首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Rhizobia were screened in growth chamber and greenhouse tests with the host plants: bean (Phaseolus vulgaris L.), lentil (Lens esculenta Moench.), cowpea (Vigna unguiculata (L.) Walp) and peanut (Arachis hypogaea L.). Rhizobial isolates varied in effectiveness, time to nodulation, and host plant specifities. Initial screening procedures in plastic growth pouches allowed selection of infective strains of Rhizobium. These tests enabled the selection of a small number of highly effective isolates for more critical evaluation. Highly significant correlations (p=0.01) were obtained between shoot dry weight and total nitrogen, suggesting that the technique was applying sufficient selection pressure to differentiate variation in N2 fixation among strains of Rhizobium. Results indicate that highly effective rhizobia can be efficiently selected under controlled conditions following a step‐wise procedure.  相似文献   

2.
Summary There were significant differences among pigeonpea [Cajanus cajan (L.) Millsp] Rhizobium sp. strains (IC 3506, IC 3484, IC 3195, and IC 3087) in their ability to nodulate and fix N2 under saline conditions. Pigeonpea plants inoculated with IC 3087 and IC 3506 were less affected in growth by salinity levels of 6 and 8 dS m-1 than plants inoculated with the other strains. For IC 3506, IC 3484, and IC 3195, there was a decrease in the number of nodules with increasing salinity, while the average nodule dry weight and the specific nitrogenase activity remained unaffected. However, in IC 3087, the number of nodules increased slightly with increasing salinity. Leaf-P concentrations increased with salinity in the inoculated plants irrespective of the Rhizobium sp. strain, and leaf-N concentrations decreased with increasing salinity in IC 3484 and IC 3195 only. Shoot-Na and-Cl levels were further increased in these salt-sensitive strains only at 8 dS m-1. Therefore there may be scope for selecting pigeonpea Rhizobium sp. symbioses better adapted to saline conditions. The Rhizobium sp. strains best able to form effective symbioses at high salinity levels are not necessarily derived from saline soils.Submitted as JA No. 919 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

3.
Three plant growth-promoting rhizobacteria strains containing ACC-deaminase (Pseudomonas jessenii, Pseudomonas fragi, and Serratia fonticola) and Rhizobium leguminosarum were selected and characterized by conducting some experiments under axenic condition. The selected isolates had the potential to improve the growth of lentil seedlings under axenic conditions. Pot and field experiments were conducted to evaluate the potential of these selected strains for improving growth and yield of lentil under natural conditions. A classical triple response (reduction of stem elongation, swelling of hypocotyle, and change in the direction of growth) bioassay was also conducted to evaluate the effect of high ethylene concentration on the growth of etiolated lentil seedlings, and the performance of coinoculation was evaluated to reduce the classical triple response in comparison with cobalt (Co2+), a chemical inhibitor of ethylene. Results showed that coinoculation of Pseudomonas and Serratia sp. with R. leguminosarum significantly increased the growth and yield of lentil. However, synergistic/coinoculation effect of P. jessenii with R. leguminosarum was more pronounced compared to that with P. fragi and S. fonticola. It increased the number of pods per plant, number of nodules per plant, dry nodule weight, grain yield, and straw yield up to 76%, 196%, 109%, 150%, and 164% under pot and up to 98%, 98%, 100%, 82%, and 78%, respectively, under field conditions as compared to uninoculated control. Similarly, combined inoculation significantly increased N concentration of grains under both pot and field conditions. The results from classical triple response assay showed that the effects of classical triple response decreased due to coinoculation in etiolated lentil seedlings and due to a decrease in the ethylene concentration. It is suggested that the strategy adopted by Pseudomonas sp. containing ACC-deaminase with Rhizobium to promote nodulation and yield by adjusting ethylene levels could be exploited as an effective tool for improving growth, nodulation, and yield of lentil.  相似文献   

