首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
The experiment aimed to examine the effects of sodium chloride (NaCl) application to pasture on dairy cow production, distinguishing the effects of Na supply on pasture production from the direct effects on animal production, and also to examine the preference of dairy cows for sodium-fertilized pasture. Twenty-four dairy cows were grazed in six treatment areas with three fertilizer levels—all (A), one-half (H) or none (N) of the area fertilized with 50 kg NaCl ha−1, and with or without 50 g cow−1 day−1 NaCl supplementation (+, −) offered in concentrate feed. The experiment was a changeover design with four 3-week periods. NaCl fertilization increased herbage growth rate and Na, Cl and calcium (Ca) contents and reduced K content. Milk yield and liveweight gain were increased by NaCl application to pasture but not by direct supplementation. Milk fat content was increased with increasing Na concentration in the diet. Grazing time was increased by NaCl application to pasture, but only cows not receiving direct NaCl supplementation preferred NaCl-fertilized pasture. Ruminating time was increased both by NaCl application to pasture and by direct supplementation. It is concluded that in the warm, dry conditions of this experiment, increasing Na supply to natrophilic herbage increased both pasture and animal production, and that within the range 3–8 g Na kg−1 dietary DM, increasing Na supply to the cow increased milk fat content.  相似文献   

2.
Mineral availability and status in body tissues was examined with four rumen-fistulated steers arranged in a Latin-square change-over design. The steers were fed perennial ryegrass herbage from a pasture fertilized with four Na treatments: 0 (Nil), 32 (Low), 66 (Medium) or 96 (High) kg Na ha-1 yr-1. Na fertilizer increased herbage contents and intakes of Na, Mg and Ca but did not affect intakes of K, P and S. Herbage K:Na and K:(Ca+Mg) decreased in direct proportion to the amount of Na fertilizer applied. With increasing dietary Na intake, the Na content of saliva increased and the K content decreased. There was an increase in Na and a reciprocal decrease in K contents of rumen fluid with increasing dietary Na. Blood plasma Na contents were greater when the Na-treated herbages were fed than in the Nil treatment. There was no effect of treatment on blood plasma K content. Increasing dietary Na increased urinary Na but did not affect urinary K. Faecal mineral concentrations of Na, Ca, P and S were increased by increasing dietary Na, whereas K content was reduced and the Mg content was unaffected. There was no difference between treatments in the proportion of mineral rapidly solubilized, except Na which increased with increasing dietary Na content. The fractional rate of degradation was greater for Na, K, and Mg than for Ca and P. Based on effective solubilization, minerals were ranked in the order K > (Mg = Na) > Ca > P, and treatments were in the order Medium > (High = Low) > Nil. Increasing Na intake increased Ca but not P or Mg availability and increased the uptake of all three minerals.  相似文献   

3.
A straw/concentrate mixture was offered to set-stocked dairy cows over a 24-week period. The cows were offered grazed herbage only (G), or grazed herbage with a straw/concentrate supplement offered either for 45 min after each milking (B), or overnight (P). The overnight treatment involved housing the cows between afternoon and morning milking. The straw/concentrate mixture contained 0·33 long barley straw, 0·28 barley, 0·12 soya bean meal, 0·25 molaferm and 0·02 minerals. During the first 8 weeks of the experiment an average of 2·25 kg of concentrate were fed, and from weeks 9–24, 2·0 kg of concentrate were fed.
The feeding of the straw/concentrate mixture led to a decrease in estimated herbage dry matter (DM) intake, particularly for treatment P. Estimated total DM intakes were increased throughout the experiment by offering the straw/concentrate mixture. However, total metabolizable energy (ME) intakes were only increased in mid-and late season.
Milk yield was higher in early season for treatment G; 28·1 kg d−1 compared to 26·8 kg d−1 and 25·5 kg d−1 for treatments B and P respectively. In late season the cows in treatment G had lower milk yields; 13·3 kg d−1 compared to 15·5 kg d−1 and 16·8 kg d−1 for treatments B and P respectively. Milk fat content was increased in early season in treatment P, and milk protein content tended to be reduced throughout the experiment for cows offered the straw/concentrate mixture overnight. Over the whole experiment there were no differences in yield of milk solids.  相似文献   

