首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To better understand the complex interactions between irrigation and nitrogen fertilizer application on soil organic carbon content, the results from long‐term field experiments over a period of 40 years were analysed. The combined effect of irrigation and nitrogen fertilizer rates on crop yields, carbon input by above ground harvest residues and soil organic carbon content has been investigated at a site on a sandy soil in northeast Germany. Combined with nitrogen fertilizer application, irrigation has frequently had a significantly positive effect on crop yield and carbon inputs from above ground harvest residues. However, enhanced carbon inputs to the soil under irrigation did not lead to significantly greater soil organic carbon contents. As the combination of irrigation and nitrogen also improved microbial decomposition by changing of above ground harvest residues C/N ratio and soil moisture, the effect of an additional input of carbon from above ground harvest residues was nullified.  相似文献   

2.
The combination of high input costs and low commodity prices is forcing some farmers to consider reducing crop inputs like seed, fertilizer and herbicides. In a field trial in which different canola (Brassica napus L.) and barley (Hordeum vulgare L.) inputs were subtracted from a full package, or added to an empty package, we studied the effects of full or reduced fertilizer and herbicide inputs on soil microbiological characteristics at two sites from 2005 to 2008. The full package consisted of a high-yielding crop variety seeded at an optimum rate, with fertilizers and herbicides applied at recommended rates. The empty package consisted of a less expensive, low-yielding crop variety seeded at a low rate, with no fertilizer or herbicide applied. Between these two extremes were treatments in which fertilizers or herbicides were applied at 50% of recommended rates or not at all. Each treatment was repeated year after year in the same plot, i.e., treatment effects were cumulative. Fertilizer effects on soil microbial biomass C (MBC), β-glucosidase enzyme activity and bacterial functional diversity (based on community-level physiological profiles) were usually positive. Reduced fertilizer application rates reduced the beneficial fertilizer effects. Significant herbicide effects on soil microbiological properties occurred less often, were smaller in magnitude than fertilizer effects, and were mostly negative. Reduced herbicide rates reduced the deleterious herbicide effects. These significant fertilizer and herbicide effects were observed in canola more than barley, and mostly in the final year of the study, indicating the cumulative nature of treatment effects over time. Therefore, repeated applications of agricultural inputs like fertilizers and herbicides can have more significant effects on soil biology and biological processes than single applications indicate.  相似文献   

3.
Organic matter incorporation into soil can increase nutrient availability to plants but it can affect soil microbial communities. These in turn influence soil fertility and plant growth. Soil biochemical and microbiological properties are indicators of soil quality, but there is still no consensus as to how these should be used. Recent developments in molecular biology have provided new tools to obtain a view of the whole microbial community. The long-term impact of crop residue management on the microbial biomass, and on the activity and community structure of soil bacteria was evaluated in a clay soil of Southern Italy, where a monoculture of durum wheat (Triticum durum Desf.) was grown in semiarid conditions, and burning or incorporation of post harvest plant residues were typical practices. The role of N-mineral fertilization, simultaneously with the ploughing in of crop residues and during the plant growth cycle was also investigated. Total bacterial counts of viable cells, biomass C, ATP content of soil microorganisms, genetic fingerprinting of the total eubacterial community and of ammonia oxidizers were evaluated. Burning and incorporation did not affect microbial biomass C, ATP content, and total bacterial counts of viable cells although statistically relevant changes were detected among rhizosphere and bulk soil samples regardless of the crop residue management used. Molecular fingerprinting confirmed that: no significant change in the composition and diversity of total bacteria, as well as of ammonia oxidizers was induced by the crop residue managements; that soil bacteria were more sensitive to N fertilizer application during the plant growth cycle; and that rhizosphere soil samples were significantly different from those of the bulk soil. As microbiological and genetic factors related to soil fertility were not affected significantly, the long-term incorporation of crop residues, under the field conditions investigated, is a sustainable practice to manage post-harvest residues.  相似文献   