4.
Summary Once symbiosis between the pigeonpea cultivar ICPL 227 and the Rhizobium sp. strain IC 3024 is established, it is efficient in fixing N2 under saline conditions and can support growth comparable to N-fed plants in growth media with up to 6 dS m-1 salinity. However, the early stages of establishment of the pigeonpea-IC 3024 symbiotic system have proved sensitive to salinity. The present study showed that the number of nodules was markedly reduced at 8 dS m-1 salinity; however, nodule development and functioning were not affected by salinity in the pigeonpea-IC 3024 symbiosis. The symbiotic system of Atylosia platycarpa and Rhizobium sp. strain IC 3087 was established successfully even at 12 dS m-1 and supported growth comparable to that of N-fed plants. P levels in leaves were increased under saline conditions in N-fed and N2-fixing pigeonpea and A. platycarpa. There were no consistent differences in the leaf Na and chloride levels between N-fed and N2-fixing plants of pigeonpea and A. platycarpa. The present study suggests that the rhizobial symbiosis may not be a necessary factor for initial screening of pigeonpea and related wild species for salinity tolerance.Submitted as JA No. 964 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

5.
Nitrogen (N) fixation by legume-Rhizobium symbiosis is important to agricultural productivity and is therefore of great economic interest. Growing evidence indicates that soil beneficial bacteria can positively affect symbiotic performance of rhizobia. The effect of co-inoculation with plant growth-promoting rhizobacteria (PGPR) and Rhizobium, on nodulation, nitrogen fixation, and yield of common bean (Phaseolus vulgaris L.) cultivars was investigated in two consecutive years under field conditions. The PGPR strains Pseudomonas fluorescens P-93 and Azospirillum lipoferum S-21 as well as two highly effective Rhizobium strains were used in this study. Common bean seeds of three cultivars were inoculated with Rhizobium singly or in a combination with PGPR to evaluate their effect on nodulation and nitrogen fixation. A significant variation of plant growth in response to inoculation with Rhizobium strains was observed. Treatment with PGPR significantly increased nodule number and dry weight, shoot dry weight, amount of nitrogen fixed as well as seed yield and protein content. Co-inoculation with Rhizobium and PGPR demonstrated a significant increase in the proportion of nitrogen derived from atmosphere. These results indicate that PGPR strains have potential to enhance the symbiotic potential of rhizobia.  相似文献   

6.
《Applied soil ecology》2005,28(2):139-146
The effect of a combined inoculation of Rhizobium, a phosphate solubilizing Bacillus megaterium sub sp. phospaticum strain-PB and a biocontrol fungus Trichoderma spp. on growth, nutrient uptake and yield of chickpea were studied under glasshouse and field conditions. Combined inoculation of these three organisms showed increased germination, nutrient uptake, plant height, number of branches, nodulation, pea yield, and total biomass of chickpea compared to either individual inoculations or an uninoculated control. Increased growth and yield parameters were more pronounced when T. harzianum-PDBCTH 10 was inoculated along with the phosphate solubilizing bacterium and Rhizobium. Studies on population dynamics in the rhizosphere showed, there was no significant inhibition between the introduced organisms.  相似文献   

7.
Nitrogen balance studies were conducted to quantify the nitrogen fixed by peanut/Rhizobium symbiotic system under field conditions in a sandy soil. Large scale inoculation with three NifTAL strains of cowpea rhizobia, 1000, 169, 1371 was done using two inoculation techniques: peat-based inoculant or injection of inoculant with irrigation water through an injection tank attached to the central pivot system. The results show nitrogen fixation amounting up to 186 kg N ha?1 in peat-based inoculant and 171 kg N ha?1 in liquid inoculant injected through the irrigation system. However, no significant differences in yield response were recorded between both inoculation techniques.  相似文献   

