首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
澳大利亚东部地区一些酸性硫酸盐土壤磷的特征   总被引:1,自引:0,他引:1  
C. LIN 《土壤圈》2002,12(3):229-234
Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1-extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH < 4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of Pin these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil. The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.54.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.  相似文献   

2.
Land usage is a strong determinant of soil microbial community composition and activity, which in turn determine organic matter decomposition rates and decomposition products in soils. Microbial communities in permanently flooded wetlands, such as those created by wetland restoration on Sacramento-San Joaquin Delta islands in California, function under restricted aeration conditions that result in increasing anaerobiosis with depth. It was hypothesized that the change from agricultural management to permanently flooded wetland would alter microbial community composition, increase the amount and reactivity of dissolved organic carbon (DOC) compounds in Delta waters; and have a predominant impact on microbial communities as compared with the effects of other environmental factors including soil type and agricultural management. Based on phospholipid fatty acid (PLFA) analysis, active microbial communities of the restored wetlands were changed significantly from those of the agricultural fields, and wetland microbial communities varied widely with soil depth. The relative abundance of monounsaturated fatty acids decreased with increasing soil depth in both wetland and agricultural profiles, whereas branched fatty acids were relatively more abundant at all soil depths in wetlands as compared to agricultural fields. Decomposition conditions were linked to DOC quantity and quality using fatty acid functional groups to conclude that restricted aeration conditions found in the wetlands were strongly related to production of reactive carbon compounds. But current vegetation may have had an equally important role in determining DOC quality in restored wetlands. In a larger scale analysis, that included data from wetland and agricultural sites on Delta islands and data from two previous studies from the Sacramento Valley, an aeration gradient was defined as the predominant determinant of active microbial communities across soil types and land usage.  相似文献   

3.
《Geoderma》2005,124(1-2):181-192
Contents of soil organic matter (SOM) and total nitrogen (TN) in the surface soils and subsurface soils were measured in five types of floodplains classified with different flood frequencies in river marginal wetlands of Erbaifangzi, China, in 1999. Contour maps and profile maps were constructed to describe the spatial distribution of SOM and TN in order to identify the influences of flood frequency on them. Results showed that spatial distributions of both SOM and TN were very similar in soil profiles (0–120 cm) of the five areas, decreasing gradually with depth except an accumulation peak in the flooded floodplain (B area). Also, the accumulation peak in the soil profile of B area was relevant to water table, nitrogen leaching, denitrification and mineralization. However, their horizontal distributions in surface soils (0–10 cm) were different in the five areas. Although the flood could bring the deposit of nutrients and sands, the highest content of SOM or TN did not appear in B area but in the floodplain with certain flood frequency. For example, SOM content (6.76%) in 5-year floodplain wetland was highest, and the highest content of TN (3666.4 mg/kg) appeared in 1-year floodplain wetland. However, SOM and TN contents in soils of B area were 4.08% and 2605.4 mg/kg, respectively. Soil clay content, wetland plant (Phragmites australis) litter inputs, soil moisture and water table greatly affected the spatial distribution of SOM and TN in floodplain wetlands. The ratios of carbon to nitrogen of wetland soils in this region were relatively lower than those in paddy soils. SOM and TN contents were significantly correlated with total phosphorus (TP) contents in floodplain wetlands except the 100-year floodplain wetland, but they were significantly influenced by soil pH values only in B area. Denitrification and ammonia volatilization were the main mechanisms resulting in nitrogen loss of surface soils in B area. Flood frequency significantly influenced the ecological functions such as nutrient retention and water quality maintenance of floodplains.  相似文献   

4.
三江平原退化湿地土壤物理特征变化分析   总被引:9,自引:2,他引:9  
王世岩 《水土保持学报》2004,18(3):167-170,174
针对不同退化程度的湿地土壤物理特征的变化进行了分析。首先对退化湿地土壤剖面特征进行了阐述,然后分析了退化湿地土壤的温度特征变化、电导率状况变化、土壤的水分特征变化和土壤容重变化。研究表明,不同退化程度的湿地土壤具有不同的土壤物理性质,在未退化湿地→轻度退化湿地→中度退化湿地→重度退化湿地→已垦湿地(农田)的湿地退化研究样带上,湿地土壤温度呈现逐渐升高的变化趋势、土壤电导率呈降低变化、土壤水分呈降低趋势、土壤容重则呈现升高的变化规律。土壤表层与下层相比较,土壤表层温度、含水量与容重均高于土壤下层;在电导率的变化中,除了未退化湿地土壤的下层高于表层以外,其它退化状态的湿地土壤均为表层高于下层。另外,对退化湿地土壤的各物理特征在空间距离上的退化过程进行模型模拟,发现指数增加(或分解)模型能够较好地模拟出湿地土壤物理特征的空间退化过程。本研究将有助于理解退化湿地土壤物理特征的变化规律和查明湿地的退化机理,为退化湿地的恢复与重建研究奠定科学基础。  相似文献   

