4.
Abstract. Regular application of slurry manure in large quantities is thought to degrade soil structure and increase erodibility. One hypothesis links this to the large input of potassium which increases the exchangeable potassium percentage (EPP) and, thereby, dispersion. The effect of EPP on erodibility was quantified in three experiments. In the laboratory, eleven rainfall experiments were conducted using a silty topsoil from a typic Hapludalf which was fertilized to EPPs of 4 to 18%. Field rainfall experiments on 22 Inceptisols and Alfisols were used to examine whether the long-term application of monovalent cations (Na+, K+ and NH4+) with slurry manure had changed soil properties, especially erodibility. In addition, erodibilities of 32 soils determined with natural and simulated rains were taken from literature. The experiments on these 65 soils together covered a wide range of soils, slopes and rainfalls. Dispersion by a large percentage of highly hydrated ions (K+, Na+) reduced the infiltration rate faster, caused runoff up to 5 min earlier, and increased sediment concentrations by 15g/l compared to low EPP soils. These changes increased soil erodibility of the Universal Soil Loss Equation (USLE) by 0.021 t × h/N × ha (where N = Newtons) for each 1% increase in EPP + ESP (exchangeable sodium percentage). The ESP contributed little to this increase as ESP was less than 1/10 of EPP in the experiments.
Fields with long-term manure application had similar chemical, physical and microbiological soil properties as fields without slurry manure except for slightly greater pH (+ 0.6) and P (+ 17 mg/kg) values. We conclude that, as long as the potassium input and output are balanced, the long-term use of slurry manure does not increase erodibility.  相似文献   

5.
Abstract. Tendency to crust is a potentially useful index for assessing soil degradation and for assisting land use planning in South Africa. In this study, the influence of land use, geology and vegetation cover on the tendency of soil to form a surface crust was investigated in six vegetation types. Crusting at all sites was greater in exposed soils than soils under vegetation, as determined by infiltration rate, water dispersible clay and modulus of rupture. In Renosterveld, crusting was markedly greater in exposed soil than vegetation covered soil (mean infiltration 16 vs 44 mm h−1; dispersible clay 2.6 vs 2.2%; modulus of rupture 121 vs 64 kPa). Greater crusting in exposed soil was attributed to lower soluble salt and labile carbon (C) contents and an associated increase in the dispersion of clay. In Karoo, crusting of exposed, shale-derived soils was greater than that of exposed, dolerite-derived soils (infiltration 40 vs 83 mm h−1; dispersible clay 2 vs 1.2%), and a similar pattern was evident in Tall Grassveld (infiltration 18 vs 36 mm h−1; dispersible clay 1.2 vs 0.9%; modulus of rupture 31 vs 21 kPa). In Upland Grassland, cultivation of maize and rye enhanced crusting. In Thicket, crusting was greater in soils from open, degraded vegetation than intact, densely wooded sites (infiltration 19 vs 51 mm h−1; modulus of rupture 16 vs 34 kPa), probably due to lower content of soil C. In Bushveld, crusting was greater in annually burnt plots than unburnt plots (infiltration 109 vs 163 mm h−1; dispersible clay 0.9 vs 0.6% on granite-derived soils; and infiltration 56 vs 72 mm h−1; dispersible clay 1.5 vs 1.3% on basalt-derived soils). Greater crusting of soil from burnt plots was ascribed to a reduction in soil C and soluble salts as well as a greater exchangeable sodium percentage.  相似文献   

6.
孟博  周一帆  杨林生  彭国政  李加群  邓燕 《土壤》2022,54(2):277-284
对勐海县10个甘蔗生产乡镇进行土壤调研取样,共采集0~20 cm土层样品200份,测定了土壤pH、有机质、碱解氮、有效磷、速效钾、交换性钙和交换性镁含量,运用ArcGIS的Kriging插值法分析了蔗区土壤肥力现状与空间分布特征,并采用改进后的Nemerow综合指数法评价了土壤的肥力等级.结果表明:勐海县蔗区土壤主要为...  相似文献   

