首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.

Context

The spatial distribution of non-substitutable resources implies diverging predictions for animal movement patterns. At broad scales, animals should respond to landscape complementation by selecting areas where resource patches are close-by to minimize movement costs. Yet at fine scales, central place effects lead to the depletion of patches that are close to one another and that should ultimately be avoided by consumers.

Objectives

We developed a multi-scale resource selection framework to test whether animal movement is driven by landscape complementation or resource depletion and identify at which spatial scale these processes are relevant from an animal’s perspective.

Methods

During the dry season, surface water and forage are non-substitutable resources for African elephants. Eight family herds were tracked using GPS loggers in Hwange National Park, Zimbabwe. We explained habitat selection during foraging trips by mapping surface water at two scales with gaussian kernels of varying widths placed over each waterhole.

Results

Unexpectedly, elephants select areas with low waterhole density at both fine scales (< 1 km) and broad scales (5–7 km). Selection is stronger when elephants forage far away from water, even more so as the dry season progresses.

Conclusions

Elephant selection of low waterhole density areas suggests that resource depletion around multiple central places is the main driver of their habitat selection. By identifying the scale at which animals respond to waterhole distribution we provide a template for water management in arid and semi-arid landscapes that can be tailored to match the requirements and mobility of free ranging wild or domestic species.
  相似文献   

2.
The threatened superb parrot of south-eastern Australia exemplifies many of the challenges associated with research on wide-raging organisms which live ‘off-reserve’. Challenges include that most land is privately owned and that landscape use by such organisms does not always conform to traditional schematic and categorical landscape/fragmentation models. A multi-scale approach for embedding the detection of site-level and landscape context effects into landscape sampling design and subsequent statistical analysis is presented. The superb parrot was found scattered at varying densities throughout the agricultural landscapes of the South-West Slopes, much of which was privately owned. It responded to site-level variables and the surrounding landscape context. Overall, the superb parrot favoured lower elevation sites which were dominated by scattered, open woodlands, where Blakely’s red gum was a significant component. Mean plant productivity within 2 km, levels of woody tree cover within 3 km and (with caveats) length of roads within 3 km had a major effect on site-level response, indicating conditions in the surrounding local landscape are important to the superb parrot. This multi-scale response requires a multi-scale conservation and restoration strategy. The importance of open tree cover and amounts of Blakely’s red gum are a matter for concern, due to a general lack of tree regeneration and the particular susceptibility of Blakely’s red gum to dieback. The scattered trees in the agricultural matrix were important to the superb parrot, suggesting that it views these landscapes as a continuum of usable habitat. Strategies for restoration of larger habitat remnants should also include regeneration of trees in scattered pattern in the wider landscape, and Blakely’s red gum should be part of any strategy along with other key species such as yellow and white box. The landscape sampling approach successfully addressed the challenges of whole-landscape research. This highlights the value of ‘off-reserve’ studies across whole landscapes.  相似文献   

3.
Avian nest predation is known to increase with the degree of forest fragmentation. A common explanation is that farmland allows for high densities of generalist predators, and predators penetrating into the forest cause higher nest losses at forest-farmland edges than in forest interiors. In contrast to numerous patch-level studies of forest edge effects conducted earlier, we broadened the spatial extent to the landscape. We tested the hypothesis of increased predation near farmland over distances of >4 km from forest–farmland edges into forest interiors in five mountain ranges in Germany, using artificial ground nests. We considered two landscape settings: (1) Transitions between a forest matrix and a farmland matrix, and (2) farmland patches within a forest matrix. Nest losses were not significantly higher in vicinity to a farmland matrix, but proximity to a pasture within the forest matrix strongly increased predation risk. We speculate that these differences resulted from landscape geometry. Farmland patches and matrix alike are highly attractive to generalist predators, and are regularly visited by red foxes from the forest. Predators that traverse the forest and take prey along the way, will cause a concentration of predation risk towards a patch (pasture), but not towards an adjacent matrix (farming lowlands), of feeding habitat. Contrary to previous evidence that edge effects in nest predation level off after 50 m, nest fate was related to distance to pastures across the entire study extent of 4.1 km. Our results suggest that landscape context and predator mobility may greatly affect spatial predation patterns.  相似文献   

