首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Data for the current study were obtained from a divergent selection experiment in which the selection criterion was the average serum IGF-I concentrations of 3 postweaning blood samples collected from purebred Angus calves. Multiple-trait derivative-free REML procedures were used to obtain genetic parameter estimates for IGF-I concentrations and for BW and BW gains measured from birth to the conclusion of a 140-d postweaning performance test. Included in the analysis were 2,674 animals in the A(-1) matrix, 1,761 of which had valid records for IGF-I concentrations. Direct heritability estimates +/- SE for IGF-I concentration at d 28, 42, and 56 of the postweaning period and for mean IGF-I concentrations were 0.44 +/- 0.07, 0.51 +/- 0.08, 0.42 +/- 0.07, and 0.52 +/- 0.08, respectively. Heritability estimates for maternal genetic effects ranged from 0.10 +/- 0.05 to 0.20 +/- 0.06. The proportion of total phenotypic variance due to the maternal permanent environmental effect was essentially zero for all measures of IGF-I concentrations. Genetic correlations of IGF-I concentrations with weaning and post-weaning BW ranged from 0.07 +/- 0.12 to 0.32 +/- 0.11 and generally demonstrated an increasing trend during the postweaning period. Averaged across the various measures of IGF-I, the genetic correlation of IGF-I with preweaning gain was 0.14, whereas the genetic correlation with postweaning gain was 0.29. Genetic correlations between IGF-I and BW gain were positive during all time intervals, except between weaning and the beginning of the postweaning test and from d 84 to 112 of the postweaning period. Environmental and phenotypic correlations of IGF-I with BW and BW gains were generally positive, but small. These results indicate that postweaning serum IGF-I concentration is moderately to highly heritable and has small positive genetic, environmental, and phenotypic correlations with BW other than birth weight and with pre- and postweaning gain. Therefore, if IGF-I proves to be a biological indicator of an economically important trait (e.g., efficiency of feed use for growth) in beef cattle, it should be possible to rapidly change IGF-I concentrations via selection without significantly altering live weight or rate of gain.  相似文献   

2.
For the first time, the current study reports the genetic and phenotypic correlations between growth and reproductive traits in Zandi sheep. The data were comprised of 4,309 records of lamb growth traits from 1,378 dams and 273 sires plus 2,588 records of reproductive traits from 577 ewes. These data were extracted from available performance records at Khojir Breeding Station of Zandi sheep in Tehran, Iran, from 1993 to 2008. Correlations were estimated from two animal models in a bivariate analysis using restricted maximum likelihood procedure between lamb growth traits [birth weight (BW), weaning weight at 3 months of age (WW), as well as six-month weight (6 MW)] and ewe reproductive traits [litter size at birth (LSB), litter size at weaning (LSW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW)]. The genetic correlations between BW and reproductive traits varied from low to high ranges from 0.10 for BW–LSB to 0.86 for BW–TLWB. WW was moderately (0.37) to highly (0.96) correlated with all the reproductive traits. Moreover, the genetic correlations were observed between 6 MW and reproductive traits, varied from 0.19 to 0.95. Relationships between growth and reproductive traits ranged from 0.01 for BW–LSW to 0.28 for BW–TLWB in phenotypic effects. Results indicated that selection to improve WW would have high effect on genetic response in TLWW, and also, these results could be effective for all of the reproductive traits in Zandi sheep.  相似文献   

3.
Fecal egg count (FEC) has been widely used as an indicator of host resistance to gastrointestinal parasites in sheep and has been shown to be a heritable trait. Two other possible indicators of parasites, dag score (DS; accumulated fecal material) and fecal consistency score (FCS), were investigated in this study, along with BW. All four traits were studied to see how heritability and genetic correlations varied with age from weaning (4 mo) to hogget age (approximately 400 d). More than 1,100 lambs, the offspring of 37 rams, were recorded eight times between weaning (3 to 5 mo of age) and hogget age (13 to 18 mo of age) on two farms. Sire models were fitted to the data from each trait at each recording and in a repeatability model involving the whole data set. Overall, the heritabilities were 0.28+/-0.072 (FEC), 0.11+/-0.036 (DS), 0.12+/-0.036 (FCS), and 0.23+/-0.070 (BW). By fitting random regression models to the time-series data, it was possible to see how these heritability values varied as the lambs aged, from weaning to hogget age. The heritability of FEC rose from 0.2 at weaning to 0.65 at 400 d. Dag score had a higher heritability (0.25) in the middle of the age range and a low value at weaning (<0.1) and hogget age (0.16). The heritability of FCS was low, with a value of 0.2 at weaning reducing to 0.05 as the animals aged. Body weight had zero heritability at weaning, which rose to greater than 0.6 at hogget age. Most traits had low genetic correlations between them, the only exception being that between FCS and DS (0.63). Most genetic correlations varied little over the age range with the exception of FEC and BW, which fell from 0 at weaning to -0.63 at hogget age. Whereas FCS and DS may be good indicators of scouring, they are very different from FEC as an indicator of host resistance to gastrointestinal parasites.  相似文献   