5.
以东北寒温带不同纬度典型湿地土壤碳氮分布关系为研究对象,遴选漠河湿地、洪河湿地及七星河湿地进行土壤样品的调查采集并进行土壤碳氮分布相关分析,通过构建不同纬度沼泽湿地土壤碳氮含量垂直分布结构,考察不同湿地不同植被类型土壤碳氮分布规律及土壤对植被生长状况的影响。结果表明:土壤氨氮及硝态氮在土壤垂直分布中有明显的表聚现象,含量随土壤深度的增加呈明显下降趋势;七星河湿地及洪河湿地土壤碳氮含量呈显著的线性相关关系,而漠河湿地土壤碳氮含量相关性不显著。本研究通过对东北寒温带不同纬度沼泽湿地土壤碳氮含量分布的研究,旨在对全球沼泽湿地氮循环的研究提供一定的参考作用。  相似文献   

6.
From 2006 to 2010, low water levels resulted in the drying of previously submerged inland acid sulphate soils (IASS) in wetlands of the Murray–Darling Basin (MDB). The potential for widespread severe acidification resulting from the oxidation of pyrite in these wetland soils triggered a basin‐wide study to assess the occurrence and risks posed by IASS material in the floodplain wetlands of the MDB. The results of pH measurements before and following soil incubation from more than 7200 samples (representing ca. 2500 profiles from 1055 georeferenced wetlands) were used to assess the potential occurrence of sulphuric and sulphidic material in IASS across the MDB. Their occurrence was investigated on a regional basis by dividing the MDB into 13 geographical regions whose boundaries roughly follow hydrological catchment boundaries. A total of 238 floodplain wetlands, representing 23% of the total wetlands assessed, were found to contain soils that became ultra‐acidic (pH < 4) when oxidized and therefore present a severe acidification hazard. These soils, the majority of which are likely to be IASS materials, were found in 11 of the 13 geographical regions. Among the 11 geographical regions likely containing IASS materials, the proportion of wetlands that presented an acidification hazard varied between 2 and 52% of those assessed. The geographical regions found to present the greatest acidification hazard were in the southern MDB, downstream of the Murray–Darling confluence, and in catchments on the southern side of the Murray River channel in Victoria. This study provided policy makers with a valuable screening tool, which helped them to identify priority wetlands and regions that required more detailed IASS investigations.  相似文献   

7.
Freshwater wetlands exposed to excess S deposition can potentially store significant amounts of reduced S in soils by dissimilatory sulfate reduction. If this storage is permanent, the harmful environmental effects of S deposition and the accompanying acidity are reduced, particularly on surface waters into which wetlands drain. Total non-sulfate S in freshwater peat is divided into three fractions: reduced inorganic S, ester sulfate and carbon-bonded sulfur (CBS). Each fraction is further divided based on its origin: assimilatory via plant and microbial uptake, and dissimilatory via microbial reduction. The CBS fraction dominates in peat, so the amount of dissimilatory CBS in the soil is a direct measure of the beneficial effect of storage of reduced S. Unfortunately, there is no way to directly measure dissimilatory CBS. A model is developed which, with three assumptions, provides a method to calculate dissimilatory CBS using S pool size and stable isotope measurements. Application of the model to a wetland in the New Jersey Pinelands, U.S.A., shows that large amounts of reduced dissimilatory S are stored in the soil. As a consequence, the impact of S deposition and acidity on the surface water environment is significantly reduced.  相似文献   

