首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archival tags were used to study the seasonal movements, migration patterns and vertical distribution of juvenile North Pacific albacore (Thunnus alalunga). Between 2001 and 2006, archival tags were deployed in North Pacific albacore in two regions of the Northeast Pacific: (i) off Northern Baja California, Mexico and Southern California, and (ii) off Washington and Oregon. Twenty archival tagged fish were recovered with times at liberty ranging from 63 to 697 days. Tagged albacore exhibited five distinct, seasonal migratory patterns. Depth and temperature data also showed a broad range of vertical behaviors. In certain regions such as off Baja California, Mexico, juvenile albacore make frequent dives to depths exceeding 200 m during the day and remain in the surface mixed layer at night, whereas off Oregon and Washington they remain near the surface both day and night. Water temperatures encountered ranged from 3.3 to 22.7°C. Peritoneal temperatures were significantly higher by an average of approximately 4°C, as expected in these warm‐bodied fish. This study provides a comprehensive examination of horizontal and vertical movements of juvenile albacore in the Northeast Pacific. The results reveal diverse behavior that varies regionally and seasonally as albacore move among different habitats throughout the entire North Pacific.  相似文献   

2.
ABSTRACT:   The feeding habits of albacore Thunnus alalunga (fork length: 48.9–76.2 cm, n  = 132) were examined from late spring to early autumn in relation to its northward migration in the transition region between the subtropical and subarctic fronts in the central North Pacific. Samples were collected at night using surface gill nets or during daytime pole-and-line surveys in 2001 and 2002. During May and June, albacore fed mainly on Japanese anchovy Engraulis japonicus , which accounted for 27.2%, 67.0%, and 45.5% of the total stomach contents by number ( Cn ), wet weight ( WW ), and frequency of occurrence ( F ), respectively, and secondarily on the subarctic gonatid squid Gonatopsis borealis ( Cn , 15.8%; WW , 10.8%; F , 28.8%). From July to September, albacore continued to depend on Japanese anchovy ( Cn , 48.2–52.8%; WW , 79.9–95.2%; F , 27.8–85.4%). These results corresponded well with the remarkable rebound of the Japanese anchovy stock since the 1990s. Gonatopsis borealis , the main squid prey from May to June, almost disappeared from the stomachs of albacore from July to September, probably due to the northward migration of this squid to subarctic waters in summer. The feeding impact of albacore on the Japanese anchovy stock in the transition region was conservatively estimated to be from 1400 to 2100 tons per day from late spring to early autumn.  相似文献   

3.
为掌握不同水层的环境因子对长鳍金枪鱼(Thunnus alalunga)延绳钓渔获率的影响,根据2015-2017年中国大陆在该海域的长鳍金枪鱼延绳钓渔捞日志资料,结合同期海洋环境数据,采用广义可加模型(Generalized additive model,GAM)对渔获率与各因子的关系进行研究。通过相关分析获取各环境因子相关系数,对相关性较大的环境因子分组建模。结果表明:1)海表面温度与120 m水深温度、海表面温度与海表面高度、120 m水深温度与海表面高度、300 m水深温度与300 m水深盐度为高度相关因子,海表面盐度、叶绿素a浓度、海表风场南北分量与其他环境因子之间的相关性均较小;2)模型的总解释偏差介于30%~40%,各环境因子重要性依次为120 m水深温度、海表温度、300 m水深温度、120 m水深盐度、海表面高度、300 m水深盐度、海表盐度、混合层深度、海面风场南北分量、海面风场东西分量、叶绿素a浓度;3)120 m水深温度与单位捕捞努力渔获量(CPUE)在15~30℃呈负相关。海表温度整体趋势与120 m水深温度类似,其中在25~28℃呈正相关。300 m水深温度与CPUE在10~18℃呈现明显的正效应关系。  相似文献   