4.
The relationships between various measures of growth and productivity of range sheep were investigated, utilizing records of 1,109 range ewes sired by 269 rams. Body weights and degree of maturity of body weight at birth, weaning, 12 mo, 18 mo, 30 mo and absolute growth rate, absolute maturing rate and relative growth rate over various age intervals were studied relative to their relationship with productivity characters. Measures of ewe productivity were average annual production for the 4-yr period, 2 through 5 yr of age, for grease fleece weight, number of lambs born, number of lambs weaned and weight of lambs weaned. Heritability estimates were .31 +/- .11 for grease fleece weight, .42 +/- .12 for number of lambs born, .08 +/- .10 for number of lambs weaned and .03 +/- .10 for weight of lambs weaned. All production characters had positive phenotypic correlations (.04 to .22) with body weight at all ages. Both number of lambs born and weight of lambs weaned had small positive phenotypic correlations with growth rates over the 12- to 18-mo age interval. The genetic correlations between ewe productivity and weights at different ages were variable, ranging from -.71 between weaning weight and grease fleece weight to values greater than 1.00 for correlations between weight of lambs weaned and weights at birth, weaning and 18-mo. Degree of maturity at 12 mo had positive genetic correlations with all production characters. Estimated genetic correlations between number of lambs born and absolute growth rate, relative growth rate and absolute maturing rate over the 12- to 18-mo age interval were positive.  相似文献   

5.
Correlated effects of selection for components of litter size on growth and backfat thickness were estimated using data from 3 pig lines derived from the same base population of Large White. Two lines were selected for 6 generations on either high ovulation rate at puberty (OR) or high prenatal survival corrected for ovulation rate in the first 2 parities (PS). The third line was an unselected control (C). Genetic parameters for individual piglet BW at birth (IWB); at 3 wk of age (IW3W); and at weaning (IWW); ADG from birth to weaning (ADGBW), from weaning to 10 wk of age (ADGPW), and from 25 to 90 kg of BW (ADGT); and age (AGET) and average backfat thickness (ABT) at 90 kg of BW were estimated using REML methodology applied to a multivariate animal model. In addition to fixed effects, the model included the common environment of birth litter, as well as direct and maternal additive genetic effects as random effects. Genetic trends were estimated by computing differences between OR or PS and C lines at each generation using both least squares (LS) and mixed model (MM) methodology. Average genetic trends for direct and maternal effects were computed by regressing line differences on generation number. Estimates of direct and maternal heritabilities were, respectively, 0.10, 0.12, 0.20, 0.24, and 0.41, and 0.17, 0.33, 0.32, 0.41, and 0.21 (SE = 0.03 to 0.04) for IWB, IW3W, IWW, ADGBW, and ADGPW. Genetic correlations between direct and maternal effects were moderately negative for IWB (-0.21 +/- 0.18), but larger for the 4 other traits (-0.59 to -0.74). Maternal effects were nonsignificant and were removed from the final analyses of ADGT, AGET, and ABT. Direct heritability estimates were 0.34, 0.46, and 0.21 (SE = 0.03 to 0.05) for ADGT, AGET, and ABT, respectively. Direct and maternal genetic correlations of OR with performance traits were nonsignificant, with the exception of maternal correlations with IWB (-0.28 +/- 0.13) and ADGPW (0.23 +/- 0.11) and direct correlation with AGET (-0.23 +/- 0.09). Prenatal survival also had low direct but moderate to strong maternal genetic correlations (-0.34 to -0.65) with performance traits. The only significant genetic trends were a negative maternal trend for IBW in the OR line and favorable direct trends for postweaning growth (ADGT and AGET) in both lines. Selection for components of litter size has limited effects on growth and backfat thickness, although it slightly reduces birth weight and improves postweaning growth.  相似文献   