8.
According to the Corps of Engineers Wetlands Delineation Manual, wetlands are identified by the presence of field indicators of hydrophytic vegetation, hydric soils, and wetland hydrology. In the southern Appalachian region, situations that present problems for wetland delineators include (1) wetlands developed on recently deposited alluvial soils that may show little evidence of hydric conditions, (2) areas occupied by FAC-dominated plant communities, (3) wetlands affected by past or present drainage practices, (4) man-induced wetlands that may lack certain wetland field indicators, and (5) hydric soil units that are too small or narrow to be delineated separately on soil survey map sheets. In March 1993, under direction of Section 307(e) of the Water Resources Development Act of 1990, the Corps of Engineers initiated a Wetland Delineator Certification Program. A 1-year demonstration program has recently ended in Maryland, Florida, and Washington, with nationwide implementation scheduled for later in 1994. This voluntary program is designed to increase the quality of wetland delineations submitted with Section 404 permit applications, and reduce processing time by reducing the need for extensive field verification of wetland boundaries.  相似文献   

9.
【目的】利用人工湿地是目前我国进行点源污水处理的一项重要技术,人工湿地的湿生植物及其根际微生物对污水处理有重要影响。目前人们普遍关注的是湿生植物根际细菌的群落结构和功能,而对根际真菌群落结构的信息较少。本文主要研究10种湿生植物根际的土壤肥力、真菌数量、生物量和真菌的碳代谢,目的在于筛选出根际土壤真菌生物量和活性均较大的植物种类,为今后人工湿地的建设提供参考依据。【方法】采用"向后抛石法"随机选取采样点,收集10种湿生植物根际土壤。采用常规方法测定土壤有机碳、全氮和全磷含量;真菌数量采用稀释平板法,真菌生物量(麦角固醇含量)采用高效液相色谱法(HPLC)测定;真菌碳代谢指纹采用FF板进行分析。【结果】银边石菖蒲、花叶香蒲和黄菖蒲根际土壤分别有较高的有机碳、全氮和全磷含量(P0.05)。黄菖蒲根际土壤真菌数量和生物量最大(P0.05)。相关分析表明,土壤全磷与真菌数量和生物量有极显著的正相关关系(P0.05),是制约土壤真菌分布的重要因素。碳代谢指纹分析表明,水生美人蕉土壤真菌对95种碳源的平均利用活性以及对6种碳源群的利用强度均大于其它植物,土壤全氮显著地影响了真菌群落对碳水化合物的利用(P0.05)。【结论】10种湿生植物根际土壤肥力和真菌群落有显著性差异,因而土壤肥力和真菌群落可以作为筛选人工湿地植物的重要依据,但这一结论还有待从分子生物学的角度进一步验证。  相似文献   

10.
《CATENA》2005,62(1):45-56
This study is the first large scale examination of the stratigraphic relationships of acid sulfate soils in Australia. Field and laboratory data from 346 excavated acid sulfate soil profiles for an extensive soil survey undertaken to map their extent were classified into non acid sulfate soil (NASS), potential acid sulfate soil (PASS), and actual acid sulfate soil (AASS) layers, and the elevation of these layers within different geomorphic environments was examined. Layers containing sulfurous materials were found at 0.35 m below mean sea level in intertidal swamps, around mean sea level in areas subject to intermittent water logging, and greater than 0.40 m above mean sea level in other areas. Sulfurous materials in intertidal swamps represent present day formation while in other landforms are evidence for a sea level that was once higher than at present. The division of sulfurous sediment elevations into two groups above present day sea level could be explained by two processes. Firstly, two periods of higher sea level during the Holocene could result in sulfurous materials at different levels. Secondly, the barrier system which developed along the NSW coast during the Holocene and impounded a series of estuarine mud basins could have resulted in the formation of sulfurous materials at higher elevations along the edge of the lakes and at lower elevations on the lake beds themselves.  相似文献   

11.
Wetland development offers the opportunity to replace and enhance ecological functions lost through permitted wetland impacts. Components necessary for the restoration and creation of wetlands are presented and examples of wetland construction are described to illustrate the application of wetland design. Land contours, top soil, hydrology and vegetation were manipulated to develop wooded wetlands at sites in Ohio and South Carolina. In Ohio, approximately 30 ha of former crop land/sod farm were modified to bring water from the adjacent creek onto the site and hold it to saturate soils for wetland development. A 2.8 ha ponding area and channels were constructed, berms were built to slow the exit of stormwater runoff, and trees were planted in spring 1994. The mitigation site lies adjacent to a park and high school, thereby also providing community benefits and wetland education opportunities. In South Carolina, 9.5 ha of an abandoned soil borrow pit were converted into wooded wetlands, hydrologically connected to an adjacent swamp. Native plants were removed from the 4 ha of isolated wetlands to be impacted, and were augmented with nursery stock to create the mitigation wetland. Monitoring of vegetation, hydrology and wildlife usage of the constructed system continues to document wetland development and success.  相似文献   