4.
We explored the effects of a purported ‘reverse keystone species’, the Noisy Miner (Manorina melanocephala) using a long-term, large-scale dataset. Specifically, we identify whether this aggressive bird affects the landscape distribution patterns of other avifauna, by displacing them into, or restricting their distribution to, less productive areas, and in so doing, adheres to ‘isoleg theory’. We sought to determine the effect of abundance of the Noisy Miner on the abundance of other birds (individual species and groups), and determine whether that effect was consistent with varying site productivity, using a negative binomial distribution with a logarithmic link function, and an offset variable to account for variations in search effort. Relationships between abundance of Noisy Miners and habitat variables were examined using a Poisson distribution with a logarithmic link function scaled for extra-variation (quasi-Poisson regression). We demonstrate that when Noisy Miner abundance is low, many small passerine species are more abundant on high productivity sites. However, as Noisy Miner abundance increases, small passerine abundance decreases, with this decrease most apparent on productive sites. The same patterns were not evident for birds considered ‘non-competitors’ of the Noisy Miner. We identify that both site productivity and vegetation structure influence the abundance of the Noisy Miner. We reveal that the species increasingly tolerates ‘less desirable’ habitat attributes with increasing site productivity. The preference of the Noisy Miner for productive areas is likely to have deleterious impacts on the long-term survival and reproductive success of other Australian woodland bird species, many of which have already undergone severe declines.  相似文献   

5.

Seagrasses, which form critical subtidal habitats for marine organisms worldwide, are fragmented via natural processes but are increasingly being fragmented and degraded by boating, fishing, and coastal development. We constructed an individual-based model to test how habitat fragmentation and loss influenced predator–prey interactions and cohort size for a group of settling juvenile blue crabs (Callinectes sapidus Rathbun) in seagrass landscapes. Using results from field studies suggesting that strong top-down processes influence the relationship between cannibalistic blue crab populations and seagrass landscape structure, we constructed a model in which prey (juvenile blue crabs) are eaten by mesopredators (larger blue crabs) which in turn are eaten by top-level predators (e.g., large fishes). In our model, we varied the following parameters within four increasingly fragmented seagrass landscapes to test for their relative effects on cohort size: juvenile blue crab (prey) predator avoidance response, hunting ability of mesopredators and predators, the presence of a top-level predator, and prey settlement routines. Generally, prey cohort size was maximized in the presence of top-level predators and when mesopredators and predators exhibited random searching behavior vs. directed hunting. Cohort size for stationary (tethered) prey was maximized in fragmented landscapes, which corresponds to results from field experiments, whereas mobile prey able to detect and avoid predators had higher survival in continuous landscapes. Prey settlement patterns had relatively small influences on cohort size. We conclude that the effects of seagrass fragmentation and loss on organisms such as blue crabs will depend heavily on behaviors of prey and predatory organisms and how these behaviors change with landscape structure.

  相似文献   

6.
Seagrasses, which form critical subtidal habitats for marine organisms worldwide, are fragmented via natural processes but are increasingly being fragmented and degraded by boating, fishing, and coastal development. We constructed an individual-based model to test how habitat fragmentation and loss influenced predator–prey interactions and cohort size for a group of settling juvenile blue crabs (Callinectes sapidus Rathbun) in seagrass landscapes. Using results from field studies suggesting that strong top-down processes influence the relationship between cannibalistic blue crab populations and seagrass landscape structure, we constructed a model in which prey (juvenile blue crabs) are eaten by mesopredators (larger blue crabs) which in turn are eaten by top-level predators (e.g., large fishes). In our model, we varied the following parameters within four increasingly fragmented seagrass landscapes to test for their relative effects on cohort size: juvenile blue crab (prey) predator avoidance response, hunting ability of mesopredators and predators, the presence of a top-level predator, and prey settlement routines. Generally, prey cohort size was maximized in the presence of top-level predators and when mesopredators and predators exhibited random searching behavior vs. directed hunting. Cohort size for stationary (tethered) prey was maximized in fragmented landscapes, which corresponds to results from field experiments, whereas mobile prey able to detect and avoid predators had higher survival in continuous landscapes. Prey settlement patterns had relatively small influences on cohort size. We conclude that the effects of seagrass fragmentation and loss on organisms such as blue crabs will depend heavily on behaviors of prey and predatory organisms and how these behaviors change with landscape structure.  相似文献   