4.
Soil microbial biomass plays important roles in nutrient cycling, plant-pathogen suppression, decomposition of residues and degradation of pollutants; therefore, it is often regarded as a good indicator of soil quality. We reviewed more than a hundred studies in which microbial biomass-C (MB-C), microbial quotient (MB-C/TSOC, total soil organic carbon) and metabolic quotient (qCO2) were evaluated with the objective of understanding MB-C responses to various soil-management practices in Brazilian ecosystems. These practices included tillage systems, crop rotations, pastures, organic farming, inputs of industrial residues and urban sewage sludge, applications of agrochemicals and burning. With a meta-analysis of 233 data points, we confirmed the benefits of no-tillage in preserving MB-C and reducing qCO2 in comparison to conventional tillage. A large number of studies described increases in MB-C and MB-C/TSOC due to permanent organic farming, also benefits from crop rotations particularly with several species involved, whereas application of agrochemicals and burning severely disturbed soil microbial communities. The MB-C decreased in overgrazed pastures, but increased in pastures rotated with well-managed crops. Responses of MB-C, MB-C/TSOC and qCO2 to amendment with organic industrial residues varied with residue type, dose applied and soil texture. In conclusion, MB-C and related parameters were, indeed, useful indicators of soil quality in various Brazilian ecosystems. However, direct relationships between MB-C and nutrient-cycling dynamics, microbial diversity and functionality are still unclear. Further studies are needed to develop strategies to maximize beneficial effects of microbial communities on soil fertility and crop productivity.  相似文献   

5.
The effects of irrigation-induced salinity and sodicity on the size and activity of the soil microbial biomass in vertic soils on a Zimbabwean sugar estate were investigated. Furrow-irrigated fields were selected which had a gradient of salinity and sugarcane yield ranging from good cane growth at the upper ends to dead and dying cane at the lower ends. Soils were sampled under dead and dying cane, poor, satisfactory and good cane growth and from adjacent undisturbed sites under native vegetation. Electrical conductivity (EC) and sodium adsorption ratio (SAR) of saturation paste extracts was measured, as well as the exchangeable sodium percentage (ESP). There was a significant negative exponential relationship between EC and microbial biomass C, the percentage of organic C present as microbial biomass C, indices of microbial activity (arginine ammonification and fluorescein diacetate hydrolysis rates) and the activities of the exocellular enzymes β-glucosidase, alkaline phosphatase and arylsulphatase but the negative relationships with SAR and ESP were best described by linear functions. By contrast, the metabolic quotient increased with increasing salinity and sodicity, exponentially with EC and linearly with SAR and ESP.Potentially mineralizable N, measured by aerobic incubation, was also negatively correlated with EC, SAR and ESP. These results indicate that increasing salinity and sodicity resulted in a progressively smaller, more stressed microbial community which was less metabolically efficient. The exponential relationships with EC demonstrate the highly detrimental effect that small increases in salinity had on the microbial community. It is concluded that agriculture-induced salinity and sodicity not only influences the chemical and physical characteristics of soils but also greatly affects soil microbial and biochemical properties.  相似文献   

6.
以中国科学院阜康荒漠生态系统国家野外观测研究站的长期定位试验为平台,利用荧光实时定量PCR(Real-time PCR)技术,对不同施肥模式下的土壤微生物群落丰度进行了测定,并分析了土壤酶活性。结果表明:与无肥处理(CK)相比,20年长期单施化肥(CF)或者化肥配施秸秆(CF/OM)处理均显著增加了土壤氨氧化古菌(AOA)与氨氧化细菌(AOB)的丰度。其中,土壤AOB最低增加了16倍,而AOA最多增加了3倍,表明AOB可能在原位土壤氨氧化过程中发挥了更为重要的作用。尽管CF/OM处理的作物产量与CF处理无显著差异,但该施肥模式在维持作物产量的同时,其土壤微生物主要类群(真核微生物、细菌、古菌)数量最大,土壤有机碳含量最高,大多土壤酶活性高于其他处理,表明化肥配施有机肥有利于保持土壤微生物多样性,对于提高土壤质量具有重要作用。  相似文献   

