首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on temperature, moisture and sample size. In this study, a laboratory incubation experiment was carefully designed and conducted under controlled conditions to examine the effects of soil temperature and moisture on soil N mineralization using soil samples obtained from the Stipa krylovii grassland in Inner Mongolia, China. Five temperature(i.e. 9°C, 14°C, 22°C, 30°C and 40°C) and five moisture levels(i.e. 20%, 40%, 60%, 80% and 100% WHC, where WHC is the soil water holding capacity) were included in a full-factorial design. During the 71-day incubation period, microbial biomass carbon(MBC), ammonium nitrogen(NH4 +-N) and nitrate nitrogen(NO3--N) were measured approximately every 18 days; soil basal respiration for qCO2 index was measured once every 2 days(once a week near the end of the incubation period). The results showed that the mineral N production and net N mineralization rates were positively correlated with temperature; the strongest correlation was observed for temperatures between 30°C and 40°C. The relationships between moisture levels and both the mineral N production and net N mineralization rates were quadratic. The interaction between soil temperature and moisture was significant on N mineralization, i.e. increasing temperatures(moisture) enhanced the sensitivity of N mineralization to moisture(temperature). Our results also showed a positive correlation between the net nitrification rate and temperature, while the correlation between the NH4 +-N content and temperature was insignificant. The net nitrification rate was negatively correlated with high NH4 +-N contents at 80%–100% WHC, suggesting an active denitrification in moist conditions. Moreover, qCO2 index was positively correlated with temperature, especially at 80% WHC. With a low net nitrification rate and high soil basal respiration rate, it was likely that the denitrification concealed the microbial gross mineralization activity; therefore, active soil N mineralization occurred in 60%–80% WHC conditions.  相似文献   

2.
The hydrogen isotopic composition of plant leaf wax(δDwax) is used as an important tool for paleohydrologic reconstruction. However, the understanding of the relative importance of environmental and biological factors in determining δDwax values still remains incomplete. To identify the effects of soil moisture and plant physiology on δDwax values in an arid ecosystem, and to explore the implication of these values for paleoclimatic reconstruction, we measured δD values of soil water(δDwater) and δDwax values in surface soils along two distance transects extending from the lakeshore to wetland to dryland around Lake Qinghai and Lake Gahai on the northeast Qinghai-Tibetan Plateau. The results showed that the δDwater values were negatively correlated with soil water content(SWC)(R2=0.9166), and ranged from –67‰ to –46‰ with changes in SWC from 6.2% to 42.1% in the arid areas of the Gangcha(GCh) and Gahai(GH) transects. This indicated that evaporative D-enrichment in soil water was sensitive to soil moisture in an arid ecosystem. Although the shift from grasses to shrubs with increasing aridity occurred in the arid area of the GH transect, the δDwax values in surface soils from the arid areas of the two transects still showed a negative correlation with SWC(R2=0.6835), which may be due to the controls of primary evaporative D-enrichment in the soil water and additional transpirational D-enrichment in the leaf water on the δDwaxvalues. Our preliminary research suggested that δDwax values can potentially be applied as a paleo-humidity indicator on the northeast Qinghai-Tibetan Plateau.  相似文献   

3.
The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield based on data from 46 hydrological stations in the sediment-rich region of the Yellow River from 1955 to 2010. The results showed that since 1970 sediment yield in the region has clearly decreased at different rates in the 45 sub-areas controlled by hydrological stations. The decrease in sediment yield was closely related to the intensity and extent of soil erosion control measures and rainstorms that occurred in different periods and sub-areas. The average sediment delivery modulus(SDM) in the study area decreased from 7,767.4 t/(km2?a) in 1951–1969 to 980.5 t/(km2?a) in 2000–2010. Our study suggested that 65.5% of the study area with the SDM below 1,000 t/(km2?a) is still necessary to control soil deterioration caused by erosion, and soil erosion control measures should be further strengthened in the areas with the SDM above 1,000 t/(km2?a).  相似文献   