4.
大西洋海域大眼金枪鱼年龄与生长的初步研究   总被引:2,自引:1,他引:2  
根据2001年6~10月在大西洋海域金枪鱼延绳钓渔业中采集的89 ind大眼金枪鱼样本,对其叉长、体重进行测定,并以脊椎骨作为年龄鉴定材料。结果表明,叉长组成为85~186 cm,体重组成为11.5~132.5kg,年龄为2~6龄。体重与叉长关系式为W=4.5026×10-5×FL2.8200。利用一般Von Bertalanffy生长方程来拟合,叉长和体重生长方程为:FL=257.90×(1-e-0.1960(t+3.7919))2.5933,Wt=284.28×[(1-e-0.1960(t+3.7919))2.5933]2.8200。叉长和体重的生长拐点分别为1.07龄和5.75龄。  相似文献   

5.
When the spring seasonal warming starts, North Atlantic albacore (Thunnus alalunga) juveniles and pre‐adults perform a trophic migration to the northeastern Atlantic, to the Bay of Biscay and to the southeast of Ireland. During this migration, they are exploited by Spanish trolling and baitboat fleets. The present study analyzes the relationship between the albacore spatio‐temporal distribution and the thermal environment. For this approach, several analyses have been performed on a database including fishing logbooks and sea surface temperature (SST) images, covering the period between 1987 and 2003. SST values and the SST gradients at the catch locations have been statistically compared to broader surrounding areas to test whether the thermal environment determines the spatial distribution of albacore. General additive models (GAM) have been used also to evaluate the relative importance of environmental variables and fleet behaviour. The results obtained show that, although juvenile albacore catch locations are affected by fleet dynamics, there is a close spatial and temporal relationship with the seasonal evolution of a statistically significant preferential SST window (16–18°C). However, differences have been identified between the relationship of albacore with SST within the Bay of Biscay in July and August (higher temperature). Such differences are found also in the spatial distribution of the catch locations; these reflect clearly the presence of two groups, differentiated after the third week of the fishing campaign at the end of June. The analysis undertaken relating the distribution of North Atlantic albacore juveniles with thermal gradients did not provide any evidence of a relationship between these catch locations and the nearby occurrence of thermal gradients.  相似文献   

6.
将剩余产量模型和时滞差分模型分别应用于南大西洋长鳍金枪鱼(Thunnus alalunga)渔业数据,结果表明,比起剩余产量模型,时滞差分模型拟合的单位捕捞努力渔获量(catch per unit effort,CPUE)曲线能够更好地捕捉到CPUE随着时间的波动。赤池信息量准则(Akaike information criterion,AIC)的结果显示,时滞差分模型比Schaefer模型的评估效果要好。时滞差分模型评估的最大可持续产量(maximum sustainable yield,MSY)中值为22 490 t,80%置信区间为21 756~23 408 t;剩余产量模型评估的MSY中值为27 520 t,80%的置信区间为26 116~28 959 t。生物学参考点的结果表明目标群体在1985年以前资源状态较好;1985年~2005年的20年里处于过度捕捞状态;2005年后资源状况得到改善,但仍需加强管理。比起剩余产量模型,时滞差分模型给出了更为有效且保守的评估结果。  相似文献   

7.

根据20129–11月在库克群岛(the Cook Islands)海域利用金枪鱼延绳钓调查所获得的共计43个站点的长鳍金枪鱼 (Thunnus alalunga) 渔获率数据, 以及测得的温度、盐度、叶绿素浓度、水平海流及垂直海流数据等环境因子数据, 采用分位数回归方法分析了各水层(40~280 m, 40 m为一层)及整个水体中各个环境因子与长鳍金枪鱼渔获率的关系, 并利用43个站点内随机选择的验证站点对不同水层的研究结果进行了验证。研究结果表明: (1)长鳍金枪鱼在各水层及整个水体的单位捕捞努力量渔获量(CPUE)分布呈偏正态分布; (2) 调查期间建模站点和验证站点内的预测CPUE与名义CPUE间均无显著性差异; (3) 栖息地综合指数(IHI)模型的预测能力较好, 且在水深40~80 m160~200 m及整个水体范围内能有效预测长鳍金枪鱼的分布情况; (4) 不同水层影响长鳍金枪鱼分布的因素不同, 如在较浅水层(40~80 m)长鳍金枪鱼的渔获率与水色的的关联较大, 80~120 m水层则主要受水温的影响、在混合水层所在的120~160 m水层则主要受海流的影响, 在较深的水层(160~240 m)则主要受饵料分布及水温的影响; (5) 鳍金枪鱼偏好觅食的水层应为160~240 m水层; (6)  长鳍金枪鱼IHI指数分布较高的两个海域分别为13°S–15°S, 162°W–167°W11°S–12°S, 161°W–167°W。建议在上述两个海域作业时, 应使钓具沉降到160~240 m水层, 从而在避免兼捕其他水层渔获的同时, 提高长鳍金枪鱼的捕捞效率。