7.
Throughout the world there is a trend towards retaining crop residues rather than burning them. For this reason, changes in soil chemistry and aggregation in a Vertisol induced by 59 years of burning or green cane harvesting with or without annual fertilizer applications were investigated. Crop residues were either burnt prior to harvest with the harvest residues raked off (R1), burnt prior to harvest with the harvest residues left on the soil surface (R2), or left unburnt with all the trash left on the soil surface (R3). Concentrations of organic C in the surface 10 cm of soil increased with fertilizer applications and with increasing amounts of crop residue returned in the order R1 < R2 < R3. Fertilizer applications caused an accumulation of residual P in both inorganic (Pi) and organic (Po) forms. A sequential P fractionation showed that fertilizer P accumulated in both labile and recalcitrant Pi and Po forms, and trash retention caused an accumulation of recalcitrant Po. Concentrations of K decreased in the unfertilized R1 and R2 treatments because K reserves were depleted. By contrast, there was an increase in the concentrations of K in the fertilized R3 treatment. The soil became more acid on the fertilized and, to a lesser extent, trash retention plots. We attribute this to nitrification and subsequent nitrate leaching. Acidification resulted in a loss of exchangeable Ca and Mg, a decrease in ECEC, and an increase in the concentrations of total and monomeric Al in soil solution, in exchangeable Al3+ and in the buffering reserve of non‐exchangeable Al associated with organic matter. Aggregate stability was increased by increasing crop residues but decreased by fertilizer applications. The decrease was attributed to an increase in the proportion of exchangeable cations present in monovalent form due to applications of fertilizer K and leaching of Ca and Mg. We conclude that trash retention and annual fertilizer applications have substantial long‐term effects on both organic matter status and soil pH and therefore on other soil chemical and physical properties.  相似文献   

8.
In a field study, long-term application of compost to a tropical Aeric Endoaquept under continuous rice growing in a rice-rice-fallow sequence resulted in the stimulation of microbial biomass and select soil enzyme activities. Mean seasonal soil microbial biomass-C (Cmic) increased by 42%, 39% and 89% in inorganic fertilizer, compost and compost+inorganic fertilizer treatments, respectively, over the unamended control. Cmic content was also influenced by the rice crop growth stage and was highest at maximum tillering stage irrespective of treatments and declined thereafter. Soil organic C (Corg) content showed highly significant positive correlation with dehydrogenase, urease, cellulase, β-glucosidase and fluorescein di-acetate (FDA) hydrolysis activity, and a positive but not significant correlation with invertase and amidase activity. C/N ratio which was lowest in unamended control plots showed a significant positive relationship with only the enzymes involved in C cycle. Stepwise regression analysis revealed that for prediction of both total organic C and total N, FDA hydrolysis activity contributed significantly for the variance and explained up to 85-96% variability. Results demonstrated that microbial biomass and soil enzyme activity is sensitive in discriminating between long-term organic residue amendment practices.  相似文献   

9.
 Using soils from field plots in four different arable crop experiments that have received combinations of manure, lime and inorganic N, P and K for up to 20 years, the effects of these fertilizers on soil chemical properties and estimates of soil microbial community size and activity were studied. The soil pH was increased or unaffected by the addition of organic manure plus inorganic fertilizers applied in conjunction with lime, but decreased in the absence of liming. The soil C and N contents were greater for all fertilized treatments compared to the control, yet in all cases the soil samples from fertilized plots had smaller C:N ratios than soil from the unfertilized plots. The soil concentrations of all the other inorganic nutrients measured were greater following fertilizer applications compared with the unfertilized plots, and this effect was most marked for P and K in soils from plots that had received the largest amounts of these nutrients as fertilizers. Both biomass C determined by chloroform fumigation and glucose-induced respiration tended to increase as a result of manure and inorganic fertilizer applications, although soils which received the largest additions of inorganic fertilizers in the absence of lime contained less biomass C than those to which lime had been added. Dehydrogenase activity was lower in soils that had received the largest amounts of fertilizers, and was further decreased in the absence of lime. This suggests that dehydrogenase activity was highly sensitive to the inhibitory effects associated with large fertilizer additions. Potential denitrification and anaerobic respiration determined in one soil were increased by fertilizer application but, as with both the microbial biomass and dehydrogenase activity, there were significant reductions in both N2O and CO2 production in soils which received the largest additions of inorganic fertilizers in the absence of lime. In contrast, the size of the denitrifying component of the soil microbial community, as indicated by denitrifying enzyme activity, was unaffected by the absence of lime at the largest rate of inorganic fertilizer applications. The results indicated differences in the composition or function of microbial communities in the soils in response to long-term organic and inorganic fertilization, especially when the soils were not limited. Received: 10 March 1998  相似文献   