7.
Carbon and nitrogen stocks in the soils of Central and Eastern Europe   总被引:6,自引:1,他引:6  
Abstract. Soil organic carbon and total nitrogen stocks are presented for Central and Eastern Europe. The study uses the soil geographic and attribute data held in a 1:2 500 000 scale Soil and Terrain (SOTER) database, covering Belarus, Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Moldova, Poland, Romania, the Russian Federation (west of the Urals), Slovakia, and Ukraine. Means and coefficients of variation for soil organic carbon and total nitrogen are presented for each major FAO soil grouping. The mean content of organic carbon, to a depth of 1 m, ranges from 3.9 kg C m–2 for coarse textured Arenosols to 72.9 kg C m–2 for poorly drained Histosols. Mean carbon content for the mineral soils, excluding Arenosols, is 15.8 kg C m–2. The top 1 m of soil holds 110 Pg C (Pg=1015 g), which corresponds to about 7% of the global stock of soil organic carbon. About 44% of this carbon pool is held in the top 0.3 m of the soil, the layer that is most prone to be changed by changes in soil use and management. About 166 million ha in Central and Eastern Europe have been degraded by compaction, erosion of topsoil, fertility decline and crusting. The achievable level of carbon sequestration for these soils, upon adoption of 'best' management practices or restorative measures, is estimated.  相似文献   

8.
The origin of highly acidic (pH<4.5) barren soils in the Klamath Mountains of northern California was examined. Soil parent material was mica schist that contained an average of 2,700 mg N kg−1, which corresponds to 7.1 Mg N ha−1 contained in a 10-cm thickness of bedrock. In situ soil solutions were dominated by H+, labile-monomeric Al3+ and NO3, indicating that the barren area soils were nitrogen saturated—more mineral nitrogen available than required by biota. Leaching of excess NO3 has resulted in removal of nutrient cations and soil acidification. Nitrogen release rates from organic matter free soil ranged from 0.0163 to 0.0321 mg N kg−1 d−1. Nitrogen release rate from fresh ground rock was 0.0465 mg N kg−1 d−1. This study demonstrates that geologic nitrogen may represent a large and reactive nitrogen pool that can contribute significantly to soil acidification.  相似文献   

9.
Abstract. Leaching of phosphorus (P) from agricultural land is the major cause of eutrophication of surface waters in Northern Ireland. However, soil testing using the Olsen method has shown that while soil P in some catchment areas of the Province is low, surface waters within these catchments are, nonetheless, every bit as eutrophic as other local catchments where soil P is high. Soil P measurements on over 6000 samples from Northern Ireland soils (A horizon only) have indicated that Olsen-P values of improved grassland on most parent materials are linearly related to animal intensification. Exceptions are soils derived from peat, marl and basalt. For each of the latter soils, the measured Olsen-P was shown to be around 10 mg L–1 lower than expected for farms with similar intensification on other parent materials. In particular, the mean Olsen-P values of samples from basaltic soils under grass with total Fe above 62 g kg–1 and total Mg above 16 g kg–1 were significantly lower than those from basaltic soils with low total Fe (<37 g kg–1) and total Mg (<8 g kg–1). As a result of the depressed Olsen-P value, excessive quantities of P may be applied to these soils to maintain a recommended soil P index thereby enhancing the potential for nutrient enrichment of adjacent surface waters. In such cases, coworkers have shown that acid ammonium oxalate may be a better extractant than bicarbonate as an indicator of plant-available P.  相似文献   

10.
An approach for estimating when soils will reach maximum nitrogen storage   总被引:4,自引:0,他引:4  
Abstract. Net accumulation of organic nitrogen in soil is constrained by the amount of organic matter and its minimum C:N ratio. Our objective was to estimate the potential for New Zealand soils to continue accumulating nitrogen within the soil organic pool. We calculated total carbon and nitrogen in the top metre of 138 representative soil profiles from the New Zealand National Soils Database. Carbon in these mainly pasture soils was assumed to be at steady state. The maximum nitrogen storage capacity was estimated by calculating the amount of nitrogen stored under assumed minimum soil C:N ratios of either 9, 10 or 11. The storage capacity remaining was determined as the difference between the amount of nitrogen currently stored and the maximum storage capacity. The length of time before a soil profile will reach the maximum capacity for nitrogen storage was calculated assuming net accumulation of 20, 50 and 100 kg N ha−1 yr−1. A C:N ratio of 9 (giving most storage capacity) and a conservative accumulation rate of 20 kg N ha−1 yr−1 showed that 12% of these soils would be at maximum storage within 40 years. A C:N ratio of 10 and a storage rate of 50 kg N ha−1 yr−1 would result in 54% of the soils reaching maximum storage within the next 40 years. As the capacity for nitrogen storage in soils declines, nitrate leaching is likely to increase with associated risk to the environment.  相似文献   