4.
An experiment was conducted to examine the response of herbage grazed by dairy cows to sodium fertilizer applied with or without sulphur fertilizer. The residual effects of applying sodium fertilizer in the previous year were also evaluated. The application of sodium or sulphur fertilizer did not affect herbage growth or height, but the application of sulphur fertilizer increased crude protein content of herbage. The increase in sodium content with application of sodium fertilizer was small, but was greater when sodium fertilizer had also been applied in the previous year. Herbage potassium was increased when sodium fertilizer was applied in the year of the experiment, but only if sodium had not been applied in the previous year. Application of sulphur fertilizer increased herbage sulphur content and reduced the contents of boron, chromium, molybdenum and nickel. Cows grazing pasture that had received sodium fertilizer had increased milk yields and the content of lactose in milk, whereas those grazing pasture that had received sulphur fertilizer application had reduced milk yields and the content of milk fat.  相似文献   

5.
Results are given on the effect of sodium (Na) fertilizer applied as NaNO3 in five application sat 0 (Nil), 32 (Low) or 64 (High) kg Na ha -1yr-1 and the residual effect of sodium chloride(NaCl) fertilizer applied in the previous year on the growth rate and the chemical composition of herbage cut at fortnightly intervals over the grazing season. Na fertilizer at Low and High rates increased herbage Na contents by 20 and 40% respectively. Magnesium (Mg) content in herbage was increased at Low Na fertilizer application rate but there was no difference between the Nil and the High Na treatments. Calcium (Ca) content was increased in proportion to Na fertilizer level. Potassium (K) content of Nil Na herbage exceeded that of Low and High, but there was no effect of treatment on total harvested K yields. The contents of phosphorus (P), sulphur (S), true protein (TP) and modified acid detergent fibre (MADF) in herbage were not affected, but the dry matter digestibility (DMD) was increased with increasing Na fertilizer level. Applying Na fertilizer at the Low and High levels gave similar increases in water-soluble carbohydrates (WSC) and ash contents and decreased crude protein (CP) and non-protein nitrogen (NPN) contents. Net herbage accumulation(fresh and dry weight) was increased by 15 and 26% at the Low and High Na fertilizer application rates respectively. NaCl fertilizer residues from the previous year increased herbage Na, DM, DMD and WSC contents, reduced K contents and did not affect Ca, P, S, CP, TP and NPN contents. Residues from Na fertilizer decreased MADF and ash contents at the Low and High Na application rates. The main and residual effects of Na fertilizer were generally maximal in early season and diminished as the season progressed, with many of the effects eliminated by late season. Proportionally 0·70 of Na applied was recovered in the first two grazing seasons after application. The effects of Na fertilizer on mineral ratios are also described, together with the implications for animal health.  相似文献   

6.
Sixty multiparous, Holstein–Friesian pregnant dry dairy cows were allocated to three forage treatments ( n  = 20; fodder beet, kale or grass silage) at two feeding allowances ( n  = 30; high and low) for 70 (s.e. of mean, 16) d before parturition. Cows offered the high feeding allowance were offered 9 kg of dry matter (DM) of kale or fodder beet grazed in situ plus 5 kg DM of baled grass silage daily or clamp grass silage ad libitum offered indoors. Cows offered the low feeding allowance were offered 6 kg DM of kale or fodder beet grazed in situ plus 3·5 kg DM baled grass silage daily, or 9·5 kg DM of clamp grass silage daily offered indoors. After calving, all cows received a daily allowance of 14 kg DM perennial ryegrass herbage at pasture plus 4 kg concentrate cow−1 for the first 35 d of lactation. Cows offered grass silage had a greater increase in body condition score pre-partum compared to those offered kale or fodder beet. Cows offered fodder beet pre-partum had a greater milk solid and solids-corrected milk yield in the first 35 d of lactation than those offered kale and grass silage pre-partum. Offering fodder beet and kale pre-partum increased plasma non-esterified fatty acid concentrations pre-partum relative to offering grass silage. Offering kale pre-partum resulted in higher insulin-like growth factor-1 concentration post-partum but lower plasma copper concentration pre-partum and at calving than kale or grass silage. Offering the higher forage allowance pre-partum resulted in a higher plasma calcium concentration at calving and higher plasma non-esterified fatty acid concentration post-partum.  相似文献   