8.
Plant‐growth promoting rhizobacteria (PGPR), in conjuction with efficient Rhizobium, can affect the growth and nitrogen fixation in pigeonpea by inducing the occupancy of introduced Rhizobium in the nodules of the legume. This study assessed the effect of different plant‐growth promoting rhizobacteria (Azotobacter chroococcum , Azospirillum brasilense, Pseudomonas fluorescens, Pseudomonas putida and Bacillus cereus) on pigeonpea (Cajanus cajan (L) Milsp.) cv. P‐921 inoculated with Rhizobium sp. (AR‐2–2 k). A glasshouse experiment was carried out with a sandy‐loam soil in which the seeds were treated with Rhizobium alone or in combination with several PGPR isolates. It was monitored on the basis of nodulation, N2 fixation, shoot biomass, total N content in shoot and legume grain yield. The competitive ability of the introduced Rhizobium strain was assessed by calculating nodule occupancy. The PGPR isolates used did not antagonize the introduced Rhizobium strain and the dual inoculation with either Pseudomonas putida, P. fluorescens or Bacillus cereus resulted in a significant increase in plant growth, nodulation and enzyme activity over Rhizobium‐inoculated and uninoculated control plants. The nodule occupancy of the introduced Rhizobium strain increased from 50% (with Rhizobium alone) to 85% in the presence of Pseudomonas putida. This study enabled us to select an ideal combination of efficient Rhizobium strain and PGPR for pigeonpea grown in the semiarid tropics.  相似文献   

9.
Thirty-nine endophytic bacterial strains were isolated from the nodule of Lespedeza sp. grown in two different locations of South Korea. All strains were checked for their plant growth promoting (PGP) abilities under in vitro conditions. Most of the isolates showed multiple PGP activity, i.e., indole acetic acid production, ACC deaminase activity, siderophore production, and phosphate solubilization. The strains were identified by using 16S rRNA gene sequence analysis as belonging to Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Firmicutes phylum with nine different genera Arthrobacter, Bacillus, Bradyrhizobium, Burkholderia, Dyella, Methylobacterium, Microbacterium, Rhizobium, and Staphylococcus. Gene nodA amplification showed positive results only for strains from Bradyrhizobium and Rhizobium genera. The strains from Bradyrhizobium and Rhizobium genera enhanced plant growth, nodulation, and acetylene reduction activity when inoculated on Vigna unguiculata L. (cowpea), whereas other strains did not induce nodule formation but enhanced plant growth. Herbaceous legume Lespedeza sp. formed root nodules with diverse bacterial group, and probably, these bacteria can be used for stimulating plant growth.  相似文献   

10.
The present study was designed with the objective of improving the nodulation and growth of chickpea (Cicer arietinum L.) by integrating co-inoculation of Rhizobium sp. (Mesorhizobium ciceri) and plant growth promoting rhizobacteria (PGPR) carrying ACC (1-aminocyclopropane-1-carboxylate) deaminase activity with P-enriched compost (PEC) under irrigated and rainfed farming systems. PEC was prepared from fruit and vegetable waste and enriched with single super phosphate. The results demonstrated that co-inoculation significantly (P?<?0.05) increased the number of nodules per plant, nodule dry weight, pods per plant, grain yield, protein content, and total chlorophyll content under irrigated and rainfed conditions compared to inoculation with rhizobium alone. Integrating PEC with co-inoculation showed an additive effect on the nodulation and growth of chickpea under both farming systems. Analysis of leaves showed a significantly (P?<?0.05) higher photosynthetic rate and transpiration rate in comparison with inoculation with Rhizobium. Compared to irrigated farming system, co-inoculation with PEC under rainfed conditions was more beneficial in improving growth and nodulation of chickpea. Post-harvest soil analysis revealed that the integrated use of bioresources and compost enhanced microbial biomass C, available N content, dehydrogenase, and phosphomonoesterase activities.  相似文献   

11.
Beneficial soil bacteria are able to colonize plant root systems promoting plant growth and increasing crop yield and nutrient uptake through a variety of mechanisms. These bacteria can be an alternative to chemical fertilizers without productivity loss. The objectives of this study were to test bacterial inoculants for their ability to promote nutrient uptake and/or plant growth of rice plants subjected to different rates of chemical fertilizer, and to determine whether inoculants could be an alternative to nitrogen fertilizers. To test the interaction between putatively beneficial bacteria and rice plants, field experiments were conducted with two isolates: AC32 (Herbaspirillum sp.) and UR51 (Rhizobium sp.), and different nitrogen fertilization conditions (0%, 50%, and 100% of urea). Satisfactory results were obtained in relation to the nutrient uptake by plants inoculated with both isolates, principally when the recommended amount of nitrogen fertilizer was 50% reduced. These bacterial strains were unable to increase plant growth and grain yield when plants were subjected to the high level of fertilization. This study indicated that the tested inoculant formulations can provide essential nutrients to plants, especially when the levels of nitrogen fertilizers are reduced.  相似文献   

