首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscarinic depression of long-term potentiation in CA3 hippocampal neurons   总被引:2,自引:0,他引:2  
Behavioral studies have suggested that muscarinic cholinergic systems have an important role in learning and memory. A muscarinic cholinergic agonist is now shown to affect synaptic plasticity in the CA3 region of the hippocampal slice. Long-term potentiation (LTP) of the mossy fiber-CA3 synapse was blocked by muscarine. Low concentrations of muscarine (1 micromolar) had little effect on low-frequency (0.2 hertz) synaptic stimulation but did significantly reduce the magnitude and probability of induction of LTP. Experiments under voltage clamp showed that muscarine blocked the increase in excitatory synaptic conductance normally associated with LTP at this synapse. These results suggest a possible role for cholinergic systems in synaptic plasticity.  相似文献   

2.
A pertussis toxin-sensitive G protein in hippocampal long-term potentiation   总被引:7,自引:0,他引:7  
High-frequency (tetanic) stimulation of presynaptic nerve tracts in the hippocampal region of the brain can lead to long-term synaptic potentiation (LTP). Pertussis toxin prevented the development of tetanus-induced LTP in the stratum radiatum-CA1 synaptic system of rat hippocampal slices, indicating that a guanosine triphosphate-binding protein (G protein) may be required for the initiation of LTP. This G protein may be located at a site distinct from the postsynaptic neuron (that is, in presynaptic terminals or glial cells) since maximal activation of CA1 neuronal G proteins by intracellular injection of guanosine-5'-O-(3-thiotriphosphate), a nonhydrolyzable analog of guanosine 5'-triphosphate, did not occlude LTP.  相似文献   

3.
Long-term potentiation (LTP), which approximates Hebb's postulate of associative learning, typically requires depolarization-dependent glutamate receptors of the NMDA (N-methyl-D-aspartate) subtype. However, in some neurons, LTP depends instead on calcium-permeable AMPA-type receptors. This is paradoxical because intracellular polyamines block such receptors during depolarization. We report that LTP at synapses on hippocampal interneurons mediating feedback inhibition is "anti-Hebbian":Itis induced by presynaptic activity but prevented by postsynaptic depolarization. Anti-Hebbian LTP may occur in interneurons that are silent during periods of intense pyramidal cell firing, such as sharp waves, and lead to their altered activation during theta activity.  相似文献   

4.
Protein kinase C activity in rat hippocampal membranes and cytosol was determined 1 minute and 1 hour after induction of the synaptic plasticity of long-term potentiation. At 1 hour after long-term potentiation, but not at 1 minute, protein kinase C activity was increased twofold in membranes and decreased proportionately in cytosol, suggesting translocation of the activity. This time-dependent redistribution of enzyme activity was directly related to the persistence of synaptic plasticity, suggesting a novel mechanism regulating the strength of synaptic transmission.  相似文献   

5.
Electrical stimulation of fibers in the stratum radiatum causes an excitatory postsynaptic potential in CA1 neurons of the hippocampus. Other excitatory inputs to or direct depolarization of these CA1 neurons during stimulation of the stratum radiatum caused a subsequent increase in the excitatory postsynaptic potential. This enhancement was characterized as a brief potentiation (2 to 3 minutes, similar to posttetanic potentiation) and a long-term potentiation (presumed to be involved in learning and memory). These potentiations are probably induced by an interaction of the postsynaptic cell or other presynaptic terminals with the test presynaptic terminals.  相似文献   

6.
Calcium influx through voltage-gated membrane channels plays a crucial role in a variety of neuronal processes, including long-term potentiation and epileptogenesis in the mammalian cortex. Recent studies indicate that calcium channels in some cell types are heterogeneous. This heterogeneity has now been shown for calcium channels in mammalian cortical neurons. When dissociated embryonic hippocampal neurons from rat were grown in culture they first had only low voltage-activated, fully inactivating somatic calcium channels. These channels were metabolically stable and conducted calcium better than barium. Appearing later in conjunction with neurite outgrowth and eventually predominating in the dendrites, were high voltage-activated, slowly inactivating calcium channels. These were metabolically labile and more selective to barium than to calcium. Both types of calcium currents were reduced by classical calcium channel antagonists, but the low voltage-activated channels were more strongly blocked by the anticonvulsant drug phenytoin. These findings demonstrate the development and coexistence of two distinct types of calcium channels in mammalian cortical neurons.  相似文献   

7.
8.
Years of intensive investigation have yielded a sophisticated understanding of long-term potentiation (LTP) induced in hippocampal area CA1 by high-frequency stimulation (HFS). These efforts have been motivated by the belief that similar synaptic modifications occur during memory formation, but it has never been shown that learning actually induces LTP in CA1. We found that one-trial inhibitory avoidance learning in rats produced the same changes in hippocampal glutamate receptors as induction of LTP with HFS and caused a spatially restricted increase in the amplitude of evoked synaptic transmission in CA1 in vivo. Because the learning-induced synaptic potentiation occluded HFS-induced LTP, we conclude that inhibitory avoidance training induces LTP in CA1.  相似文献   