12.
Background and Objective  Largely influenced by the passage of the Swamp Land Act of 1849, many wetlands have been lost in the coastal plain region of southeastern United States primarily as a result of drainage to convert land for agriculture. While further wetland conversion or loss is universally acknowledged, the process continues with little public recognition of the causes or consequences. This study examined changes in soil carbon, pH, and Mehlich extractable nutrients in soils following conversion of wetland to beef cattle pasture. Methods  To better understand the chemical response of soils during wetland conversion to beef cattle pasture, soil samples were collected from the converted beef cattle pastures and from the adjoining reference wetland. Soil samples were collected from eleven sites in the beef cattle pasture, and from four in the adjoining reference wetland. Data that were collected from the reference wetland sites were used as the reference/baseline data to detect potential changes in soil properties associated with the conversion of wetlands to beef cattle pastures from 1940 to 2002. Results and Discussion  Compared with the adjoining reference wetland, the beef cattle pasture soils in 2002, 62 years after being drained, exhibited: (1) a decrease in organic carbon, TOC (-172.3 g kg-1), nitrogen, TN (-10.1 g kg-1), water soluble phosphorus, WSP (-5.1mg kg-1), and potassium, K (-0.7 mg kg-1); (2) an increase in soil pH (+1.8 pH unit), calcium, Ca (+88.4 mg kg-1), magnesium, Mg (+7.5 mg kgc), manganese, Mn (+0.3 mg kg-1), and iron, Fe (+6.9 mg kg-1); and (3) no significant changes in sodium (Na), zinc (Zn), copper (Cu), and aluminum (Al). In 2002, the amount of TOC and the concentration of soil organic matter (OM) in pasture fields were significantly lower than the concentration in the reference wetland with average values of 7.8 ± 8 g kg-1 and 36 ± 26 g kg-1 and 180.1 ± 188 g kg-1 and 257 ± 168 g kg-1, respectively. It appeared that conversion of wetlands was proceeding toward a soil condition/composition like that of mineral soils. Conclusion and Outlook  Overall, conversion of wetland had significant effects on soil carbon, pH, nitrogen, phosphorus, and extractable nutrients. Results of our study have shown a decrease in TOC, TN, WSP, and K and an increase in soil pH, Ca, Mg, Mn, and Fe. These results are important in establishing useful baseline information on soil properties in pasture and adjoining reference wetland prior to restoring and converting pasture back to its original wetland conditions as a major part of the restoration effort being underway.  相似文献   

13.
黄河口滨岸潮滩不同类型湿地土壤氮素分布特征   总被引:9,自引:0,他引:9  
对黄河口滨岸潮滩不同类型湿地土壤氮分布特征进行了对比研究。结果表明,湿地土壤氮以有机氮为主,无机氮所占比例较低且以铵态氮为主。土壤氮水平分布特征明显,TN、NH4+-N和NO3--N含量较高的分别是芦苇湿地、碱蓬-柽柳湿地(过渡带)湿地和芦苇湿地;土壤氮垂直分布特征亦明显,表现为表层土壤氮含量大于下层,其中,TN、NH4+-N和NO3--N含量垂直变化最明显的分别是三棱蔗草-朝天委陵菜湿地、碱蓬湿地和芦苇湿地。影响土壤氮分布的主要因素有水分条件、植被类型及微生物活动等。相关分析表明TN与有机氮、有机质呈极显著正相关(P<0.01),NH4+-N与TP呈显著负相关(P<0.05)。研究发现,植被对调整湿地氮的空间分布有一定作用,从而为湿地生态修复提供了理论依据。  相似文献   