12.
We constructed lacZ fusions in Rhizobium sp. (Cicer) by random Tn5-lacZ mutagenesis. The lacZ+ fusants formed blue colonies on a Rhizobial minimal medium containing 5-bromo-4-chloro-3-indolyl--D-galactopyranoside (X-gal). Rhizobium sp. (Cicer) fusant HSL-2 was identified in nodules and soil in a mixed population on the basis of the lacZ+ phenotype. Nodule occupancy of inoculated Rhizobium sp. (Cicer) HSL-2 (lacZ+) was assessed by directly streaking the nodule sap on X-gal plates. This method revealed differences between rhizobia carrying identical antibiotic markers. The rhizobial population in soil was estimated by direct plate counts using a medium containing X-gal. Introduction of lacZ into the Rhizobium sp. thus provided a simple and direct method for identifying strains from nodules and soil.  相似文献   

13.
We studied the effect of bacteria involved in rock phosphate (four isolates), iron phosphate (two isolates), and aluminium phosphate (two isolates) solubilization, and two phytate-mineralizing bacteria in terms of their interaction with two Glomus spp. on Pueraria phaseoloides growth and nutrition. The plant —Rhizobium sp. — mucorrhiza symbiosis system may increase in yield and nutrition in association with specific rhizosphere bacteria that solubilize calcium, iron, and aluminium phosphates. No benefit from phytate-mineralizing bacteria was found under these experimental conditions. P. phaseloides growth responses were influenced in different ways by specific combinations of the selected bacteria and arbuscular mycorrhizal fungi. Considerable stimulation of nutrient uptake was observed with fungus-bacteria combinations of Azospirillum sp. 1, Bacillus sp. 1 or Enterobacter (spp. 1 or 2) associated with G. mosseae. The fact that Bacillus sp. 1, a calcium-phosphate solubilizing isolate, positively interacted with G. mosseae and negatively with G. fasciculatum is an indication of specific functional compatibility between the biotic components integrated in the system. From our results, the interactions between bacterial groups able to solubilize specific phosphate and mycorrhizal fungi cannot be interpreted as occurring only via P solubilization mechanisms since no generalized effect was obtained. Iron-phosphate solubilizing microorganisms were more active alone than in dual associations with Glomus sp., but the aluminium-phosphate dissolving isolates positively interacted in mycorrhizal plants. Further work is needed in this area in order to elucidate the mechanisms that affect rhizosphere microorganism interactions. G. mosseae was more effective but less infective than G. fasciculatum in most of the combined treatments.  相似文献   

14.
Abstract

Twenty rice cultivars, including three genetically-distinct groups (japonica, indica-1, and indica-2), were evaluated for their response to inoculation with Azospirillum sp. strain B510 in paddy fields with standard nitrogen (SN) and low nitrogen (LN) fertilization. In the SN field, the tiller numbers in most indica-2 cultivars, 37?days after transplanting (DAT), were significantly increased by the B510 inoculation, whereas those in 4 japonica cultivars were significantly decreased. A similar growth response was observed in the LN field, although the impacts of the B510 inoculation were more varied than in the SN field. At 58 DAT, the tiller numbers in most cultivars were lower or unaffected by the B510 inoculation under both SN and LN conditions, except that the tiller number of the Nipponbare cultivar, which is classified as japonica, was significantly higher in the LN field only. These results suggest that the effects of inoculation with Azospirillum sp. strain B510 on the growth of rice plants, especially on tiller numbers at the early growth stage, vary depending on the rice genotype, as well as nitrogen level. Therefore, the plant genotypes, growth stages, and fertilization managements must be considered when a plant-associated bacterium is evaluated for beneficial effects under field conditions.  相似文献   