9.
Norepinephrine, briefly superfused during high-frequency stimulation of the mossy fibers in the rat hippocampal slice in vitro, produced a reversible increase in the magnitude, duration, and probability of induction of long-term synaptic potentiation in the CA3 subfield. Similar results were obtained with isoproterenol, whereas propranolol or timolol reversibly blocked long-term potentiation. Norepinephrine had little apparent effect on responses obtained during low-frequency stimulation of the mossy fibers. These data suggest that norepinephrine can mediate long-lasting, frequency-dependent modulation of synaptic transmission in the mammalian brain. Furthermore, the results suggest a plausible mechanism for some of the known associative interactions between synaptic inputs to hippocampal neurons.  相似文献   

10.
Somatostatin augments the M-current in hippocampal neurons   总被引:13,自引:0,他引:13  
Immunocytochemical and electrophysiological evidence suggests that somatostatin may be a transmitter in the hippocampus. To characterize the ionic mechanisms underlying somatostatin effects, voltage-clamp and current-clamp studies on single CA1 pyramidal neurons in the hippocampal slice preparation were performed. Both somatostatin-28 and somatostatin-14 elicited a steady outward current and selectively augmented the noninactivating, voltage-dependent outward potassium current known as the M-current. Since the muscarinic cholinergic agonists carbachol and muscarine antagonized this current, these results suggest a reciprocal regulation of the M-current by somatostatin and acetylcholine.  相似文献   

11.
Brief repetitive activation of excitatory synapses in the hippocampus leads to an increase in synaptic strength that lasts for many hours. This long-term potentiation (LTP) of synaptic transmission is the most compelling cellular model in the vertebrate brain for learning and memory. The critical role of postsynaptic calcium in triggering LTP has been directly examined using three types of experiment. First, nitr-5, a photolabile nitrobenzhydrol tetracarboxylate calcium chelator, which releases calcium in response to ultraviolet light, was used. Photolysis of nitr-5 injected into hippocampal CA1 pyramidal cells resulted in a large enhancement of synaptic transmission. Second, in agreement with previous results, buffering intracellular calcium at low concentrations blocked LTP. Third, depolarization of the postsynaptic membrane so that calcium entry is suppressed prevented LTP. Taken together, these results demonstrate that an increase in postsynaptic calcium is necessary to induce LTP and sufficient to potentiate synaptic transmission.  相似文献   

12.
Ethanol inhibits NMDA-activated ion current in hippocampal neurons   总被引:44,自引:0,他引:44  
The ion current induced by the glutamate receptor agonist N-methyl-D-aspartate (NMDA) in voltage-clamped hippocampal neurons was inhibited by ethanol (EtOH). Inhibition increased in a concentration-dependent manner over the range 5 to 50 mM, a range that also produces intoxication. The amplitude of the NMDA-activated current was reduced 61 percent by 50 mM EtOH; in contrast, this concentration of EtOH reduced the amplitude of current activated by the glutamate receptor agonists kainate and quisqualate by only 18 and 15 percent, respectively. The potency for inhibition of the NMDA-activated current by several alcohols is linearly related to their intoxicating potency, suggesting that alcohol-induced inhibition of responses to NMDA receptor activation may contribute to the neural and cognitive impairments associated with intoxication.  相似文献   

13.
A group of rats was trained to escape low-intensity shock in a shuttle-box test, while another group of yoked controls could not escape but was exposed to the same amount and regime of shock. After 1 week of training, long-term potentiation (LTP) was measured in vitro in hippocampal slices. Exposure to uncontrollable shock massively impaired LTP relative to exposure to the same amount and regime of controllable shock. These results provide evidence that controllability modulates plasticity at the cellular-neuronal level.  相似文献   

14.
Telemetered recording of hormone effects on hippocampal neurons   总被引:3,自引:0,他引:3  
Frequency-modulated telemetry was used to record the effects of hormones on single-unit activity in the brains of freely moving rats. Corticosterone decreased unit activity in the dorsal hippocampus. Adrenocorticotrophic hormone had the opposite effect.  相似文献   

15.
Expression of the beta-nerve growth factor gene in hippocampal neurons   总被引:16,自引:0,他引:16  
In situ hybridization with complementary DNA probes for nerve growth factor (NGF) was used to identify cells containing NGF messenger RNA in rat and mouse brain. The most intense labeling occurred in hippocampus, where hybridizing neurons were found in the dentate gyrus and the pyramidal cell layer. The neuronal identity of NGF mRNA-containing cells was further assessed by a loss of NGF-hybridizing mRNA in hippocampal areas where neurons had been destroyed by kainic acid or colchicine. RNA blot analysis also revealed a considerable decrease in the level of NGF mRNA in rat dentate gyrus after a lesion was produced by colchicine. This lesion also caused a decrease in the level of Thy-1 mRNA and an increase in the level of glial fibrillary acidic protein mRNA. Neuronal death was thus associated with the disappearance of NGF mRNA. These results suggest a synthesis of NGF by neurons in the brain and imply that, in hippocampus, NGF influences NGF-sensitive neurons through neuron-to-neuron interactions.  相似文献   