14.
A four hectare mixed bottomland hardwood site on Ninety Six Creek in the Piedmont of South Carolina near Ninety Six, SC was studied for two years to characterize wetland traits. The soils were thermic Fluventic or Fluvaquentic Dystrochrepts predominantly Shellbluff series and well drained. Overbank flooding occurred on the average of 4 times per year and 1.5 times during the growing season for a 13 year period. High water table levels during the early growing season were related to rainfall events. A hydrologic model (WATRCOM-2D), soils, water table levels, and GIS techniques were used to estimate the portion of the bottom that met wetland criteria similar to those defined in the 1987 and 1989 federal wetland delineation manuals. Less than one hectare met these criteria. The wetland “status” of the vegetation within the bottom and adjacent slope was not correlated with water table levels, predicted wetland areas, or landforms. Wetland traits of the site were closely related to hydric soil traits within the upper 25 cm of the Chewacla and Chenneby soils and landform characteristics. Wetlands in this bottom were primarily driven by local precipitation and not by overbank flooding as originally suspected. Songbirds and small mammals were relatively abundant in the small bottom during the spring and summer of 1992. Protection of only the jurisdictional wetlands in this bottom would not be adequate to sustain riverine functions (conveyor) and to provide wildlife travel corridors between adjacent forested areas.  相似文献   

15.
我国酸性硫酸盐土壤中铁锰形态转化及迁移   总被引:7,自引:0,他引:7  
刘兆辉  王遵亲 《土壤学报》1994,31(4):376-384
酸性硫酸盐土壤酸性很强,有机质含量高,造成了这种土壤所特有的铁锰淋洗、转化和迁移规律。研究结果表明:在酸性硫酸盐土壤中全铁含量较低,一般在35-50g/kg(以Fe2O3计),全锰含量也低,一般在0.25-0.55g/kg(以MnO计),一般滩涂中全铁大于60g/kg,全锰大于1g/kg。酸性硫酸盐土壤中,铁的游离度较小,一般在37-70%,铁的活化度较大,一般在8-20%,而滩涂中铁的游离度一般  相似文献   

16.
In the Prairie Pothole Region (PPR) of Canada, wetlands once utilized for agricultural purposes are restored through the placement of a ditch plug to return them to their pre-existing hydrological state. The overall objective of this research was to assess differences in riparian soil microbial community structure between reference wetlands, those which had never been utilized for agricultural purposes, and restored wetlands, of varying times since restoration. Soil samples (0-6 cm) were taken from 15 reference and 28 restored wetlands. The soil microbial community was characterized using phospholipid fatty acid (PLFA) analysis. Data were analyzed using non-metric multidimensional scaling, multivariate regression trees (MRT) and indicator species analysis. The microbial community of younger restored soils (1-3 and 4-6 yrs) differed significantly from the reference soils, with reference soils having higher microbial biomass, evenness, and diversity. Richness showed an increasing trend with time since restoration. Results from the MRT underlined the importance of climatic factors, specifically precipitation - potential evapotranspiration (P-PE) in explaining the variation found in the microbial community. More specifically, drier sites had strong indicator species values associated with PLFAs of actinomycetal origin and fungal origin. Within the wetter sites, it was found that the older restored sites (7-11 yrs) and reference sites had strong indicator species values associated with PLFAs of Gram negative and fungal origin. The similarities in microbial community composition and biomass of the older restored sites (7-11 yrs) and the reference sites indicate that this component of the wetland ecosystems begins to recover within this time period.  相似文献   

17.
中国湿地土壤碳氮磷生态化学计量学特征研究   总被引:27,自引:0,他引:27  
明确区域及全球湿地土壤中是否存在类似“Redfield比值(Redfield ratio)”的碳氮磷(C∶N∶P)比例,是认识湿地生态系统中元素循环,构建湿地物质循环模型的基础。本文基于《中国沼泽志》中有详细土壤理化性质记录的119块沼泽湿地数据,利用数理统计方法,分析了区域尺度上湿地土壤中碳C∶N∶P生态化学计量学特征及分布格局,并探讨了其可能的影响因素。结果表明,中国湿地土壤中C∶N、C∶P和N∶P(摩尔比)平均为18.22、245.22和13.60,高于中国及世界土壤中C∶N、C∶P和N∶P的平均值,C∶N∶P比例平均值为245∶13.6∶1。碳、氮、磷三者之间并不具备显著的两两相关性,说明中国湿地土壤中不存在类似于“Redfield比值”的C∶N∶P比例。相比于N元素,湿地生态系统更多受到P供应的限制。不同湿地类型或不同盐度情况下湿地土壤中C∶N、C∶P和N∶P存在显著性差异,而植被类型对土壤中C∶N、C∶P和N∶P影响不大。相关性分析表明,海拔高度、温度(年平均气温、1月平均气温、7月平均气温、活动积温)及p H是决定湿地土壤中C∶N、C∶P和N∶P的主要因素。考虑到海拔与C∶P及N∶P之间极显著的相关关系,海拔这一非地带性因子是决定湿地土壤C∶N∶P计量学特征的主要因素。  相似文献   