10.
Because soil biota is influenced by a number of factors, including land use and management techniques, changing management practices could have significant effects on the soil microbial properties and processes. An experiment was conducted to investigate differences in soil microbiological properties caused by long- and short-term management practices. Intact monolith lysimeters (0.2 m2 surface area) were taken from two sites of the same soil type that had been under long-term organic or conventional crop management and were then subjected to the same 2.5-year crop rotation [winter barley (Hordeum vulgare L.), maize (Zea mais L.), lupin (Lupinus angustifolius L.), and rape (Brassica napus L. ssp. oleifera)] and two fertilizer regimes (following common organic and conventional practices). Soil samples were taken after crop harvest and analyzed for microbial biomass C and N, microbial activity (fluorescein diacetate hydrolysis, arginine deaminase activity, and dehydrogenase activity), and total C and N. The incorporation of the green manure stimulated growth and activity of the microbial communities in soils of both management histories. Soil microbial properties did not show any differences between organically and conventionally fertilized soils, indicating that crop rotation and plant type had a larger influence on the microbial biomass and enzyme activities than fertilization. Initial differences in microbial biomass declined, while the effects of farm management history were still evident in enzyme activities and total C and N. Links between enzyme activities and microbial biomass C varied depending on treatment, indicating differences in microbial community composition.  相似文献   

11.
以1989年建立的中国科学院封丘农田生态系统国家试验站的长期定位试验为平台,研究经18a连续不同施肥处理后玉米季土壤微生物生物量碳氮和微生物活度的动态变化及其与土壤有机碳之间的相互关系,并探讨施肥措施对土壤微生物及其活性的影响。施肥处理包括:(1)有机肥(OM);(2)1/2化肥和1/2有机肥(1/2OM+1/2NPK);(3)氮磷钾肥(NPK);(4)氮磷肥(NP);(5)磷钾肥(PK);(6)氮钾肥(NK);(7)不施肥,即对照(CK)7个处理。结果表明,微生物生物量碳氮和微生物活度在玉米生长期内均有明显的时间变异性,其中微生物生物量碳与微生物活度的动态变化比较一致,其间的极显著相关关系表明潮土微生物生物量碳的变化可以在很大程度上代表土壤微生物活度的变化。施肥制度显著影响微生物生物量碳氮和微生物活度的变化,总体趋势为OM1/2OM+1/2NPKNPKNPPKNKCK,表明OM有利于保持土壤的生物化学环境及促进土壤的生物学活性;与OM处理相比,化学肥料的长期施用有降低土壤微生物生物量和微生物活度的趋势,尤其是缺素处理的表现更为明显,其中以缺磷处理的表现最为严重。土壤微生物生物量碳氮、微生物活度与土壤有机碳变化均呈极显著正相关。  相似文献   

12.
The concentrations of organic C, labile organic fractions and the size and activity of the microbial community were measured to a depth of 30 cm below the plant row and at distances of 30 and 60 cm into the inter-row area under sugarcane under pre-harvest burning or green cane harvesting with retention of a crop residue (trash) mulch. Total root mass was similar under burning and trashing but under trashing there was a redistribution of roots towards the surface 0-10 cm in the inter-row space as roots proliferated beneath the trash mulch. Soil organic C content decreased in response to both increasing distance from the plant row (to a depth of 20 cm) and burning rather than trashing (to a depth of 10 cm). Declines in K2SO4-extractable C, light fraction C, microbial biomass C, basal respiration and aggregate stability in response to distance and burning were much more marked than those for organic C and occurred to a depth of 30 cm. Bulk density was greater under burnt than trashed sugarcane and was greater in the inter-row than row, particularly under burning. Heterotrophic functional diversity (measured by analysis of catabolic response profiles to 36 substrates) was also investigated. Principal component analysis of response profiles demonstrated that soils below the row and those under trashing at 30 cm out from this row were separated from the other soils on PC1 and the sample from the inter-row centre (60 cm out) under burning was separated from the others on PC2. Catabolic evenness was least for the latter soil. It was concluded that soil in the inter-row of burnt sugarcane receives few inputs of organic matter and that conversion to green cane harvesting with retention of a trash mulch greatly improves the organic matter, microbial and physical status of the inter-row soil.  相似文献   