4.
Estimation of the transpiration rate for a tree is generally based on sap flow measurements within the hydro-active stem xylem. In this study, radial variation of sap flow velocity(Js) was investigated at five depths of the xylem(1, 2, 3, 5 and 8 cm under the cambium) in three mature Xinjiang poplar(Populus alba L. var. pyramidalis) trees grown at the Gansu Minqin National Studies Station for Desert Steppe Ecosystem from May to October 2011. Thermal dissipation probes of various lengths manufactured according to the Granier's design were installed into each tree for simultaneous observation of the radial patterns of Js through the xylem. The radial patterns were found to fit the four-parameter GaussAmp equation. The peak Js was about 27.02±0.95 kg/(dm2?d) at approximately 3 to 5 cm deep from the cambium of the three trees,and the lowest Js appeared at 1 cm deep in most of the time. Approximately 50% of the total sap flow in Xinjiang poplar occurred within one-third of the xylem from its outer radius, whereas 90% of the total sap flow occurred within two-fifth of the xylem. In addition, the innermost point of the xylem(at 8-cm depth), which appeared as the penultimate sap flow in most cases during the study period, was hydro-active with Js,8 of 7.55±3.83 kg/(dm2?d). The radial pattern of Js was found to be steeper in midday than in other time of the day, and steeper diurnal fluctuations were recorded in June, July and August(the mid-growing season). Maximum differences between the lowest Js(Js,1 or Js,8) and the highest Js(Js,3 or Js,5) from May through October were 12.41, 17.35, 16.30, 18.52, 12.60 and 16.04 g/(cm2?h), respectively. The time-dependent changes of Js along the radial profile(except at 1-cm depth) were strongly related to the reference evapotranspiration(ET0). Due to significant radial variability of Js, the mean daily sap flow at the whole-tree level could be over-estimated by up to 29.69% when only a single probe at depth of 2 cm was used. However, the accuracy of the estimation of sap flow in Xinjiang poplar could be significantly improved using a correction coefficient of 0.885.  相似文献   

5.
High salinity in soil can prevent root growth of most plants. To investigate soil salinity dynamics under drip irrigation with mulch film(DI) and its effects on cotton root length, we conducted field experiments in saline soil based on a monolith method using flooding irrigation with mulch film(FI) as a control at the Korla Experimental Station of the Xinjiang Academy of Agricultural Sciences, China in 2009 and 2010. The results showed that the total root length decreased 120 days after sowing(DAS) under DI, and was mainly centered in the 0–30 cm soil layer and at distances of 30–70 cm from the drip-lines. There was almost complete overlap in the area of root length decline and salt accumulation. In the soil depth of 0–30 cm and at distances of 30–70 cm from the drip-lines at 110 to 160 DAS in 2009 and 171 DAS in 2010, the electrical conductivity(EC) in all soil samples was at least 3 mS/cm and in some cases exceeded 5 mS/cm under DI treatment. However, EC barely exceeded 3 mS/cm and no reduc- tion in root length was observed under FI treatment. Correlation analysis of soil EC and root length density indicated that the root length declined when the soil EC exceeded 2.8 mS/cm. The main reason for the decrease of root length in cotton under DI was localized accumulation of salinity.  相似文献   

6.
Arbuscular mycorrhizal(AM)fungi penetrate the cortical cells of the roots of vascular plants,and are widely distributed in soil.The formation of these symbiotic bodies accelerates the absorption and utilization of mineral elements,enhances plant resistance to stress,boosts the growth of plants,and increases the survival rate of transplanted seedlings.We studied the effects of various arbuscular mycorrhizae fungi on the growth and development of licorice(Glycyrrhiza glabra).Several species of AM,such as Glomus mosseae,Glomus intraradices,and a mixture of fungi(G.mosseae,G.intraradices,G.cladoideum,G.microagregatum,G.caledonium and G.etunicatum)were used in our study.Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi,plant dry biomass,phosphorus concentration and concentration of secondary metabolites.We established two cloned strains of licorice,clone 3(C3)and clone 6(C6)to exclude the effect of genotypic variations.Our results showed that the AM fungi could in fact increase the leaf and root biomass,as well as the phosphorus concentration in each clone.Furthermore,AM fungi significantly increased the yield of certain secondary metabolites in clone 3.Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants.There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots.  相似文献   

7.
In recent decades, China has been experiencing rapid economic development, population growth and urbanization. These processes have stressed the shortages of water resources in China, especially in the arid re- gions of northwestern China. In order to sustain the expanding cropland, people increased groundwater exploitation in these regions. The purpose of this study was to quantitatively analyze the changes in land use and water re- sources, and their relationship in the middle reaches of the Heihe River Basin, a typical inland river basin in northwest China. The data of land use change were interpreted using aerial photographs(1965) and Landsat TM images(1986 and 2007). The data of irrigation water volume in the irrigation districts were spatialized in the middle reaches of the Heihe River Basin. The spatial variation of the groundwater depth was interpolated using the geo- statistical method. The results showed that the cultivated cropland area along oasis fringe increased by 15.38% and 43.60% during the periods 1965–1986 and 1986–2007, respectively. Surface water amount for irrigation had almost doubled from 1956 to 2010. The decrease of grassland area mainly occurred at the alluvial fan in front of the Qilian Mountains, with 36.47% during 1965–1986 and 38.56% during 1986–2007, respectively. The groundwater depth in front of the mountain constantly increased from 1986 to 2007. We found that the overuse of surface water and overexploitation of groundwater had direct consequences on the natural environments. We suggests that the efficiency of surface water resources use among different irrigation districts needs to be improved, which will sig- nificantly ease the conflicts between increasing water demand for irrigation and a shortage of water resources in the middle reaches of the Heihe River Basin.  相似文献   