18.
鄱阳湖典型洲滩湿地土壤环境因子对植被分布影响研究   总被引:4,自引:0,他引:4  
湿地植被生长的影响因素包括非生物因素和生物因素两部分。其中,非生物因素中对湿地植被格局影响较大的主要是水文和土壤环境因子,也是当今湿地生态水文过程研究的热点和重点。通过研究鄱阳湖典型洲滩湿地4种植物群落带下各土壤环境因子的含量变化特征,结合研究区20个植被样方的典范对应分析(Canonical Correspondence Analysis,CCA)排序,分析了鄱阳湖典型洲滩湿地主要土壤环境因子及其对植被分布的影响。结果表明:不同植被群落下的全氮含量有明显差异,依次为苔草带藜蒿-狗牙根带芦苇-苔草带苔草-虉草带;总有机碳与全氮含量大小在不同植被群落带的分异趋势相同,二者存在极显著相关关系;土壤全磷含量随植被群落不同的变化规律不明显;随植被群落带离湖泊水体距离逐渐减小,土壤中速效钾含量有增大的趋势,但程度较小。鄱阳湖典型洲滩湿地土壤有机碳与全氮、有效磷呈极显著相关关系,土壤含水量与土壤有效磷呈显著负相关关系,有效磷与全氮呈极显著相关关系。土壤含水量是影响鄱阳湖湿地研究区植被分布的最主要因素,土壤pH、全钾含量也是影响湿地植被分布的重要土壤环境因子。  相似文献   

19.
Few studies have been carried out on nitrification potential of marsh soils in natural saline wetlands with high alkalinity. The nitrification potentials of a closed wetland and an open wetland were monitored by an aerobic incubation at 25°C for 28 days. The relative nitrification index ( RNI,\frac\textNO3- \text - NNO3- - N + NH4+ - N ) \left( {{\hbox{RNI,}}\frac{{{\text{NO}}_3^{-} {\text{ - N}}}}{{{\hbox{NO}}_3^{-} {\hbox{ - N}} + {\hbox{NH}}_4^{+} {\hbox{ - N}}}}} \right) rapidly increased with time in both wetlands and decreased with depth in soil profiles in both wetlands within the first 21 days. Nitrification proceeded much faster in the closed wetland than in the open wetland. The higher rate of nitrogen removal in closed wetlands than open wetland was probably due to the fast nitrification followed by denitrification or leaching loss.  相似文献   

20.
The upper Great Egg Harbor River watershed in New Jersey’s Coastal Plain is urbanized but extensive freshwater wetlands are present downstream. In 2006–2007, studies to assess levels of total mercury (THg) found concentrations in unfiltered streamwater to range as high as 187 ng/L in urbanized areas. THg concentrations were <20 ng/L in streamwater in forested/wetlands areas where both THg and dissolved organic carbon concentrations tended to increase while pH and concentrations of dissolved oxygen and nitrate decreased with flushing of soils after rain. Most of the river’s flow comes from groundwater seepage; unfiltered groundwater samples contained up to 177 ng/L of THg in urban areas where there is a history of well water with THg that exceeds the drinking water standard (2,000 ng/L). THg concentrations were lower (<25 ng/L) in unfiltered groundwater from downstream wetland areas. In addition to higher THg concentrations (mostly particulate), concentrations of chloride were higher in streamwater and groundwater from urban areas than in those from downstream wetland areas. Methylmercury (MeHg) concentrations in unfiltered streamwater ranged from 0.17 ng/L at a forest/wetlands site to 2.94 ng/L at an urban site. The percentage of THg present as MeHg increased as the percentage of forest + wetlands increased, but also was high in some urban areas. MeHg was detected only in groundwater <1 m below the water/sediment interface. Atmospheric deposition is presumed to be the main source of Hg to the wetlands and also may be a source to groundwater, where wastewater inputs in urban areas are hypothesized to mobilize Hg deposited to soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号