7.
Effects of timing and rate of N fertilizer application on concentrations of P, K, S, Ca, Mg, Na, Cl, Mn, Fe, Cu and Zn in herbage from perennial ryegrass/white clover pastures were studied at two sites in south-western Victoria, Australia. Nitrogen fertilizer (0, 15, 25, 30, 45 and 60 kg ha–1) was applied as urea in mid-April, early May, mid-May, early June and mid-June 1996 to pastures grazed by dairy cows. At Site 1, N fertilizer resulted in a linear increase in P, K, S, Mg and Cl concentrations in herbage and a linear decrease in Ca concentration. For all times of application, concentrations of P, K, Ca, Mg and Cl in herbage increased by 0·0048, 0·08, −0·010, 0·0013 and 0·053 g kg–1 dry matter (DM) per kg N applied respectively. For S concentration, maximum responses occurred in mid-May (0·012 g kg–1 DM per kg N applied). At Site 2, N fertilizer resulted in a linear increase in P, S and Na concentrations in herbage, a linear decrease in Ca concentration and a curvilinear increase in K and Cl concentration. The maximum responses for P, S and K concentrations in herbage occurred for the N application in mid-June and were 0·015, 0·008 and 0·47 g kg–1 DM per kg N applied respectively. For Cl concentration, the maximum response occurred for the N application in early June and was 0·225 g kg–1 DM per kg N applied. Overall, applications of N fertilizer up to 60 kg ha–1 did not alter herbage mineral concentration to levels that might affect pasture growth or animal health.  相似文献   

8.
As herd sizes and labour costs increase, and the availability of skilled labour decreases, efficient use of available labour becomes more important in dairy cow systems. Two experiments were conducted to examine the effect of reducing the frequency of application of inorganic nitrogen (N) fertilizer on inputs of labour and performance of dairy cows. Experiments 1 (duration of 169 d) and 2 (duration of 179 d) involved fifty-eight and forty multiparous Holstein–Friesian dairy cows, respectively, in mid-lactation. In each experiment, in the 'infrequent' treatment fertilizer was applied to all paddocks on a single occasion at the start of each grazing cycle, while in treatment 'frequent', fertilizer was applied on three occasions each week, within 2 or 3 d of each paddock having been grazed. The experimental treatments were started from 30 March and 29 March in Experiments 1 and 2 respectively. Total N application rates were approximately 360 and 250 kg N ha−1 in Experiments 1 and 2 respectively. Concentrate feed (4·0 kg per cow) was offered daily in both experiments. With the 'infrequent' treatment, highest concentrations of crude protein and nitrate in herbage were observed in swards grazed approximately 10 d after N fertilizer was applied. Treatment had no significant effect on milk yield, milk fat and protein concentrations, and final live weight and body condition score of cows in either experiment. Milk urea and plasma urea concentrations were not significantly affected by treatment. Calculated application times of fertilizer for a herd of 100 dairy cows were 107 and 83 min week−1 for the 'frequent' and 'infrequent' treatments respectively.  相似文献   

9.
Current recommendations for the intake of sodium of lactating dairy cows are related to milk yield. A study was conducted to compare the responses of cows of high and low milk production potential to the application of sodium fertilizer to grazed perennial ryegrass pasture. The application of sodium fertilizer increased the intake of herbage dry matter (DM), the time that cows spent grazing and the biting rate. It also increased the concentration of sodium, magnesium and calcium in herbage and decreased the concentration of potassium. Applying sodium fertilizer increased milk yield and milk fat concentration and decreased somatic cell count in the milk of cows of low-production potential only, whereas it increased persistency of milk production in the cows of high-production potential. The concentration of lactose in milk increased in both groups after the application of sodium fertilizer. It is concluded that the optimum dietary sodium concentration for grazing cows does not increase with milk yield, and that most immediate advantage will be gained from increasing the sodium concentration in herbage for low-yielding cows.  相似文献   