15.
Naturally growing Sesbania species with tolerance to unfavourable habitats are widely distributed in non-cultivated seasonally wetland areas in Uruguay. We investigated the relative abundance, diversity and symbiotic efficiency of Sesbania punicea and S. virgata rhizobia in three ecologically different undisturbed and water-logged sites in Uruguay. Numbers of native-soil rhizobia infective on S. punicea or S. virgata were low, with higher numbers associated with the presence of S. virgata. Plants of S. virgata inoculated with soil suspension showed aerial and nodule biomass greater than that obtained with S. punicea. The rhizobia nodulating Sesbania species in water-logged lands in different regions of Uruguay were diverse differing in growth rates, acid production, growth at 39°C and in LB medium, host range and symbiotic efficiency. Seventeen representative strains clustered into four groups on the basis of phenotypic characteristics, ARDRA and DNA fingerprinting (GTG5-PCR). Partial sequence of 16S rRNA from eight of these strains classified them into at least two genera with four species: Azorhizobium doebereinerae, Rhizobium sp. related to R. etli and two different Rhizobium sp.-Agrobacterium. Our results confirm the presence of the specie Azorhizobium doebereinerae as microsymbionts of S. virgata in South America. No strain of Rhizobium etli has previously been reported as a microsymbiont of Sesbania, though R. etli like organisms have also been recovered from Dalea purpurea and Desmanthus illinoensis. Significant increases in dry matter production were obtained with S. virgata plants inoculated with selected rhizobial strains under growth chamber conditions.  相似文献   

16.
We study the effect of plant growth–promoting rhizobacteria (PGPR) along with Mesorhizobium sp. BHURC02 on nodulation, plant growth, yield, and nutrient content of chickpea (Cicer arietinum L.) under field conditions. A similar study has been conducted for nodulation and plant growth of chickpea in pot experiment under glasshouse conditions. The treatment combination of Mesorhizobium sp. BHURC02 and Pseudomonas fluorescens BHUPSB06 statistically significantly increased nodule number plant–1, dry weight of nodule plant–1, and root and shoot dry weights plant–1 over the control under a glasshouse experiment. The maximum significant increase in nodule number, dry matter, and nutrient content were recorded in co-inoculation of Mesorhizobium sp. BHURC02 and P. fluorescens BHUPSB06 followed by co-inoculation of Mesorhizobium sp., Azotobacter chroococcum, and Bacillus megatrium BHUPSB14 over uninoculated control in a 2-year field study. Hence, co-inoculation of Mesorhizobium sp. and P. fluorescens may be effective indigenous PGPR for chickpea production.  相似文献   

17.
Rhizobium-legume symbioses are important for their nitrogen input, but salinity and elevated temperature in arid and semi-arid areas limit their effectiveness, and therefore plant growth and productivity. Sixteen Rhizobium strains isolated from root nodules of Leucaena trees grown in different geographical areas of Egypt varied in their degree of tolerance to salinity and in their symbiotic effectiveness with Leucaena leucocephala under saline conditions. Three strains were tolerant to >3% NaCl. L. leucocephala grown in the greenhouse at concentrations of NaCl up to 1.0% and inoculated either with strain DS 78 or strain DS 158 displayed significantly better growth than those plants grown at the same levels of salinity and inoculated with reference strain TAL 583. Although nine of the Rhizobium strains grew at 42  °C, their mean generation times were lengthened two- to fourfold. When daylight growth temperatures were elevated from 30  °C to 42  °C, nodule number and mass, nitrogenase activities and shoot top dry weight of plants inoculated with strains DS 78, DS 157 and DS 158 significantly increased, whereas these parameters decreased in plants inoculated with strain TAL 583. Rhizobium strains that effectively nodulate Leucaena under adverse saline conditions and at high temperatures were thus isolated, identified and characterized. Received: 12 September 1997  相似文献   