  相似文献   

8.
南太平洋长鳍金枪鱼垂直活动水层空间分析   总被引:3,自引:0,他引:3  
为了解南太平洋长鳍金枪鱼(Thunnus alalunga)的垂直活动水层分布特征及其适宜的垂直活动水层深度,采用Argo 数据重构了研究海域次表层20 ℃和25 ℃等温线深度场, 并结合2010年~2012年中水集团南太平洋长鳍金枪鱼延绳钓渔船实际生产统计数据, 绘制了20 ℃和25 ℃等温线深度与长鳍金枪鱼单位捕捞努力量渔获量(CPUE) 叠加图, 分析南太平洋长鳍金枪鱼的垂直活动水层分布特征。结果表明, 研究海域20 ℃和25 ℃等温线深度存在明显的季节性变化, 且长鳍金枪鱼渔场时空分布随着20℃等温线深度的220 m等深线和25℃等温线深度的140 m等深线时空变动而季节性南北移动。长鳍金枪鱼中心渔场主要分布于10S 以南、160E~175E之间, 中心渔场所处海域, 其20 ℃等温线深度多在220 m以深, 超过250 m的海域CPUE 均偏低; 25 ℃等温线深度多在140 m以浅, 浅于80 m的海域则难以形成中心渔场。采用频次分析与经验累积分布函数( ECDF) 相结合的方法, 计算出南太平洋长鳍金枪鱼适宜的垂直活动水层深度为88~238 m。文章初步得出了南太平洋长鳍金枪鱼的垂直分布特征及其适宜的垂直活动水层深度, 可用于指导延绳钓投钩深度, 为中国南太平洋长鳍金枪鱼延绳钓生产作业提供理论参考。  相似文献   

9.
On the basis of Japanese long-line fishery data during 1970–1988, anticlockwise migration routes of albacore in the North Pacific are newly proposed. The annual migration route for mature albacore is described as a closed ellipse with a centre at 20°N and 170°E, and is wider in El Niño years than non-El Niño years associated with an appearance of a cold-water region in the central and south-western North Pacific. Immature albacore also have an anticlockwise migration route in winter which extends from 25°N to 35°N and from 130°E to 180°E, when the Kuroshio has a relatively straight path. However, the migration does not persist when the Kuroshio takes a large meander path.  相似文献   

10.
北太平洋长鳍金枪鱼卵巢的发育特征   总被引:1,自引:0,他引:1  
根据2013年10月–2014年2月在北太平洋海域(29°08′~41°08′N,163°50′~144°19′W)采集的364尾长鳍金枪鱼的卵巢样本,利用组织学分析,详细描述了长鳍金枪鱼卵巢、卵细胞的发育阶段。结果显示,北太平洋长鳍金枪鱼卵巢内同时存在不同时相的卵细胞,为分批产卵类型;组织学上,长鳍金枪鱼的卵细胞发育过程分为6个时相,卵巢发育过程分为6个时期;卵巢成熟指数在成熟期为Ⅰ~Ⅴ期时逐渐增大,在Ⅵ期时减小;北太平洋长鳍金枪鱼产卵高峰为12月中旬和1月初,其卵巢成熟指数随纬度的升高呈递减趋势,随经度变化规律不明显。研究表明,通过对北太平洋长鳍金枪鱼卵巢的发育特征的分析与探讨,可为北太平洋长鳍金枪鱼的资源状况评估及渔业可持续发展提供生物学信息。  相似文献   