11.
With the electro–ultrafiltration (EUF) technique, the plant availability of several plant nutrients in soils can be characterized. The basic principle of EUF is that an electric field is induced using platinum electrodes. Ions in the soil suspension move either to the cathode or to the anode and are filtrated through ultra‐membrane filters. In the standard EUF procedure, two extractions steps are used: 30 min at 20°C and 5 min at 80°C. However, the determination of micronutrients and heavy metals with the standard EUF procedure is not possible, because the solubility of these elements in water is low and most of the watersoluble elements are precipitated when passing the platinum electrodes. The addition of DTPA, a well known complexing agent, during a third EUF fraction (5 min at 80°C) enables extraction of micronutrients and heavy metals. Highest concentrations in the 33 soils of the study were found for iron, followed by zinc, manganese, lead, copper, and nickel. Lower concentrations were obtained for cobalt, chromium, cadmium, and molybdenum. For two soils, the EUF/DTPA procedure was compared to CaCl2/DTPA and EDTA soil extraction methods, showing that higher or comparable amounts were found with CaCl2/DTPA and much higher amounts with the EDTA method. These results reveal that the EUF/DTPA technique in principle can be used for the determination of plant‐available micronutrients and heavy metals. However, in a next step the relationship between EUF/DTPA‐extractable elements and their availability for plants needs to be quantified.  相似文献   

12.
Abstract. In organic agriculture, where K may be a limited resource, reliable tools are important in the assessment of K availability in the soil in order to avoid K deficiency. We investigated the effect of four organic farming systems on the exchangeable K in the plough layer of a six-course crop rotation from 1994 to 1997. The accumulated K balances over the four years varied between −49 and +120 kg K ha–1and the corresponding exchangeable K (0–20 cm) in autumn 1997 was 7.1 and 9.6 mg K 100 g soil–1, respectively, as an average of the crop rotation. The exchangeable K fraction responded to the K application in manure and to the crop in the rotation. In an additional experiment, no yield response to K was found, despite a low level of exchangeable K. The exchangeable K was a useful indicator of changes in the K status in the farming system with the largest positive K balance, but this K fraction was insufficient as an indicator in the other three farming systems. The considerable variation of exchangeable K through the crop rotation makes the soil test method most suitable at the crop rotation level where fluctuations caused by crop and management are smoothed out.  相似文献   

13.
Soil properties may affect the decomposition of added organic materials and inorganic nitrogen (N) production in agricultural soils. Three soils, Potu (Pu), Sankengtzu (Sk) and Erhlin (Eh) soils, mixed with sewage sludge compost (SSC) at application rates of 0 (control), 25, 75 and 150 Mg ha−1 were selected from Taiwan for incubation for 112 days. The aim of the present study was to examine the effects of SSC application rates on the carbon decomposition rate, N transformation and pH changes in three soils with different initial soil pH values (4.8–7.7). The results indicated that the highest peaks of the CO2 evolution rate occurred after 3 days of incubation, for all treatments. The Pu soil (pH 4.8) had a relatively low rate of CO2 evolution, total amounts of CO2 evolution and percentage of added organic C loss, all of which resulted from inhibition of microbial activity under low pH. For the Pu and Sk soils, the concentration of NH4+-N reached its peak after 7–14 days of incubation, which indicated that ammonification might have occurred in the two soils with low initial pH values. NO3-N rapidly accumulated in the first 7 days of incubation in the Eh soil (pH 7.7). The direction and extent of the soil pH changes were influenced by the N in the SSC and the initial soil pH. Ammonification of organic N in the SSC caused the soil pH to increase, whereas nitrification of mineralized N caused the soil pH to decline. Consequently, the initial soil pH greatly affected the rate of carbon decomposition, ammonification and nitrification of SSC.  相似文献   