8.
Vegetation patterns are important in the regulation of earth surface hydrological processes in arid and semi-arid areas. Laboratory-simulated rainfall experiments were used at the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Yangling, northwestern China, to quantify the effects of Artemisia capillaris patterns on runoff and soil loss. The quantitative relationships between runoff/sediment yield and vegeta- tion parameters were also thoroughly analyzed using the path analysis method for identifying the reduction mechanism of vegetation on soil erosion. A simulated rainfall intensity of 90 mm/h was applied on a control plot without vegetation(C0) and on the other three different vegetation distribution patterns: a checkerboard pattern(CP), a banded pattern perpendicular to the slope direction(BP), and a single long strip parallel to the slope direction(LP). Each patterned plot received two sets of experiments, i.e. intact plants and roots only, respectively. All treatments had three replicates. The results showed that all the three other different patterns(CP, BP and LP) of A. capillaris could effectively reduce the runoff and sediment yield. Compared with C0, the other three intact plant plots had a 12%–25% less runoff and 58%–92% less sediment. Roots contributed more to sediment reduction(46%–70%), whereas shoots contributed more to runoff reduction(57%–81%). BP and CP exhibited preferable controlling effects on soil erosion compared with LP. Path analysis indicated that root length density and plant number were key pa- rameters influencing runoff rate, while root surface area density and root weight density were central indicators affecting sediment rate. The results indicated that an appropriate increase of sowing density has practical signifi- cance in conserving soil and water.  相似文献   

9.
The division of arid areas is important in water and land resources management, planning and for a long-term agricultural, economic and social planning. Northwest China(NW) dominates the main arid areas in China. There is thus a need to adopt adequate concepts relative to the scope of arid areas of NW China and identify its climate types and characteristics. In this study, we analyzed climatic data over the last 30 years(1981–2010) from 191 stations in three provinces and three autonomous regions of NW China. The factor-cluster analysis tech- nique(FC), an objective and automated method was employed to classify the dry/wet climate zones. The traditional methods with predefined thresholds were adopted for providing a comparison with FC. The results showed that the wet/dry climate zones by FC were mainly distributed along mountains, rivers and desert borders. Climate-division boundaries relied heavily on the major terrain features surrounding the grouped stations. It also showed that the climate was dry in the plain sandy areas but relatively wet in the high mountain areas. FC method can reflect the climate characteristics more fully in NW China with varied and complicated topography, and outperform the tradi- tional climate classifications. Arid areas of NW China were defined as four climate types, including five resultant classes in FC classifications. The Qinling and Da Hinggan Mountains were two important boundaries, besides main administrative boundaries. The results also indicated that there are some differences between two traditional clas- sifications. The precipitation moved and fluctuated to an extent, which confirmed that climate change played an important role in the dry/wet climate zoning, and the boundaries of dry/wet climate zones might change and migrate with time. This paper is expected to provide a more in-depth understanding on the climate characteristics in arid areas of NW China, and then contribute to formulate reasonable water and land management planning and agri- cultural production programs.  相似文献   

10.
Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation.  相似文献   

11.
Root pullout property of plants was of key importance to the soil reinforcement and the improvement of slope stability. To investigate the influence of soil moisture on root pullout resistance and failure modes in soil reinforcement process, we conducted pullout tests on alfalfa (Medicago sativa L.) roots at five levels (40, 30, 20, 10 and 6 kPa) of soil matric suction, corresponding to respectively 7.84%, 9.66%, 13.02%, 19.35% and 27.06% gravimetric soil moisture contents. Results showed that the maximal root pullout force of M. sativa decreased in a power function with increasing soil moisture content from 7.84% to 27.06%. Root slippage rate increased and breakage rate decreased with increasing soil moisture content. At 9.66% soil moisture content, root slippage rate and breakage rate was 56.41% and 43.58%, respectively. The threshold value of soil moisture content was about 9.00% for alfalfa roots in the loess soil. The maximal pullout force of M. sativa increased with root diameter in a power function. The threshold value of root diameter was 1.15 mm, because root slipping force was greater than root breaking force when diameter >1.15 mm, while diameter ≤1.15 mm, root slipping force tended to be less than root breaking force. No significant difference in pullout forces was observed between slipping roots and breaking roots when they had similar diameters. More easily obtained root tensile force (strength) is suggested to be used in root reinforcement models under the condition that the effect of root diameter is excluded as the pullout force of breaking roots measured in pullout tests is similar to the root tensile force obtained by tensile tests.  相似文献   