13.
通过对山西省寿阳长期定位试验田0―20 cm和20―40 cm的土壤测定和分析,探讨了长期有机无机肥配施下褐土微生物生物量碳、氮和酶活性的变化以及相关性。结果表明,褐土微生物生物量C、N变化基本一致。褐土微生物生物量碳、氮从0―20 cm到20―40 cm土层均呈减少趋势;长期单施高量有机肥、有机无机肥合理配施都能提高褐土微生物生物量碳、氮;不同用量的长期单施化肥处理不能使微生物生物量C、N显著增加。脲酶和碱性磷酸酶活性从0―20 cm到20―40 cm土层呈减少趋势;长期单施高量有机肥和有机无机肥合理配施可使褐土脲酶及碱性磷酸酶活性增加。脲酶活性随单施化肥量的增加有变大趋势,而碱性磷酸酶活性则呈变小趋势。土壤微生物量碳氮、土壤酶活性及土壤养分之间的显著相关性表明,微生物生物量C、N和土壤酶活性可以判断褐土土壤有机质和N素状况,可作为评价褐土土壤肥力水平和土壤培肥效果的生物学指标,同时也可为提高褐土土壤肥力水平和土壤培肥效果提供依据。  相似文献   

14.
Organic inputs [e.g. animal manure (AM) and plant residues] contribute directly to the soil organic N pool, whereas mineral N fertilizer contributes indirectly by increasing the return of the crop residues and by microbial immobilization. To evaluate the residual effect of N treatments established in four long‐term (>35 yr) field experiments, we measured the response of barley (grain yield and N offtake at crop maturity) to six rates (0, 30, 60, 90, 120 and 150 kg N/ha) of mineral fertilizer N (Nnew) applied in subplots replacing the customary long‐term plot treatments of fertilizer inputs (Nprev). Rates of Nprev above 50–100 kg N/ha had no consistent effect on the soil N content, but this was up to 20% greater than that in unfertilized treatments. Long‐term unfertilized plots should not be used as control to test the residual value of N in modern agriculture with large production potentials. Although the effect of mineral Nprev on grain yield and N offtake could be substituted by Nnew within a range of previous inputs, the value of Nprev was not eliminated irrespective of Nnew rate. Provided a sufficient supply of plant nutrients other than N, the use‐efficiency of Nnew did not change significantly with previous mineral N fertilizer rate. The residual effect of mineral N fertilizer was negligible compared with the residual effect of N from AM and catch crop residues.  相似文献   

15.
Variable results have been reported on the effects of crop residue loads on soil microbial properties. We investigated changes in soil bacterial composition, β-glucosidase enzyme activity and nutrient bioavailability in response to wheat residue loading. The treatments included three levels of above-ground wheat residues (removed, retained or supplemented), with or without fertilizer N. Bacteroidetes, Firmicutes and Verrucomicrobia (the first two are copiotrophs) were less abundant where residues were removed than where residues were retained or supplemented, but the reverse was true for Actinobacteria, Cyanobacteria, Chloroflexi and Nitrospirae (all oligotrophs, although some Actinobacteria can be copiotrophic). Actinobacteria were also less abundant where fertilizer N was applied, and the abundances of their genera (including Arthrobacter and Mycobacterium) increased where residues were removed, confirming that they were oligotrophic in this study. β-diversity showed similar differences in the bacterial community structures because of residue management, but α-diversity was not affected by residue management or N fertilizer. β-glucosidase enzyme activities increased as C inputs increased with residue manipulation and N fertilizer. The enzyme activities increased with increasing residue loading in the 0–15 cm soil depth, but decreased with soil depth. Soil K supply increased with increasing residue loading, but nitrate-N supply was highest with residue retention. These results demonstrate remarkable resilience of soil microbial functioning under a wide range of crop residue inputs, without adverse effects on enzyme activity attributable to inorganic N fertilizer. The increasing β-glucosidase activity with increasing residue loading probably explains why crop residue return does not always increase soil C stocks.  相似文献   