7.
Effects of habitat edge may influence habitat quality, but landscape-scale implications of edge effects have rarely been quantified. Sprague’s pipit (Anthus spragueii), a grassland obligate songbird, is declining rapidly throughout its range. Although habitat loss is implicated in the decline, the causes are not well understood. We conducted 290 point counts across a 120 × 130 km study area in southern Alberta, Canada, between 2000 and 2002, and used nonlinear regression to determine effects of distance to water, roads, and cropland or forage habitats on relative abundance of Sprague’s pipits. We then used a geographic information system (GIS) to determine the effect of edges on habitat suitability as indexed by relative abundance. Sprague’s pipit relative abundances declined by 25% from the maximum predicted relative abundance within 900 m (CI = 660–1,280) of croplands or forage crops, and 340 m (CI = 280–460) of wetlands, but there was no effect of roads. Fewer than 1% of grassland patches in the study area contained any habitat far enough away from edge that they would be predicted to support at least 75% of the relative abundance of pipits expected in the absence of edge effects. Only 33% of the landscape can support 75% or more of the relative abundance expected in the absence of edge effects, as a result of habitat conversion or edge effects. Sprague’s pipit populations may be declining in part because edge effects greatly magnify effects of habitat loss.  相似文献   

8.
Large-scale habitat enhancement programs for birds are becoming more widespread, however, most lack monitoring to resolve uncertainties and enhance program impact over time. Georgia’s Bobwhite Quail Initiative (BQI) is a competitive, proposal-based system that provides incentives to landowners to establish habitat for northern bobwhites (Colinus virginianus). Using data from monitoring conducted in the program’s first years (1999–2001), we developed alternative hierarchical models to predict bobwhite abundance in response to program habitat modifications on local and regional scales. Effects of habitat and habitat management on bobwhite population response varied among geographical scales, but high measurement variability rendered the specific nature of these scaled effects equivocal. Under some models, BQI had positive impact at both local farm scales (1, 9 km2), particularly when practice acres were clustered, whereas other credible models indicated that bird response did not depend on spatial arrangement of practices. Thus, uncertainty about landscape-level effects of management presents a challenge to program managers who must decide which proposals to accept. We demonstrate that optimal selection decisions can be made despite this uncertainty and that uncertainty can be reduced over time, with consequent improvement in management efficacy. However, such an adaptive approach to BQI program implementation would require the reestablishment of monitoring of bobwhite abundance, an effort for which funding was discontinued in 2002. For landscape-level conservation programs generally, our approach demonstrates the value in assessing multiple scales of impact of habitat modification programs, and it reveals the utility of addressing management uncertainty through multiple decision models and system monitoring.  相似文献   

9.
In an increasingly human-dominated landscape, effective management of disturbance-maintained ecosystems, such as grasslands and savannas, is critical to the conservation of biodiversity. Yet, the response of individual organisms to landscapes created by disturbances and management is rarely studied. In this study, we examined the endangered Karner blue butterfly, Lycaeides melissa samuelis, in a heterogeneous oak savanna. Our objective was to quantify the butterfly’s habitat use and behavior to assess the effects of prescribed burning. The oak savanna management in Ohio, USA divides each Karner blue site (n = 4) into three units. Each one-third unit is then burned, mowed, or unmanaged in an annual rotation within each site, and the result is a fire return interval of ~3 years. Our surveys measured habitat use, while behavior observations quantified reproduction and foraging for the two annual broods. Our habitat use results showed burned treatments were recolonized quickly, but there was not a clear selection for burned treatments. Foraging rates were similar in all treatments; however, females oviposited significantly less in unmanaged treatments (only 5 of 127 ovipositions). This oviposition preference was likely due to habitat degradation and the availability of recently burned, early successional habitat. Since Karner blues avoided reproduction in units unburned for ≥4 years, these units could be burned to create high quality early successional habitat. These results demonstrate how behavioral decisions can be pivotal forces driving spatial population dynamics. Our case study demonstrates how a fine-scale landscape perspective combined with measurements of behavioral processes can assist with management decision-making.  相似文献   