12.
科尔沁差巴嘎蒿根系分布规律与土壤水分关系的研究   总被引:3,自引:0,他引:3  
以生长在科尔沁大青沟两侧台面上的差巴嘎蒿为研究对象,采用整株挖掘的方法,研究差巴嘎蒿根系分布的规律。结果表明:差巴嘎蒿根系垂直分布深度为0~90㎝,其中0~30㎝的土层中根系分布最多,占根系总长度的85.74%,水平方向上表现为近密远疏的趋势;整体上根系呈主根型分布,形态上呈"伞"型分布。差巴嘎蒿根系分布与土壤水分密切相关。随着深度的增加,土壤含水量逐渐增大,但根系长度、生物量及密度均逐渐降低,两者呈负相关关系,其中根长平均变化率-12.61%、根生物量平均变化率-29.07%,均大于土壤含水量平均变化率7.92%,但比根长却与土壤含水量呈正相关关系,且比根长平均变化率7.58%与土壤含水量平均变化率7.92%相差不大。  相似文献   

13.
极端干旱区胡杨根系分布对土壤水分的响应   总被引:2,自引:1,他引:2  
依据2006和2007年6月至7月在极端干旱区额济纳的实测资料,利用分形和统计的方法对胡杨根系分布与根区土壤水分的关系进行了分析研究,建立了土壤含水率与根系分维值之间的函数关系。根系土壤水分的变化对胡杨根系分布有直接影响,当平均土壤含水率小于0.11 cm3/cm3时,根系分布的分形维数随土壤含水率的增加而增大;当土壤含水率期望值大于0.11 cm3/cm3时,根系分布的分形维数随土壤含水率的增加而减小。平均土壤含水率在0.06-0.3 cm3/cm3之间,是适宜胡杨根系生长的范围。  相似文献   

14.
滴灌条件下根区水分对春小麦根系分布特征及产量的影响   总被引:6,自引:2,他引:4  
通过小区滴灌根区水分控制试验,研究亏缺、丰水、适水不同水分处理对春小麦根系特征的垂直分布、产量构成和水分利用效率等的影响.结果表明,孕穗-扬花是滴灌春小麦根系生长的关键时期,其根系主要分布在0~40 cm土层,根长密度和根干重在土壤剖面上的分布呈y=A×e-Bx的负指数递减趋势.不同根区水分对春小麦根系生长及分布有显著...  相似文献   

15.
覆盖处理苹果细根分布与土壤物理性状响应关系研究   总被引:5,自引:0,他引:5  
以12年生红富士苹果树为试材,研究黄土高原旱塬区不同覆盖措施(覆膜、覆草、覆沙)对苹果细根(直径≤2 mm)及土壤性状的影响。结果表明:地表覆盖可有效降低土壤容重,增大土壤含水量及孔隙度,增加细根数量,增大根系吸收水肥效率。覆膜处理细根水平分布范围与清耕(CK)相似,在距干0~90 cm范围内,垂直密集分布最大深度由CK的60 cm提升至40 cm,36.05%的细根分布在0~20 cm土壤表层。与CK相比,覆草、覆沙处理的细根水平分布范围由90 cm扩展至120 cm,垂直均匀分布整个土壤剖面,利于树体对深层土壤水肥的吸收利用。土壤物理性状与细根根长、表面积、根长密度呈极显著相关,覆膜处理中根径与比根长也与土壤物理性状表现出相关性。综合分析根系分布与土壤物理性状,覆草处理是陇东旱塬区苹果园较为适宜的地表覆盖模式。  相似文献   