16.
The types and amounts of carbon (C) and nitrogen (N) inputs, as well as irrigation management are likely to influence gaseous emissions and microbial ecology of agricultural soil. Carbon dioxide (CO2) and nitrous oxide (N2O) efflux, with and without acetylene inhibition, inorganic N, and microbial biomass C were measured after irrigation or simulated rainfall in two agricultural fields under tomatoes (Lycopersicon esculentum). The two fields, located in the California Central Valley, had either a history of high organic matter (OM) inputs (“organic” management) or one of low OM and inorganic fertilizer inputs (“conventional” management). In microcosms, where short-term microbial responses to wetting and drying were studied, the highest CO2 efflux took place at about 60% water-filled pore space (WFPS). At this moisture level, phospholipid fatty acids (PLFA) indicative of microbial nutrient availability were elevated and a PLFA stress indicator was depressed, suggesting peak microbial activity. The highest N2O efflux in the organically managed soil (0.94 mg N2O-N m−2 h−1) occurred after manure and legume cover crop incorporation, and in the conventionally managed soil (2.12 mg N2O-N m−2 h−1) after inorganic N fertilizer inputs. Elevated N2O emissions occurred at a WFPS >60% and lasted <2 days after wetting, probably because the top layer (0–150 mm) of this silt loam soil dried quickly. Therefore, in these cropping systems, irrigation management might control the duration of elevated N2O efflux, even when C and inorganic N availability are high, whereas inorganic N concentrations should be kept low during times when soil moisture cannot be controlled.  相似文献   

17.
The interactions between soil P availability and mycorrhizal fungi could potentially impact the activity of soil microorganisms and enzymes involved in nutrient turnover and cycling, and subsequent plant growth. However, much remains to be known of the possible interactions among phosphorus availability and mycorrhizal fungi in the rhizosphere of berseem clover (Trifolium alexandrinum L.) grown in calcareous soils deficient in available P. The primary purpose of this study was to look at the interaction between P availability and an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on the growth of berseem clover and on soil microbial activity associated with plant growth. Berseem clover was grown in P unfertilized soil (−P) and P fertilized soil (+P), inoculated (+M) and non-inoculated (−M) with the mycorrhizal fungus for 70 days under greenhouse conditions. We found an increased biomass production of shoot and root for AM fungus-inoculated berseem relative to uninoculated berseem grown at low P levels. AM fungus inoculation led to an improvement of P and N uptake. Soil respiration (SR) responded positively to P addition, but negatively to AM fungus inoculation, suggesting that P limitation may be responsible for stimulating effects on microbial activity by P fertilization. Results showed decreases in microbial respiration and biomass C in mycorrhizal treatments, implying that reduced availability of C may account for the suppressive effects of AM fungus inoculation on microbial activity. However, both AM fungus inoculation and P fertilization affected neither substrate-induced respiration (SIR) nor microbial metabolic quotients (qCO2). So, both P and C availability may concurrently limit the microbial activity in these calcareous P-fixing soils. On the contrary, the activities of alkaline phosphatase (ALP) and acid phosphatase (ACP) enzymes responded negatively to P addition, but positively to AM fungus inoculation, indicating that AM fungus may only contribute to plant P nutrition without a significant contribution from the total microbial activity in the rhizosphere. Therefore, the contrasting effects of P and AM fungus on the soil microbial activity and biomass C and enzymes may have a positive or negative feedback to C dynamics and decomposition, and subsequently to nutrient cycling in these calcareous soils. In conclusion, soil microbial activity depended on the addition of P and/or the presence of AM fungus, which could affect either P or C availability.  相似文献   