18.
持续施用生物有机肥对花生产量和根际细菌群落的影响   总被引:2,自引:0,他引:2  
我国红壤旱地花生连作现象普遍,化肥施用量大,花生产量却逐年降低。为了揭示集约化经营制度下施用生物有机肥对花生连作障碍的调控,采集旱地红壤进行了连续5年的盆栽实验,实验处理包括花生-玉米轮作、施用化肥的花生连作和施用生物有机肥的花生连作,探究持续施用生物有机肥防控花生连作障碍的根际微生态机制。结果显示,相比于轮作,施用化肥的连作花生产量显著降低;相比于连作花生施用化肥,持续施用生物有机肥可以显著缓解连作花生产量降低的问题,在施用有机肥第5季荚果干重提高27%。与施用化肥的连作处理相比,持续施用生物有机肥显著增加了花生根际细菌多样性和丰富度,与轮作花生处理无显著差异。持续施用生物有机肥显著提高了连作花生根际变形菌门和拟杆菌门的相对丰度,降低了厚壁菌门的相对丰度。属水平上,花生根际促生菌Rhizobium,Mesorhizobium和Bradyrhizobium的相对丰度较化肥处理分别提高了295%、89%和40%,而Leifsonia和Burkholderia的相对丰度分别降低了67%和47%。冗余分析进一步发现,土壤有机质和pH值是根际细菌群落结构改善的重要理化因素。这表明持续施用生物有机肥可以改良红壤理化环境(如pH值和有机质含量),进而优化连作花生根际细菌群落结构并提高根际抗病性能,实现花生稳定增产的目标。  相似文献   

19.
Abstract

A field experiment was conducted during two consecutive growing seasons (2013 and 2014) to evaluate the effects of inoculations with Rhizobium and Azotobacter on the growth and yield of two chickpea (Cicer arietinum L.) varieties under saline (5.8 dS m?1) arid condition. The single treatment of either Rhizobium or Azotobacter exhibited to promote the growth of chickpea to some level, however, co-inoculation produced more effects and increased the shoot dry weight (30.3 and 26.4%), root dry weight (17.5 and 26.3%), nodule number (79.1 and 43.8 piece per plant), nitrogen content in roots (9.62 and 10.9%), in shoots (12.6 and 8.3%) and seed protein (7.1 and 4.3%) in both Flip06-102 and Uzbekistan-32 chickpea varieties compared to the control. Our studies showed that the highest yield response of 429 (27.9%) and 538 (23.9%) kg?ha?1 over the control was revealed by the co-inoculation with Rhizobium and Azotobacter inoculants in Flip 06-102 and Uzbekistan-32, respectively. A new introduced Flip 06-102 chickpea variety was more salt tolerant and had higher root nodulation than the local Uzbekistan-32 chickpea variety. Nitrogen (N), phosphorus (P), and potassium (K) contents in the shoots and roots were significantly (p?Rhizobium plus Azotobacter could be applied to improve the vegetative growth and yield of chickpea and to alleviate the effects of salt stress.  相似文献   

20.
The effects of formaldehyde fumigation and pesticide drenching with Bavistin, Cuman, Copperthom, Sulfex, Furadon, and Termix at recommended rates on vesicular-arbuscular mycorrhizal (VAM) colonisation and Rhizobium sp. nodules were assessed regularly for a period of 90 days in the legumes Cajanus cajan, Dolichos biflorus, Vigna mungo, and V. unguiculata under field conditions. The fumigant and the pesticides initially reduced VAM fungal colonisation and the number of spores in all plants. Following the initial decrease there was a slow recovery, but by 90 days after emergence, root colonisation was either parallel to or still lower than the control, and the number of spores was still well below control levels for all species except C. cajan, which had more VAM spores than the control in all treatments except fumigation and Furadon. Although the number of nodules did not differ from control levels at 30 days after emergence, differences were evident during the later stages of plant growth for all species except V. unguiculata. The effect of pesticides on VAM fungi and root nodulation varied with the associated host plant species. Plant tissue P and VAM colonisation were significantly correlated in all host plants. The pesticide treatments had no marked effect on plant growth, but accumulations of nutrients in pesticide-treated plants were lower than those in untreated plants. Growth and nutrient status of the legumes varied with VAM fungal colonisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号