10.
The objective of the present experiment was to examine the effects of 0 (Nil), 32 (Low), 66 (Medium) or 96 (High) kg sodium (Na) ha-1 yr-1, applied as fertilizer to zero-grazed perennial ryegrass pasture, on rumen digestion and feed and water intake of steers. Herbage Na contents increased with increasing Na up to the Medium Na treatment and no further at the High. Dry matter (DM) contents were increased by Na fertilizer but not affected by the level. Herbage crude protein (CP), true protein (TP) and non-protein nitrogen (NPN) fractions were not affected by treatment. Application of Na fertilizer increased the modified acid detergent fibre (MADF) and ash and total cation content of herbage, particularly at the Medium and High treatments. Faecal DM and TP contents were not affected by treatment, but the CP, NPN, MADF and ash and total cation contents were increased by Na fertilizer. Herbage DM intake increased in proportion to dietary Na content. Water intake increased with increasing Na fertilizer level. Rumen pH was increased by Na fertilizer but ammonia concentration was not affected. The rapidly (a), slowly (b) and potentially (a + b) soluble fractions of degradable DM and the effective degradability (P) of DM increased in direct proportion to amount of Na fertilizer applied up to the Medium level, above which b was reduced and a, a + b and P did not increase further. Solid and total outflow rates were not affected by treatment. Liquid outflow rates were greater in the Medium and High treatments than in the Nil and Low treatments. The immediately soluble fraction of MADF was increased in the Na-applied treatments but the increase declined with each additional Na level. The degradability of MADF increased with increasing dietary Na, particularly in the High treatment. Na increased the proportion of small particles and those with a high specific gravity. It is suggested that the high dilution rates that accompanied the high water intakes and the increased rumen pH are essential factors enabling increased DM intake and rumen digestion when high Na herbages are fed to steers.  相似文献   

11.
Abstract In 1993 and 1994, 40 cows in early lactation in early spring were assigned randomly to four feeding treatments. One group of cows was kept indoors with access to grass silage ad libitum, plus 6 kg of concentrate daily. The other three groups had access to grass pasture (5–6 h per day in 1993 and 11–12 h per day in 1994) plus grass silage similar to that fed to the previous group while indoors plus 6, 4 or 2 kg of concentrate daily. The average daily allocations of herbage (> 3·5 cm) were 8·5 and 14·0 kg DM cow?1 day?1 in 1993 and 1994 respectively. The treatments were applied for 8 weeks (26 February to 23 April) in 1993, and 7 weeks (11 March to 29 April) in 1994. Cows with access to pasture had lower (P < 0·001) silage dry‐matter (DM) intakes and higher (P < 0·001) total forage DM intakes in both years than those kept indoors. This resulted in significantly higher yields of milk, fat, protein and lactose. Similarly, milk protein concentration was higher (P < 0·05 in 1993; P < 0·001 in 1994). There was a significant linear increase in total DM intake in both years with increased concentrate supplementation. In 1993, there was a linear increase in milk (P < 0·01), fat (P < 0·01), protein (P < 0·001) and lactose (P < 0·01) yields with increased concentrate supplementation. In 1994, only milk protein yield (P < 0·05) was increased. Concentrate supplementation had no effect on milk composition or liveweight change. Cows with access to grazed grass had higher liveweight gains (P < 0·05) than those kept indoors in both years. In 1993, increasing the energy intake increased the processing qualities of the milk produced. The results showed that access to grass pasture resulted in higher milk production, in reduced silage requirement and in reduced level of concentrate supplementation required for a given level of milk production with spring‐calving cows in early lactation compared with those kept indoors.  相似文献   

12.
Over a 24-week period, three groups of dairy cows were continuously stocked at 8, 10 or 12 cows ha-1 between morning and afternoon milkings, and overnight were housed and offered grass silage ad libitum. Due to a prolonged drought, sward heights only averaged 4·1 cm.
The increase in daytime stocking rate led to a decline in herbage intake, and increases in silage intake. At the highest stocking rate (12 cows ha-1), the silage intake failed to compensate for the reduced herbage intake. Consequently the total dry matter and estimated metabolizable energy intakes were lower than for the 8 and 10 cows ha-1 treatments. Milk yields and milk composition were not significantly affected by treatment but the 12 cows ha-1 stocking rate gave the lowest milk and milk solids yields.
The utilized metabolizable energy (UME) on the grazed swards was greatest for the 10 cows ha-1 treatment. The sward cut to provide the silage had a UME level (GJ ha-1) 32% greater on average than the grazed swards during the same growth period. The total areas utilized for grazing and silage production for 8, 10 and 12 cows ha-1 were 0·240, 0·224 and 0·215 ha respectively. Fat and protein yields per unit area were greatest for the 10 cows ha-1 group.  相似文献   