16.
Hippocampal inhibitory postsynaptic potentials are depolarizing in granule cells but hyperpolarizing in CA3 neurons because the reversal potentials and membrane potentials of these cells differ. Here the hippocampal slice preparation was used to investigate the role of chloride transport in these inhibitory responses. In both cell types, increasing the intracellular chloride concentration by injection shifted the reversal potential of these responses in a positive direction, and blocking the outward transport of chloride with furosemide slowed their recovery from the injection. In addition, hyperpolarizing and depolarizing inhibitory responses and the hyperpolarizing and depolarizing responses to the inhibitory neurotransmitter gamma-aminobutyric acid decreased in the presence of furosemide. These effects of furosemide suggest that the internal chloride activity of an individual hippocampal neuron is regulated by two transport processes, one that accumulates chloride and one that extrudes chloride.  相似文献   

17.
Amyloid beta protein enhances the survival of hippocampal neurons in vitro   总被引:24,自引:0,他引:24  
The beta-amyloid protein is progressively deposited in Alzheimer's disease as vascular amyloid and as the amyloid cores of neuritic plaques. Contrary to its metabolically inert appearance, this peptide may have biological activity. To evaluate this possibility, a peptide ligand homologous to the first 28 residues of the beta-amyloid protein (beta 1-28) was tested in cultures of hippocampal pyramidal neurons for neurotrophic or neurotoxic effects. The beta 1-28 appeared to have neurotrophic activity because it enhanced neuronal survival under the culture conditions examined. This finding may help elucidate the sequence of events leading to plaque formation and neuronal damage in Alzheimer's disease.  相似文献   

18.
The dendritic arbor of pyramidal neurons is not a monolithic structure. We show here that the excitability of terminal apical dendrites differs from that of the apical trunk. In response to fluorescence-guided focal photolysis of caged glutamate, individual terminal apical dendrites generated cadmium-sensitive all-or-none responses that were subthreshold for somatic action potentials. Calcium transients produced by all-or-none responses were not restricted to the sites of photolysis, but occurred throughout individual distal dendritic compartments, indicating that electrogenesis is mediated primarily by voltage-gated calcium channels. Compartmentalized and binary behavior of parallel-connected terminal dendrites can greatly expand the computational power of a single neuron.  相似文献   

19.
Electrical stimulation of axons in the hippocampus with short high-frequency bursts that resemble in vivo activity patterns produces stable potentiation of postsynaptic responses when the bursts occur at intervals of 200 milliseconds but not 2 seconds. When a burst was applied to one input and a second burst applied to a different input to the same target neuron 200 milliseconds later, only the synapses activated by the second burst showed stable potentiation. This effect was observed even when the two inputs innervated completely different regions of the postsynaptic cells; but did not occur when the inputs were stimulated simultaneously or when the second burst was delayed by 2 seconds. Intracellular recordings indicated that the first burst extended the decay phase of excitatory postsynaptic potentials evoked 200 milliseconds later. These results suggest that a single burst of axonal stimulation produces a transient, spatially diffuse "priming" effect that prolongs responses to subsequent bursts, and that these altered responses trigger spatially restricted synaptic modifications. The similarity of the temporal parameters of the priming effect and the theta rhythm that dominates the hippocampal electroencephalogram (EEG) during learning episodes suggests that this priming may be involved in behaviorally induced synaptic plasticity.  相似文献   

20.
硝普钠诱导体外培养的海马神经元凋亡的研究   总被引:6,自引:0,他引:6  
目的:观察一氧化氮(NO)供体硝普钠(SNP)对体外培养的海马神经元凋亡的影响。方法:用终浓度分别为0、25、50、100、200、400、600μmol/L的SNP处理海马神经元24h,用MTT比色法分析细胞存活率,倒置显微镜、Hoechst 33258荧光染色观察凋亡的形态学改变,DNA琼脂糖凝胶分析凋亡的生化特征。结果:SNP可剂量依赖性的降低神经元的存活率,当SNP浓度为50μmol/L时,其存活率为56.2%;倒置显微镜观察可见神经元胞体固缩,突起断裂,网络消失;荧光显微镜可见染为高亮蓝色的典型凋亡小体,其细胞核明显固缩、凝聚和断裂,且随SNP剂量的增加,出现凋亡小体的细胞明显增多;50、100、200μmol/L SNP处理海马神经元,电泳图谱显示清晰的DNA梯度。结论:SNP可诱导培养的海马神经元凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号