10.
Graph-based analysis is a promising approach for analyzing the functional and structural connectivity of landscapes. In human-shaped landscapes, species have become vulnerable to land degradation and connectivity loss between habitat patches. Movement across the landscape is a key process for species survival that needs to be further investigated for heterogeneous human-dominated landscapes. The common frog (Rana temporaria) was used as a case study to explore and provide a graph connectivity analysis framework that integrates habitat suitability and dispersal responses to landscape permeability. The main habitat patches influencing habitat availability and connectivity were highlighted by using the software Conefor Sensinode 2.2. One of the main advantages of the presented graph-theoretical approach is its ability to provide a large choice of variables to be used based on the study’s assumptions and knowledge about target species. Based on dispersal simulation modelling in potential suitable habitat corridors, three distinct patterns of nodes connections of differing importance were revealed. These patterns are locally influenced by anthropogenic barriers, landscape permeability, and habitat suitability. And they are affected by different suitability and availability gradients to maximize the best possible settlement by the common frog within a terrestrial habitat continuum. The study determined the key role of landscape-based approaches for identifying the “availability-suitability-connectivity” patterns from a local to regional approach to provide an operational tool for landscape planning.  相似文献   

11.
Kirtland’s warblers (Dendroica kirtlandii) persist in a naturally patchy environment of young, regenerating jack pine forests (i.e., 5–23 years old) created after wildfires and human logging activities. We examined how changing landscape structure from 26 years of forest management and wildfire disturbances influenced population size and spatial dispersion of male Kirtland’s warblers within their restricted breeding range in northern Lower Michigan, USA. The male Kirtland’s warbler population was six times larger in 2004 (1,322) compared to 1979 (205); the change was nonlinear with 1987 and 1994 identified as significant points of change. In 1987, the population trend began increasing after a slowly declining trend prior to 1987, and the rate of increase appeared to slow after 1994. Total amount of suitable habitat and the relative area of wildfire-regenerated habitat were the most important factors explaining population trend. Suitable habitat increased 149% primarily due to increasing plantations from forest management. The relative amount and location of wildfire-regenerated habitat modified the distribution of males among various habitat types, and the spatial variation in their abundance across the primary breeding range. These findings indicate that the Kirtland’s warbler male population shifted its use of habitat types temporally and spatially as the population increased and as the relative availability of habitats changed through time. We demonstrate that researchers and managers need to consider not only habitat quality, but the temporal and the spatial context of habitat availability and population levels when making habitat restoration decisions.  相似文献   

12.
We examined the connection between landscape characteristics and behaviour of a long-distance migratory raptor. Our main goal was to test whether long-distance migratory birds adjust their migration programme according to the different characteristics of the habitats crossed during the journey with special emphasis in the so-called “ecological barriers”, inhospitable environments such as deserts, ice fields, seas and mountain ranges, where the opportunities to fulfil energy requirements are low or absent and environmental factors could be extremely severe. To this end, 11 Eleonora’s falcons were tracked by satellite telemetry in their ca. 9000 km autumn migration route from colonies located in Western Mediterranean to their wintering grounds in Madagascar during 2007 and 2008. Our results show that Eleonora’s falcons migrated during day and night-time, adjusting migration speed and daily distance in relation to the crossed region. Unlike other migrant species, Eleonora’s falcons did not avoid ecological barriers by making unnecessary detours around them or converging on narrow corridors. Nocturnal migration and higher daily distances were observed when flying across the Sahara Desert and the Mozambique Channel. The circadian pattern of activity budget shows that Eleonora’s falcon relies on an internal navigation mechanism that works during both day and night. Finally, our results suggest that the Sahara is an ecological barrier not only for passerines but also for raptors migrating within the Palaearctic-African flyway.  相似文献   

13.
Forest harvesting involves the creation of roads and cutblocks, both of which can influence animal habitat use. We evaluated the cumulative effects of forestry on habitat selection by six packs of gray wolf (Canis lupus) widely distributed in Quebec’s boreal forest. Resource selection functions were used to evaluate cumulative effects at two levels. First, we studied how the response of wolves to roads and cutblocks varied within their home range (HR level) as a function of the local abundance of these habitat features. Second, we assessed whether differences in the response to roads and cutblocks observed among packs (inter-HR level) could be explained by variations in their average abundance among individual home ranges. At the HR level, we found that cumulative effects shaped habitat selection of wolves, and the nature of the effects varied during the year. For example, we detected a decrease in the selection of roads following an increase in local road density during the rendez-vous and the nomadic periods, but not during the denning period. At the inter-HR level, we found a functional response to logging activity only during the denning period. Packs with home ranges characterized by a larger proportion of recent cutblocks selected these cutblocks more strongly. We conclude that cumulative effects of logging activities occur at multiple levels, and these effects can have profound effects on habitat use by wolves, thereby influencing spatial predator–prey dynamics. Wildlife conservation and management in boreal ecosystems should thus account for cumulative impacts of anthropogenic features on animal distribution.  相似文献   