13.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

14.
A comparison was made under continuous grazing between applying a high stocking rate in spring (H) to maintain the sward surface height (SSH) of a perennial ryegrass pasture at 5–6 cm and a low stocking rate (L) to maintain SSH at 10–12cm with mechanical topping in mid-June. The experiment was carried out in the dry season of 1989 and a lack of rainfall markedly affected the treatments and consequently animals were offered supplementary concentrate and forage in July to compensate for reduced grass intake and low SSHs.
Treatment H maintained the density of live grass tillers and live: dead tiller ratio in mid-and late season, compared with the L treatment. The measured interval between defoliation of individual grass tillers was significantly less in the L pasture in samplings taken between 2 May and 29 August. January/February calving cows on the L pasture produced significantly more milk cow−1 with higher concentrations of protein and lactose, but less milk ha−1 compared with cows on the H sward. The results indicate that topping of a laxly grazed sward in drought conditions has no positive effects on sward characteristics or milk production.  相似文献   

15.
The effect of feeding either traditional concentrates containing starch or high quality fibrous concentrates on the performance of grazing dairy cows was examined in a trial in which cows were given concentrates with either 350 g starch and sugars (kg dry matter (DM))-1 (high-starch) or 100 g starch and sugars (kg DM)-1 (high-fibre). The swards used consisted predominantly of perennial ryegrass and were usually aftermaths following cutting. Each area was grazed for 3 or 4 d at each grazing and a two-machine sward-cutting technique was used for estimating herbage intake.
The effect of concentrate composition on the herbage intake of grazing cows at a high daily herbage allowance of 28 kg OM above 4 cm cutting height was investigated in 1983 and 1984. With 54 kg OM d-1 of high-starch concentrates the mean herbage intake was 11·5 kg OM d-1 per cow while cows fed 5.3 kg d-1 of high-fibre concentrates consumed on average 12–6 kg OM d-1. The mean substitution rate of herbage by concentrates was reduced from 0·45 kg herbage OM (kg concentrate OM)-1 with the high-starch concentrate to 0·21 with the high-fibre concentrates.
The effect of the treatments on milk production was studied in 1984. The cows consumed 5·5 kg OM d-1 as concentrates and grazed at a lower herbage allowance of 19 kg OM above 4 cm cutting height. With high-fibre concentrates milk production and 4% fat-corrected milk production were 13 and 1·8 kg d-1, respectively, higher than with the high-starch treatment. The daily live weight gain with the high-starch concentrates was 0·17 kg per cow more than with the high-fibre concentrates.  相似文献   

16.
Management of beef cows grazing extensively grazed semi-natural pastures in temperate regions in late autumn can require supplements to be offered. The effects of supplementation with soya bean meal on the diet selected by Charolais cows and on their subsequent performance were examined for an 8-week period in late autumn in 2 years. Three groups of eight cows were compared: non-supplemented dry cows (D), non-supplemented (L) and supplemented (LS) lactating cows. The amount of soya bean meal supplement offered per cow was 250 g d−1 in year 1 and 800 g d−1 in year 2. Dietary choices were measured by direct observations and herbage intake was estimated in year 2. Supplementation affected neither diet selection (L: 0·42 vs. LS: 0·43 for the proportion of bites on green patches in year 1; 0·24 vs. 0·22 in year 2) nor daily organic matter intake of herbage (L: 15·6 vs. LS: 15·9 kg d−1), which may have resulted from an adequate crude protein concentration of herbage. The higher total dry matter intake by cows offered the supplement reduced losses in live weight (L: −1212 vs. LS: −828 g d−1; P  < 0·01) rather than increased milk production (L: 5·1 vs. LS: 5·0 kg d−1). This may be linked to the low milk yield potential of the Charolais cows. The use of lactating cows rather than dry cows for pasture management in late autumn would increase the utilization of herbage but a reduction in liveweight losses of cows by supplementation is unlikely to be economic.  相似文献   

17.
The implications for UK upland sheep systems of reducing nitrogen fertilizer application to perennial ryegrass/white clover swards were studied over 3 years. Sward height (3·5–5·5 cm) was controlled for ewes with lambs until weaning using surplus pasture areas for silage; thereafter, ewes and weaned lambs were grazed on separate areas, and sward height was controlled by adjusting the size of the areas grazed and using surplus pasture areas for silage if necessary. Combinations from three stocking rates [10, 6 and 4 ewes ha−1 on the total area (grazed and ensiled)] and four nitrogen fertilizer levels (150, 100, 50 and 0 kg ha−1) provided six treatments that were replicated three times. Average white clover content was negatively correlated with level of nitrogen fertilizer. The proportion of white clover in the swards increased over the duration of the experiment. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain on all treatments. All treatments provided adequate winter fodder as silage. It is concluded that the application of nitrogen fertilizer can be reduced or removed from upland sheep pastures without compromising individual animal performance provided that white clover content and sward height are maintained. Resting pastures from grazing by changing ensiled and grazed areas from year to year sustained white clover content over a 3-year period.  相似文献   