6.
Angus bulls and heifers from lines divergently selected for serum IGF-I concentration were used to evaluate the effects of IGF-I selection line on growth performance and feed efficiency in 2 studies. In study 1, bulls (low line, n = 9; high line, n = 8; initial BW = 367.1 +/- 22.9 kg) and heifers (low line, n = 9; high line, n = 13; initial BW = 286.4 +/- 28.6 kg) were adapted to a roughage-based diet (ME = 1.95 Mcal/kg of DM) for 24 d and fed individually for 77 d by using Calan gate feeders. In study 2, bulls (low line, n = 15; high line, n = 12; initial BW = 297.5 +/- 34.4 kg) and heifers (low line, n = 9; high line, n = 20; initial BW = 256.0 +/- 25.1 kg) were adapted to a grain-based diet (ME = 2.85 Mcal/kg of DM) for 32 d and fed individually for 70 d by using Calan gate feeders. Blood samples were collected at weaning and at the start and end of each study, and serum IGF-I concentration was determined. Residual feed intake (RFI) was calculated, within study, as the residual from the linear regression of DMI on midtest BW(0.75), ADG, sex, sex by midtest BW(0.75) and sex by ADG. In study 1, calves from the low IGF-I selection line had similar initial and final BW and ADG, compared with calves from the high IGF-I selection line. In addition, DMI and feed conversion ratio were similar between IGF-I selection lines; however, calves from the low IGF-I selection line tended (P < 0.10) to have lesser RFI than calves from the high IGF-I selection line (-0.26 vs. 0.24 +/- 0.31 kg/d). In study 2, IGF-I selection line had no influence on performance or feed efficiency traits. However, there was a tendency (P = 0.15) for an IGF-I selection line x sex interaction for RFI. Bulls from the low IGF-I selection line had numerically lesser RFI than those from the high IGF-I selection line, whereas in heifers, the IGF-I selection line had no effect on RFI. In studies 1 and 2, weaning and initial IGF-I concentrations were not correlated with either feed conversion ratio or RFI. However, regression analysis revealed a sex x IGF-I concentration interaction for initial IGF-I concentration in study 1 and weaning IGF-I concentration in study 2 such that the regression coefficient was positive for bulls and negative for heifers. These data suggest that genetic selection for postweaning serum IGF-I concentration had a minimal effect on RFI in beef cattle.  相似文献   

7.
The effects of dam parity, age at weaning, and preweaning diet were examined in the ontogeny of serum insulin-like growth factor-I (IGF-I) concentrations in foals. Foals born to 13 primiparous and 19 multiparous draft-cross mares were weighed and bled near birth. About one-half of the foals in each group were weaned early (about 13 wk old); the remaining foals were weaned late (about 16 wk of age). Pooled values for serum IGF-I concentrations between birth and 17 wk of age were higher (P < 0.065) for foals born to multiparous (386 ng/ml) than to primiparous mares (237.5 ng/ml). Colts (378 ng/ml) had higher (P < 0.05) serum IGF-I concentrations than fillies (254.5 ng/ml), regardless of dam parity. Colts (173.5 kg) also tended (P = 0.12) to be heavier than fillies (159.2 kg). Weaning, whether at 13 or 16 wk of age, reduced (P < 0.05) growth rates and serum IGF-I concentrations. Serum IGF-I values recovered to preweaning values within 1–3 wk postweaning concurrent to an improved weight gain. Fifteen 1-d-old foals in a second study were fed milk replacer for 7 wk and were compared with five foals that nursed their mares for 8 wk. During the first 2 wk, replacer-fed foals (0.46 kg/d) did not gain as rapidly (P < 0.03) as mare-nursed foals (1.73 kg/d). The associated serum IGF-I values for replacer foals (139.4 ng/ml) were lower (P < 0.0001) than values for mare-nursed foals (317.4 ng/ml). Despite similarity in gains for both groups thereafter, serum IGF-I concentrations of replacer-fed foals were only 36 and 60% of values obtained for mare-nursed foals at 8 (weaning) and 18 wk of age, respectively. The intrinsic differences between mare-nursed and milk-replacer foals in serum IGF-I concentrations persisted to 1 yr of age despite similarities in dietary management and body weight of the foals. At 1 yr of age, the serum IGF-I concentration of mare-nursed foals (1,203 ng/ml) was 48% higher than that of replacer-fed foals (815 ng/ml). These data indicate that dam parity, sex of foal, and preweaning nutrition affect the ontogeny of serum IGF-I concentration in the foal. The chronic, persistent difference in serum IGF-I values created by the early nutritional management of growing animals has implications in the interpretation of longitudinal serum IGF-I studies in all species.  相似文献   