14.
The factors responsible for widespread declines of grassland birds in the United States are not well understood. This study, conducted in the short-grass prairie of eastern Wyoming, was designed to investigate the relationship between variation in habitat amount, landscape heterogeneity, prey resources, and spatial variation in grassland bird species richness. We estimated bird richness over a 5-year period (1994–1998) from 29 Breeding Bird Survey locations. Estimated bird richness was modeled as a function of landscape structure surrounding survey routes using satellite-based imagery (1996) and grasshopper density and richness, a potentially important prey of grassland birds. Model specification progressed from simple to complex explanations for spatial variation in bird richness. An information-theoretic approach was used to rank and select candidate models. Our best model included measurements of habitat amount, habitat arrangement, landscape matrix, and prey diversity. Grassland bird richness was positively associated with grassland habitat; was negatively associated with habitat dispersion; positively associated with edge habitats; negatively associated with landscape matrix attributes that may restrict movement of grassland bird; and positively related to grasshopper richness. Collectively, 62% of the spatial variation in grassland bird richness was accounted for by the model (adj-R2 = 0.514). These results suggest that the distribution of grassland bird species is influenced by a complex mixture of factors that include habitat area affects, landscape pattern and composition, and the availability of prey.  相似文献   

15.
Context

The switching pattern between behavioral modes provides a mechanistic basis for understanding how animals perceive and memorize the habitat quality in their home ranges.

Objectives

We assessed if Magellanic woodpeckers (Campephilus magellanicus) move based on habitat quality at local (neighboring trees) and home range scales.

Methods

We used state-space models to examine the relationship between remotely-sensed estimates of habitat quality (tree decay) and movement of adult woodpeckers tracked with GPS telemetry in southern Chile.

Results

Woodpeckers spent most time (>?80%) in the area-restricted search (ARS) mode in contrast to the exploratory transient mode, characterized by frequent directional displacements (>?50 m). The extent to which individuals switched between behavioral modes was related to habitat quality at different scales. Woodpeckers switched to and remained in the ARS mode when encountering moderate levels of heterogeneity in habitat quality. At very low or high heterogeneity levels, however, individuals switched to and remained in the transient mode, respectively. Likewise, as habitat quality declined locally and across home range, woodpeckers were more likely to adopt a transient mode.

Conclusions

Although woodpeckers seemed to easily perceive and memorize habitat quality at different spatial scales, our results suggest that spatial memory will less effective under extreme levels of habitat heterogeneity.

  相似文献   

16.
Examining demographic phase coupling and spatial synchrony is important for understanding complicated spatiotemporal population dynamics. It is also necessary for protecting rare and endangered species; populations whose dynamics are controlled by resource flux will face increased extinction risk if environmental conditions that drive those resources become spatially synchronized. In this study, we studied the spatial synchrony of subpopulations of the threatened Coachella Valley fringe-toed lizard (Uma inornata), on its remaining sand dune habitat in the Coachella Valley of California. Our results indicated that there is a high level of spatial synchrony between lizard density and their mean reproductive effort for two subpopulations separated by a relatively short distance. High levels of spatial synchrony also exist between the mean lizards’ reproductive effort and annual precipitation. We measured spatial synchrony using four separate methods; using different methods allows understanding of complicated ecological interactions.  相似文献   

17.
Metapopulation models are frequently used for analysing species–landscape interactions and their effect on structure and dynamic of populations in fragmented landscapes. They especially support a better understanding of the viability of metapopulations. In such models, the processes determining metapopulation viability are often modelled in a simple way. Animals’ dispersal between habitat fragments is mostly taken into account by using a simple dispersal function that assumes the underlying process of dispersal to be random movement. Species-specific dispersal behaviour such as a systematic search for habitat patches is likely to influence the viability of a metapopulation. Using a model for metapopulation viability analysis, we investigate whether such specific dispersal behaviour affects the predictions of ranking orders among alternative landscape configurations rated regarding their ability to carry viable metapopulations. To incorporate dispersal behaviour in the model, we use a submodel for the colonisation rates which allows different movement patterns to be considered (uncorrelated random walk, correlated random walk with various degrees of correlation, and loops). For each movement pattern, the landscape order is determined by comparing the resulting mean metapopulation lifetime Tm of different landscape configurations. Results show that landscape orders can change considerably between different movement patterns. We analyse whether and under what circumstances dispersal behaviour influences the ranking orders of landscapes. We find that the ‘competition between patches for migrants’ – i.e. the fact that dispersers immigrating into one patch are not longer available as colonisers for other patches – is an important factor driving the change in landscape ranks. The implications of our results for metapopulation modelling, planning and conservation are discussed.  相似文献   

18.