14.
We used a laboratory incubation approach to measure rates of net N mineralization and nitrification in forest soils from Fu-shan Experimental Forest WS1 in northern Taiwan. Net mineralization rates in the O horizon ranged from 4.0 to 13.8 mg N kg−1 day−1, and net nitrification rates ranged from 2.2 to 11.6 mg N kg−1 day−1. For mineral (10–20 cm depth) soil, net mineralization ranged from 0.06 to 2.8 mg N kg−1 day−1 and net nitrification rates ranged from 0.02 to 2.8 mg N kg−1 day−1. We did not find any consistent differences in N mineralization or nitrification rates in soils from the upper and lower part of the watershed. We compared the rates of these processes in three soil horizons (to a soil depth of 30 cm) on a single sampling date and found a large decrease in both net N mineralization and nitrification with depth. We estimated that the soil total N pool was 6,909 kg N ha−1. The present study demonstrates the importance of the stock of mineral soil N in WS1, mostly organic N, which can be transformed to inorganic N and potentially exported to surface and ground water from this watershed. Additional studies quantifying the rates of soil N cycling, particularly multi-site comparisons within Taiwan and the East Asia–Pacific region, will greatly improve our understanding of regional patterns in nitrogen cycling.  相似文献   

15.
Deficiency of micronutrients is increasing in crop plants in recent years in Oxisols and Ultisols in the tropics. The predominant soils in the coastal tablelands of Brazil are Ultisols and Oxisols, with low cation exchange capacity and kaolinitic clay mineralogy. Soil copper (Cu), manganese (Mn), and zinc (Zn) extracted by the Mehlich 1 solution, currently used in the regional soil-testing laboratories, were compared with those extracted by the Mehlich 3 and diethylenetriaminepentaacetic acid (DTPA) solutions in a greenhouse experiment with 10 soil samples (0–20 cm deep) collected from representative Ultisols and Oxisols from various locations in the region. Corn was grown as a test crop, and its dry matter and micronutrient uptake was measured at 30 days of growth. Soil Cu, Mn, and Zn extracted with the three solutions were significantly correlated (0.65–0.95 range for r values), with the Mehlich 3 solution extracting greater quantities than the Mehlich 1 and DTPA solutions. Zinc and Cu taken up by corn plants were significantly related to their soil-extractable levels measured at harvest with all three of the solutions, except for Zn DTPA. However, similar relations between plant uptake and soil extractable Mn were poor, except for DTPA extracting solution.  相似文献   

16.
Abstract. Agricultural soils are important sources of the tropospheric ozone precursor NO and the greenhouse gas N2O. Emissions are controlled primarily by parameters that vary the soil mineral N supply, temperature and soil aeration. In this field experiment, the importance of soil physical properties on emissions of NO and N2O are identified. Fluxes were measured from 13 soils which belonged to 11 different soil series, ranging from poorly drained silty clay loams to freely drained sandy loams. All soils were under the same soil management regime and crop type (winter barley) and in the same maritime climate zone. Despite this, emissions of NO and N2O ranged over two orders of magnitude on all three measurement occasions, in spring before and after fertilizer application, and in autumn after harvest. NO emissions ranged from 0.3 to 215 μg NO-N m–2 h–1, with maximum emissions always from the most sandy, freely drained soil. Nitrous oxide emissions ranged from 0 to 193 μg N2O-N m–2 h–1. Seasonal shifts in soil aeration caused maximum N2O emissions to switch from freely drained sandy soils in spring to imperfectly drained soils with high clay contents in autumn. Although effects of soil type on emissions were not consistent, N2O emission was best related to a combination of bulk density and clay content and the NO/N2O ratio decreased logarithmically with increasing water filled pore space.  相似文献   

17.
The origin of soil protease in field soil was estimated using culture-dependent and independent approaches. Overall soil protease activity was much higher in field soils with an annual application of liquid livestock feces (120 t ha−1 year−1 and 600 t ha−1 year−1) compared with the activity recorded in other field soils, and the character of the soil proteases became highly homogeneous (approximately 70% metalloprotease in a 600 t field). Selective incubation studies suggested that bacteria were the most important source of soil protease. There were significantly higher correlations between serratial metalloprotease and the overall soil protease in both feces-applied fields in terms of the effect of inhibitors, and the bacteria, which produced serratial metalloprotease, were suggested to proliferate in both the 120 t and 600 t fields. The gene homologous to serratial metalloprotease gene was amplified in directly extracted DNA from field soils using selective DNA primer and proteolytic Serratia marcescens was certified to be one source of soil protease in these field soils. Proteolytic S. marcescens and its metalloprotease gene have occasionally been isolated and detected in field soils applied with raw feces, and have rarely been isolated or detected from other field soils. Proteolytic S. marcescens is believed to be introduced in the raw feces and subsequently colonizes the field soil and replaces the indigenous bacteria in the soil.  相似文献   