18.
The objective of this study was to examine the effects of predicted milk yields sustained by grazed grass (‘Milk‐from‐Grass’: LOW, MED or HIGH) and Parity (primiparous or multiparous) on the performance and concentrate requirements of grazed Holstein‐Friesian dairy cows offered concentrates on a ‘feed‐to‐yield’ basis during the grazing season. The mean Milk‐from‐Grass values assigned to cows in the LOW, MED and HIGH treatment groups (sixteen multiparous and eight primiparous cows per group) during the experiment (24 May to 2 October; 131 d) were 12·7, 15·4 and 18·1 kg cow?1 d?1, respectively. Concentrate allocations were adjusted every two weeks (approximately) based on individual cows’ milk yields, and concentrate was offered at a rate of 0·45 kg for each kg of milk produced above the assigned Milk‐from‐Grass value at that time. Increasing Milk‐from‐Grass from LOW to MED to HIGH decreased both the mean daily concentrate allocations (4·90, 3·17 and 1·79 kg cow?1 d?1, respectively) and milk yields (23·8, 21·8 and 19·0 kg cow?1 d?1) of the cows. Cows in the LOW treatment group had lower mean and final (i.e. at the end of the study) BCS and LW than those in the MED or HIGH groups. The effects of Milk‐from‐Grass were similar for both primiparous and multiparous cows.  相似文献   

19.
An experiment was carried out to examine the effect of supplementation on the performance of spring-calving dairy cows grazing swards of differing perennial ryegrass and white clover content. Seventeen heifers and sixty-four Friesian cows in their third to ninth week of lactation were turned out onto one of three pastures with different proportions of perennial ryegrass and white clover. Nine animals on each pasture received either 0, 2 or 4 kg d−1 of a concentrate with a crude protein concentration of 180 g kg−1 dry matter (DM). Prior to grazing, swards contained proportionately 0·01 (L), 0·15 (M) and 0·20 (H) of total DM as clover. During the experiment, grazing pressures were adjusted by movement of buffer fences to maintain compressed sward heights at 6 cm. Samples taken 26 and 68 d after the start of grazing showed little change in the proportion of clover in sward L (< 0·01 and 0·02 respectively), but convergence in the proportion of clover in swards M and L (0·08-0·16 and 0·10-0·15 respectively). Mean daily yields of milk, fat, protein and lactose increased significantly with increased clover content and, even without supplementation, daily yields were 25·4, 0·98, 0·73 and 1·09 kg respectively on sward H. Of the milk components, only protein was significantly increased by increasing sward clover content. The response in milk yield to supplementation was greater on sward L than on swards M and H.  相似文献   

20.
The variation in the dietary cation–anion difference (DCAD) and the urinary pH of dairy cows was examined over the year 1996–97 in Victoria, south-eastern Australia. Mineral concentrations in the pasture and dairy cow milk production were also examined. Three farmlets (A, B and C) under different feeding and management systems were used for the purpose of the study. Feeding management was based on grazed grass with stocking rates of 1·4, 2·5 and 4·7 cows ha–1 for farmlets A, B and C respectively. Cows on farmlets B and C received more supplementary feed than those on the A farmlet.
The urine of the cows in each herd was sampled for pH twice monthly, after morning milking. A sample of the feed on offer the previous day was collected and analysed for crude protein, in vitro dry-matter digestibility and macrominerals. Milk yields were recorded on the same day as urine sampling and weather data for the previous day were also collected.
Pasture cation–anion difference was not greatly influenced by stocking rate or associated management practices, although mineral concentrations in pasture did vary. Urine pH was unaffected by changes in climate, management strategies (e.g. stocking rate), season and stage of lactation. Moreover, urine pH was also unaffected by changes in DCAD until the DCAD declined below approximately +15 mequiv. 100 g–1 for two consecutive sampling periods.
It is concluded that when this threshold for DCAD (+15 mequiv. 100 g–1) is breached, even in late lactation, a decrease in urine pH occurs. In south-eastern Australia, the DCAD offered to non-lactating cows in the last 2 weeks of pregnancy, in spring-calving herds, on a pasture-based diet is nearly always above that regarded as optimum in other feeding systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号