18.
Effects of conventional tillage on biochemical properties of soils   总被引:3,自引:1,他引:3  
Modification of soil environment by different farming practices can significantly affect crop growth. Tillage causes soil disturbance, altering the vertical distribution of soil organic matter and plant nutrient supplies in the soil surface, and it may affect the enzyme activity and microbial biomass which are responsible for transformation and cycling of organic matter and plant nutrients. In this study, the influence of three conventional tillage systems (shallow plowing, deep plowing and scarification) at different depths on the distribution and activity of enzymes, microbial biomass and nucleic acids in a cropped soil was investigated. Analysis of variance for depth and tillage showed the influence of the different tillage practices on the activity of some enzymes and on the nucleic acids. Glucosidase, galactosidase, nitrate reductase and dehydrogenase activity were significantly affected by the three tillage modalities. Activity in the upper layer (0–20 cm) was higher in the plots tilled by shallow plowing and scarification than in those tilled by deep plowing. Positive relationships were observed between the soil enzymes themselves, with the exception of urease and pyrophosphatase activity. Moreover, significant correlations were found between DNA and β-galactosidase, and between RNA and β-glucosidase, β-galactosidase, alkaline phosphatase and phosphodiesterase. α-Glucosidase, β-galactosidase, alkaline phosphatase and phosphodiesterase were highly correlated with biomass C determined by the fumigation-extraction method. Received: 27 June 1996  相似文献   

19.
There is increasing evidence that microorganisms participate in soil C sequestration and stabilization in the form of resistant microbial residues. The type of fertilizers influences microbial activity and community composition; however, little is known about its effect on the microbial residues and their relative contribution to soil C storage. The aim of this study was to investigate the long-term impact (21 years) of different fertilizer treatments (chemical fertilizer, crop straw, and organic manure) on microbial residues in a silty clay loam soil (Udolls, USDA Soil Taxonomy). Amino sugars were used to indicate the presence and origin of microbial residues. The five treatments were: CK, unfertilized control; NPK, chemical fertilizer NPK; NPKS1, NPK plus crop straw; NPKS2, NPK plus double amounts of straw; and NPKM, NPK plus pig manure. Long-term application of inorganic fertilizers and organic amendments increased the total amino sugar concentrations (4.4–8.4 %) as compared with the control; and this effect was more evident in the plots that continuously received pig manure (P?<?0.05). The increase in total amino sugar stock was less pronounced in the straw-treated plots than the NPKM. These results indicate that the accumulation of soil amino sugars is largely influenced by the type of organic fertilizers entering the soil. Individual amino sugar enrichment in soil organic carbon was differentially influenced by the various fertilizer treatments, with a preferential accumulation of bacterial-derived amino sugars compared with fungal-derived glucosamine in manured soil.  相似文献   

20.
A long-term experiment, which started in 1971 near Perugia, central Italy, was performed to investigate the effect of different crop residue management practices and rotation systems on some soil properties. Twenty years after the beginning of the experiment, chemical (organic C, total N, humified organic C, humic and fulvic acids), microbiological and biochemical parameters (microbial biomass, global hydrolase activity, dehydrogenase and catalase activities) were investigated. Two crop residue management practices were used in the experiment, i.e. removal (RCR soils) and burial (BCR soils). These treatments were factorially combined with eight rotation systems, i.e. five maize-wheat rotations of different lengths (M-1W, M-2W, M-3W, M-4W and M-5W) and three continuous wheat systems with different fertilization inputs, from 150 to 250 kg N ha–1. Soil samples were collected in the spring of 1991 for chemical determinations, and in the spring and autumn of 1992, 1993 and 1994, for microbiological and biochemical determinations. All soil chemical, microbiological and biochemical parameters investigated showed significant differences depending on the management of the crop residues. The BCR soils showed more favourable characteristics. In contrast, few significant effects were observed in relation to rotation and N-fertilization treatment. Significant correlations were found between organic-C content and all microbiological and biochemical parameters, as well as between the microbiological and biochemical parameters themselves, indicating that organic-C content plays an important role in determining the level of soil enzyme activity and, consequently, of soil fertility. This experiment showed that burying crop residues in soil can be considered good agronomic practice, which may help limit the gradual depletion of soil organic matter and improve the chemical properties of the soil. Received: 11 January 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号