16.
为寻求半干旱地区垄沟集雨环保沟覆盖材料,探究垄沟集雨种植增产机理,在半干旱黄土高原区通过大田试验,以传统平作为对照,研究不同沟覆盖方式(无覆盖、生物可降解地膜覆盖和秸秆覆盖)对土壤含水量、玉米根干重、根长、根表面积和根体积的影响。结果表明:垄沟集雨种植沟中的土壤含水量、玉米根干重、根长、根表面积和根体积明显大于垄中;与平作相比,无覆盖、生物可降解地膜覆盖和秸秆覆盖耕层沟中作物生育期平均土壤含水量分别增加6.9%、10.6%和9.3%,垄中平均土壤含水量分别降低13.8%、10.9%和5.6%;玉米总根干重(沟中+垄中)分别降低15.9%、6.1%和16.8%,总根长分别增加37.6%、43.7%和34.8%,总根表面积分别增加10.5%、33.6%和15.0%。无覆盖和秸秆覆盖玉米总根体积分别降低34.5%和16.3%,生物可降解地膜覆盖玉米总根体积增加13.2%。与传统平作相比,垄沟集雨种植增加土壤水分、玉米根长和根表面积,降低玉米根干重。在不同沟覆盖方式中,生物可降解地膜覆盖具有较高土壤含水量、根长、根表面积和根体积。  相似文献   

17.
Enzyme-linked immunosorbent assay (ELISA) proved to be a sensitive detector for citrus tristeza virus (CTV) in orange fruits (Citrus sinensis (L.) Osbeck). Samples of five fruits were taken from 350-kg packing house containers and tested by ELISA to predict the infection rate of CTV in two infected orange groves. The predicted infection rates, 1% and 11%, were in reasonable agreement with the observed rates of 1% (15/1400) and 16% (324/2053), respectively. The 360 test samples from reputedly uninfected groves all tested negative. These results suggest that the ELISA procedure may provide a general method of detecting viral or other systemic pathogenic infections using the fruit as the test material in place of tree tissue. Fruit samples can be collected routinely at the packing house to reduce test costs.  相似文献   

18.
In pot experiments the fungicides benomyl and thiophanate-methyl controlledVerticillium wilt of strawberry when applied as a soil drench after planting. Both compounds were ineffective as foliar sprays and as root dips prior to planting. Soil drenches applied to commercially grown runner plants in the waiting field (August) and to the same plants in the greenhouse (December or January) increased the yield. On infested ground, a soil drench with thiophanate-methyl promoted the occurrence of crown rot caused byPhytophthora cactorum.  相似文献   

19.
灌溉对粮饲兼用玉米根系分布及产量影响   总被引:1,自引:0,他引:1  
通过大田试验,在灌溉量2700m3/hm2、3600m3/hm2、4500m3/hm2条件下,对粮饲兼用玉米根系分布特征及产量影响进行了研究。结果表明:1)3600m3/hm2的灌溉量在0~40cm土层的土壤含水率较充分灌溉显著提高4.78%~19.3%;2)各灌溉条件下,根系随生育进程不断向下发展,随灌溉量的减少,根系有向深层发展的趋势;3)3600m3/hm2的灌溉条件下,粮饲兼用玉米籽粒产量较充分灌溉显著提高11.3%;4)秸秆产量在充分灌溉条件下较高,尤其在抽雄至乳熟期达到最高。  相似文献   

20.
The histology of root rot of flax seedlings infected by Fusarium oxysporum f.sp. lini was studied using semi-thin sections of plastic-embedded roots. Within two days, the fungus colonised the root cap cell layers by intercellular and intracellular growth. Attempted intercellular penetration of root cap cells via the middle lamella induced the formation of appositions next to penetrating hyphae. Other cells next to invading hyphae collapsed, which was accompanied by swelling of the cells neighbouring the collapsing cells. Invasion of the root cap and growth towards the protodermis seemed retarded to some extent by the natural sloughing off of root cap cell layers. The protodermis and cortex were reached and penetrated in four days, which was followed by rapid and massive colonisation of the entire root tip. The protoxylem was reached in eight days. From eight to sixteen days after inoculation, the lower parts of the roots were colonised throughout and the cortical region was degraded. Colonised tissues were severely plasmolyzed. Heavily colonised roots were hollowed out, the only remaining tissues being the epidermis and exodermis outside, and remainders of the colonised xylem inside. Upward spread of root rot was restricted in the period studied to the first 10 mm from the root tip, the upper parts of the root and the hypocotyl being unaffected except for invasion through lateral roots infected at their respective tips. Mature roots with a well-developed epidermis and exodermis were not invaded from outside. Disease development was similar in partially resistant Hermes and susceptible Regina, except for rot development that was consistently slightly more extensive in the susceptible cultivar. Distinct extravascular resistance factors were not detected in Hermes, suggesting that extravascular resistance in flax to F. oxysporum f.sp. lini is of a quantitative nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号