Context

Habitat loss and fragmentation are among the major drivers of population declines and extinction, particularly in large carnivores. Connectivity models provide practical tools for assessing fragmentation effects and developing mitigation or conservation responses. To be useful to conservation practitioners, connectivity models need to incorporate multiple scales and include realistic scenarios based on potential changes to habitat and anthropogenic pressures. This will help to prioritize conservation efforts in a changing landscape.

Objectives

The goal of our paper was to evaluate differences in population connectivity for lions (Panthera leo) across the Kavango-Zambezi Trans-frontier Conservation Area (KAZA) under different landscape change scenarios and a range of dispersal distances.

Methods

We used an empirically optimized resistance surface, based on analysis of movement pathways of dispersing lions in southern Africa to calculate resistant kernel connectivity. We assessed changes in connectivity across nine landscape change scenarios, under each of which we explored the behavior of lions with eight different dispersal abilities.

Results

Our results demonstrate that reductions in the extent of the protected area network and/or fencing protected areas will result in large declines in the extent of population connectivity, across all modeled dispersal abilities. Creation of corridors or erection of fences strategically placed to funnel dispersers between protected areas increased overall connectivity of the population.

Conclusions

Our results strongly suggest that the most effective means of maintaining long-term population connectivity of lions in the KAZA region involves retaining the current protected area network, augmented with protected corridors or strategic fencing to direct dispersing individuals towards suitable habitat and away from potential conflict areas.
  相似文献   

19.
Changes in land use affect species interactions and population dynamics by modifying the spatial template of trophic interaction and the availability of resources in time and space. We developed a process-based spatially explicit model for evaluating the effects of land use on species viability by modelling foraging performance and energy sequestration in a stage structured, three-trophic population model. The model is parameterized with realistic parameters for a ladybeetle–aphid–host plant interaction, and is run in four realistic landscapes in the Czech Republic. We analysed whether changes in crop selection and fertilizer input could explain the dramatic and unexplained decline in abundance of the ladybeetle Coccinella septempunctata in the Czech Republic from 1978 to 2005. The results indicate that a major reduction in fertilizer input after the transition to a market economy, resulting in lower aphid population densities in cereal crops and negatively affecting energy sequestration, survival and reproduction of ladybeetles, provides a sufficient explanation for the observed population decline. Simulations further indicated that the population viability of C. septempunctata is highly dependent on availability of aphid prey in crops, in particular cereal, which serves as their major reproduction habitat. The results demonstrate how the abundance of naturally occurring predators, which are instrumental for biological pest control, depends upon the spatial resource template that are provided at the landscape scale.  相似文献   

20.
Terrestrial carnivores typically have large home ranges and exist at low population densities, thus presenting challenges to wildlife researchers. We employed multiple, noninvasive survey methods—scat detection dogs, remote cameras, and hair snares—to collect detection–nondetection data for elusive American black bears (Ursus americanus), fishers (Martes pennanti), and bobcats (Lynx rufus) throughout the rugged Vermont landscape. We analyzed these data using occupancy modeling that explicitly incorporated detectability as well as habitat and landscape variables. For black bears, percentage of forested land within 5 km of survey sites was an important positive predictor of occupancy, and percentage of human developed land within 5 km was a negative predictor. Although the relationship was less clear for bobcats, occupancy appeared positively related to the percentage of both mixed forest and forested wetland habitat within 1 km of survey sites. The relationship between specific covariates and fisher occupancy was unclear, with no specific habitat or landscape variables directly related to occupancy. For all species, we used model averaging to predict occurrence across the study area. Receiver operating characteristic (ROC) analyses of our black bear and fisher models suggested that occupancy modeling efforts with data from noninvasive surveys could be useful for carnivore conservation and management, as they provide insights into habitat use at the regional and landscape scale without requiring capture or direct observation of study species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号