11.
The distribution pattern of albacore, Thunnus alalunga, in the Indian Ocean was analyzed based on catch data from the Taiwanese tuna longline fishery during the period 1979–85. The Taiwanese tuna fishery began operating in the Indian Ocean in 1967. We used a geographic information system to compile a fishery and environmental database and statistically explored the catch per unit effort (CPUE) distribution of albacore. Our results indicated that immature albacore were mainly distributed in areas south of 30°S although some displayed a north–south seasonal migration. Mature albacore, which were mainly concentrated between 10°S and 25°S, also showed a north–south migration. Within 10°S and 30°S, the separation of mature, spawning, and immature albacore life history stages roughly coincided with the boundaries of the three oceanic current systems in the Indian Ocean. The optimal environmental variables for CPUE prediction by stepwise discriminant analysis differed among life history stages. For immature albacore, the sea surface variables sea surface temperature (SST), chlorophyll concentration and surface salinity were significant. For mature albacore, SST was significant, while for spawning albacore, the sub‐surface variables temperature at 100 m and oxygen at 200 m were significant. Spawning albacore evidently prefer deep oceanographic conditions. Our results on the oceanographic conditions preferred by different developmental stages of albacore in the Indian Ocean were compatible with previous studies found in the Pacific Ocean.  相似文献   

12.
The American Samoa fishing ground is a dynamic region with strong mesoscale eddy activity and temporal variability on scales of <1 week. Seasonal and interannual variability in eddy activity, induced by baroclinic instability that is fueled by horizontal shear between the eastward‐flowing South Equatorial Counter Current (SECC) and the westward‐flowing South Equatorial Current (SEC), seems to play an important role in the performance of the longline fishery for albacore. Mesoscale eddy variability in the American Samoa Exclusive Economic Zone (EEZ) peaks from March to April, when the kinetic energy of the SECC is at its strongest. Longline albacore catch tends to be highest at the eddy edges, while albacore catch per effort (CPUE) shows intra‐annual variability with high CPUE that lags the periods of peak eddy activity by about 2 months. When CPUE is highest, the values are distributed toward the northern half of the EEZ, the region affected most by the SECC. Further indication of the possible importance of the SECC for longline performance is the significant drop in eddy variability in 2004 when compared with that observed in 2003 – resulting from a weak SECC – which was accompanied by a substantial drop in albacore CPUE rates and a lack of northward intensification of CPUE. From an ecosystem perspective, evidence to support higher micronekton biomass in the upper 200 m at eddy boundaries is inconclusive. Albacore's vertical distribution seems to be governed by the presence of prey. Albacore spend most of their time between 150 and 250 m, away from the deep daytime and shallow nighttime sonic scattering layers, at depths coinciding with those of small local maxima in micronekton biomass whose backscattering properties are consistent with those of albacore's preferred prey. Settling depths of longline sets during periods of decreased eddy activity correspond to those most occupied by albacore, possibly contributing to the lower CPUE by reducing catchability through rendering bait less attractive to albacore in the presence of prey.  相似文献   

13.
印度洋长鳍金枪鱼资源评估的影响因素分析   总被引:3,自引:2,他引:3  
多个模型被用于印度洋长鳍金枪鱼(Thunnus alalunga)的资源评估,但这些模型的评估结果均存在较大的不确定性,为此,本文对影响印度洋长鳍金枪鱼资源评估的因素进行了分析。分析结果认为:(1)由于渔业数据存在不报、漏报或混报及采样样本数过低、采样协议出现变化等问题,造成印度洋长鳍金枪鱼渔业的渔获量、体长组成或年龄组成数据存在质量问题;(2)尽管对单位捕捞努力渔获量(catch per unit effort,CPUE)进行了标准化,但目标鱼种变化及捕捞努力量空间分布变化仍严重影响了标准化CPUE数据的质量;(3)印度洋长鳍金枪鱼的种群生态学及繁殖生物学研究仍比较薄弱,种群结构、繁殖、生长、自然死亡信息比较缺乏,在资源评估中,相关参数设置需借用其他洋区的研究结果;(4)海洋环境对印度洋长鳍金枪鱼的资源变动与空间分布具有显著影响,但评估模型较少考虑海洋环境的影响。由于上述问题的存在,导致当前评估结果存在较大不确定性。未来,应继续探索提高资源评估质量的方法,同时研究建立管理策略评价框架,以避免渔业资源评估结果的不确定性对该渔业可持续开发的影响。  相似文献   