18.
Abstract

Alfisols, Vertisols, Inceptisols, Aridisols, Mollisols, and Entisols were sampled (0–30 cm) from 32 locations across Ethiopia. The soils were analyzed for copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) contents using 0.005 M diethylene triamine pentaacetic acid (DTPA), 0.05 M hydrochloric acid (HC1), and 0.02 M ethylene diamine tetraacetic acid (EDTA) extractants. EDTA extracted more of each micronutrient than DTPA, which extracted greater amounts than HC1. The quantities of EDTA and DTPA‐extractable micronutrients were significantly correlated, and were in the order: Mn>Fe>Cu>Zn. The order of HCl‐extractable micronutrients was Mn>Fe>Zn>Cu. Micronutrient contents of Mollisols, Vertisols, and Alfisols were usually greater than those of the other soils, and Entisols usually had the lowest micronutrient contents. The contents were mostly positively correlated with clay and Fe2O3 contents, but negatively correlated with soil pH and A12O3contents. While comparison of DTPA‐ and EDTA‐extractable micronutrients with critical levels showed that most soils had adequate amounts of the micronutrients for crops, the amounts extracted by HC1 were below critical levels in most soils. Since the critical levels that were used in the comparisons were not established in Ethiopia, calibration of the soil contents of these micronutrients with crops grown in Ethiopia is required to identify the most suitable extractant(s).  相似文献   

19.
Amelioration of a highly alkaline soil by trees in northern India   总被引:2,自引:0,他引:2  
Abstract. A study was carried out to compare the impact of 6-year-old plantations of Prosopis juliflora (Swartz) D.C., Dalbergia sissoo Roxb. Ex. D.C. and Eucalyptus tereticornis Sm. on the physical and chemical properties of sodic soil in the Indo-Gangetic alluvial plains of Uttar Pradesh, India. Soil properties under the three tree species showed significant improvement through a reduction in the pH, electrical conductivity, exchangeable sodium percentage, CaCO3 and gypsum requirement, and by increase in organic C, total N, and available P and K. The six years of reclamation had achieved a marked reduction in exchangeable sodium (from 11.5 to 4.5 cmolc kg−1) to a depth of 1.5 m in the soil profile, whereas the levels of exchangeable calcium, magnesium and potassium had increased. There was also a significant reduction in soil bulk density (from 1.66 to 1.24 g cm−3) and increases in porosity, water holding capacity, field capacity, permeability and infiltration rate. The equilibrium infiltration rate after 455 min increased from 0.03 cm h−1 in the control to 0.13 cm h−1 under P juliflora and D. sissoo and 0.10 cm h−1 under E. tereticornis . It is concluded that salt-tolerant tree species have a significant impact on soil properties, which could help to rehabilitate the sodic wastelands in the region.  相似文献   

20.
The effects of burning on the levels of soil organic matter, soil nitrogen, and soil microbial biomass were studied by carrying out experimental shifting cultivation at two sites, Niah and Bakam in Sarawak, Malaysia. Vegetation biomass was burned in plots (10 × 10 m2) at the rates of 0 (control), 100, 200, and 300 Mg ha−1 at the Niah site and 0, 20, and 100 Mg ha−1 at the Bakam site. At the Niah site, the levels of total C and N of the soils did not change throughout the experiment in spite of enhanced soil respiration until 2 months after burning. Although burning induced an increase in the amount of NH4-N of the soils, the readily available pool of N (the sum of the NH4-N, NO3-N, microbial biomass N, and extractable organic N pools) in the burned plots was depleted appreciably at the end of rice cultivation. The effects of burning on these properties tended to be substantial with increasing amounts of the vegetation biomass burned. On the other hand, the levels of total C and N and the readily available N pool at the Bakam site were low before burning compared with those at the Niah site, and the burning treatments did not affect them appreciably. While the rice yield at the Niah site reached the average value obtained in traditional shifting cultivation in Sarawak, that at the Bakam site was much lower. It was suggested that the flush of NH4-N induced by burning was one of the major factors for rice growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号