14.
长鳍金枪鱼(Thunnus alalunga)经济价值高,是我国延绳钓渔业重要的目标鱼种。根据2013年9月~2014年1月和2014年4~8月我国金枪鱼观察员在南太平洋东部海域收集的长鳍金枪鱼样本和海洋环境数据,对其生物学组成和栖息环境进行了研究。结果表明:叉长(FL,cm)与体质量(WW,kg)的关系为:WW=3×10-5×FL2.909 9(雌雄性,R2=0.915 3);体长(TL,cm)与叉长(FL,cm)关系为:TL=1.033 6FL+2.555(R2=0.961 4);叉长(FL,cm)与两背鳍间距(LD1D2,cm)的关系为:LD1D2=0.248 5FL+1.238 1(R2=0.815 1);利用各水层长鳍金枪鱼渔获率(catch per unit effort,CPUE)推测其主要的栖息水层为150~270 m,栖息水层温度范围16~22℃,盐度范围35.0~35.6,其中最高资源丰度主要分布在190~230 m的水层,对应的温度为18~20℃,盐度为35.2~35.4。研究结果可为掌握南太平洋长鳍金枪鱼栖息环境提供基础数据。  相似文献   

15.
Relationships between albacore tuna (Thunnus alalunga) longline catch per unit effort (CPUE) and environmental variables from model outputs in New Caledonia’s Exclusive Economic Zone (EEZ) were examined through generalized linear models at a 1° spatial resolution and 10‐day temporal resolution. At a regional (EEZ) scale, the study demonstrated that a large part of albacore CPUE variability can be explained by seasonal, interannual and spatial variation of the habitat. Results of the generalized linear models indicated that catch rates are higher than average in the northwestern part of the EEZ at the beginning of the year (January) and during the second half of the year (July–December). In the northwestern region of the EEZ, high CPUEs are associated with waters <20.5° in the intermediate layer and with moderate values of primary production. Longline CPUE also appeared to be dependent on prey densities, as predicted from a micronekton model. Albacore CPUE was highest at moderate densities of prey in the epipelagic layer during the night and for relatively low prey densities in the mesopelagic layer during the day. We also demonstrated that the highest CPUEs were recorded from 1986 to 1998, which corresponds to a period with frequent El Niño events.  相似文献   

16.
印度洋金枪鱼延绳钓渔业是我国远洋渔业的重要组成部分,海洋不同深度的水温影响到长鳍金枪鱼 (Thunnus alalunga) 延绳钓渔获率。文章利用2008—2017年延绳钓生产作业数据,并结合Argo浮标水温数据,采用广义加性模型 (Generalized additive model, GAM) 分析长鳍金枪鱼空间分布与不同深度水温之间的关系。结果表明,海表面 (0 m)、200和400 m 3个水层的温度显著影响长鳍金枪鱼的空间分布,最优的GAM模型对渔获率 (单位捕捞努力量渔获量,Catch per unit effort, CPUE) 的方差解释率为53.3%,模型拟合的决定系数为0.527。长鳍金枪鱼渔获率与所选取的3个水层温度均呈非线性关系,高渔获区集中分布于17~30 ℃的表层海域,17~20 ℃的200 m层海域,9~15 ℃的400 m层海域,以及他们的交集海线。文章初步得出了南印度洋长鳍金枪鱼空间分布与水深断面温度的关系,可为指导长鳍金枪鱼的合理生产提供技术支撑。  相似文献   

17.
Satellite‐based oceanographic data of sea surface temperature (SST), sea surface chlorophyll‐a concentration (SSC), and sea surface height anomaly (SSHA) together with catch data were used to investigate the relationship between albacore fishing ground and oceanographic conditions and also to predict potential habitats for albacore in the western North Pacific Ocean. Empirical cumulative distribution function and high catch data analyses were used to calculate preferred ranges of the three oceanographic conditions. Results indicate that highest catch per unit efforts (CPUEs) corresponded with areas of SST 18.5–21.5°C, SSC 0.2–0.4 mg m?3, and SSHA ?5.0 to 32.2 cm during the winter in the period 1998–2000. We used these ranges to generate a simple prediction map for detecting potential fishing grounds. Statistically, to predict spatial patterns of potential albacore habitats, we applied a combined generalized additive model (GAM) / generalized linear model (GLM). To build our model, we first constructed a GAM as an exploratory tool to identify the functional relationships between the environmental variables and CPUE; we then made parameters out of these relationships using the GLM to generate a robust prediction tool. The areas of highest CPUEs predicted by the models were consistent with the potential habitats on the simple prediction map and observation data, suggesting that the dynamics of ocean eddies (November 1998 and 2000) and fronts (November 1999) may account for the spatial patterns of highest albacore catch rates predicted in the study area. The results also suggest that multispectrum satellite data can provide useful information to characterize and predict potential tuna habitats.  相似文献   

18.
19.

文章利用2008—2015年南太平洋长鳍金枪鱼 (Thunnus alalunga) 延绳钓渔业数据,结合11个环境指标 (海表温度、叶绿素a (Chl-a)浓度、海表温度距平、叶绿素距平、海表温度梯度、叶绿素梯度、海平面异常以及渔区格网对应的前后各1个月海表温度和叶绿素值) 和3个时空指标 (月、经度和纬度),并基于6种集成学习模型,以月为时间分辨率、0.5°×0.5°为空间分辨率,开展了南太平洋长鳍金枪鱼渔场模型构建和预报研究。模型通过10折交叉验证和网格搜索思想确定最佳参数,采用的随机森林、Bagging决策树、C5.0决策树、梯度提升决策树、AdaBoost、Stacking集成模型分别取得了75.52%、73.87%、72.99%、71.14%、71.33%、75.84%的分类准确率。经对比,Stacking集成模型准确率最高。利用2015年环境数据进行预报精度检验,预报总体准确率为63.86%~82.14%,平均70.99%;高单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 渔区预报准确率为62.71%~97.85%,平均78.76%。结果表明Stacking集成模型对南太平洋长鳍金枪鱼渔场的预报具有较好的效果及可行性。

  相似文献   

20.
The South Equatorial Counter Current (SECC) strongly influences the American Samoa Exclusive Economic Zone (EEZ) and changes strength on a seasonal and ENSO cycle. A strong SECC is associated with a predominantly anticyclonic eddy field as well as increased micronekton biomass and catch-per-unit-effort (CPUE) for albacore tuna, the economically important target species of the local longline fishery. A strong SECC carries chlorophyll a -rich waters from upwelling regions at the north coast of New Guinea towards the EEZ, most likely resulting in the observed increase in micronekton biomass, forage for albacore. Relatively stable anticyclonic eddies show a further increase in micronekton biomass, apparently advected from neighboring SECC waters. The presence of forage presumably concentrates albacore, thus resulting in the observed increase in CPUE. High shear regions of neither anticyclonic nor cyclonic eddies correlate with increased micronekton biomass. Areas characterized by South Equatorial Current (SEC) waters correspond to areas with the lowest micronekton biomass and the highest number of aggregative structures, which are most likely small pelagic fish shoals. Micronekton composition in SEC waters differs from that in the SECC. During El Niños, the seasonal signals at the north shore of New Guinea and in the SECC are exceptionally strong and correspond to higher albacore CPUE in the EEZ. My results suggest that the strength of upwelling and the resulting increase in chlorophyll a at New Guinea, as well as the Southern Oscillation Index, could be used to predict the performance of the local longline fishery for albacore tuna in the American Samoa EEZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号