8.
Targhee sheep were selected for 120-d weight under irrigated pasture-drylot conditions at Davis (DW) and under range conditions at Hopland (HW). Unselected control lines were maintained in both environments (DC, HC1 and HC2). At Hopland, a line (DH) was maintained in which ewes were mated to Davis (DW) rams. Selection for 120-d weight was successful in both environments, with more improvement made in the drylot environment. The genetic improvement made in the drylot environment was expressed, although to a lesser degree, under range conditions. Correlated responses were analyzed. Birth weight increased significantly in all three selected lines; the increase was less in line DH than in the other two lines. In all selected lines, weights of ewes of all ages at mating increased significantly compared with their respective controls. Proportion of ewes lambing decreased (P less than .05) in line DH; the trend was negative but nonsignificant in line DW. Differences in litter size between lines within location were not significant. Lamb survival to weaning decreased in lines DW (P less than .05) and DH (P less than .01), compared with their respective controls; and the trend in HW was negative but nonsignificant. Fertility and survival data indicated that, under range conditions, the line selected under drylot conditions (DH) was less fit than the line selected under range conditions (HW). As a result of the decreases in lamb survival and fertility, none of the selected lines produced more total lamb weight weaned per ewe than the controls, in spite of the significant direct response to selection. Mature ewes of lines DH and DW produced less total lamb weight weaned per ewe (P less than .001 and P less than .05) than their respective controls. The results indicate that while single trait selection for growth rate to weaning results in heavier lambs, it does not increase and may decrease total lamb production per ewe.  相似文献   

9.
The objective of this research was to evaluate a biallelic genetic marker identified in the first promoter region of the bovine IGF-I gene. The point mutation was identified as a T-to-C transition by sequencing the polymorphic fragments. A PCR-RFLP procedure was developed for determining the marker genotypes. Marker genotypes were determined for 760 Angus calves from divergent lines that were created by selection for high or low serum IGF-I concentration (allele A: 63.9%, B: 36.1%). Data were analyzed using the multiple-trait derivative-free restricted maximum likelihood computer programs with animal models. The full animal model included fixed effects of marker genotype, birth year, season of birth, sex, age of dam, and selection line; random effects of animal, maternal genetic, and maternal permanent environmental effects; and a covariate for age of calf. Traits analyzed included blood serum IGF-I concentrations on d 28, 42, and 56 of the postweaning test, mean IGF-I concentration, birth weight, weaning weight, on-test weight, off-test weight, off-test hip height, postweaning gain, and weight gain during the 20-d period immediately after weaning. Results from the analysis across selection lines showed a significant association of the BB genotype with higher weight gain during the first 20 d after weaning and a slight dominance effect of the marker on postweaning gain. Analysis within the low IGF-I line also showed a significant association of the BB genotype with higher weight gain during the first 20 d after weaning and with on-test weight, although analysis within the high IGF-I line did not show any significant association. The associated effects of the marker need to be verified in other cattle populations.  相似文献   

10.
[目的]探究兴羔肉羊的生长发育特征及遗传特性。[方法]对2018—2019年出生的1 054只兴羔肉羊羔羊的初生重、断奶重、6月龄体重、12月龄体重数据进行统计分析,并采集部分羊只6月龄、12月龄、24月龄的体高、体长及胸围数据。详细记录每只羔羊的出生类型及系谱档案,利用WOMBAT软件对其初生重、断奶重进行遗传评估。[结果]兴羔肉羊羔羊初生重和断奶重的遗传力分别为0.980和0.885,表型相关为0.321,遗传相关为0.396;6月龄时,公羊体重占成年体重的44.21%、母羊体重占成年体重的60.33%,公羊和母羊的体尺数据都达到成年体尺数据的80%以上。[结论]兴羔肉羊的初生重和断奶重具有高遗传力,且符合肉用品种羊早期生长发育快的遗传特性。  相似文献   

11.
Records for Afshari sheep were retrieved from data collected between 2000 and 2005 at the Zanjan University experimental flock, at Zanjan, Iran. (Co)variance components and corresponding genetic parameters for birth weight (BW), weaning weight (WW), 6-month weight (W6), average daily gain from birth to weaning (ADGa), from birth to 6 months (ADGb), from weaning to 6 months (ADGc), Kleiber ratio at weaning (WWKR) and Kleiber ratio at 6 months of age (W6KR) were estimated using univariate and bivariate analyses by the DFREML procedure. The Kleiber ratio, defined as growth rate/metabolic weight, has been suggested to be a useful indicator of growth efficiency and an indirect selection criterion for feed conversion. Estimates of direct heritability ( h 2) were 0.23, 0.27, 0.11, 0.22, 0.07, 0.01, 0.13 and 0.06 for BW, WW, W6, ADGa, ADGb, ADGc, WWKR and W6KR, respectively. Maternal genetic effects represented a relatively large proportion of the total phenotypic variance for BW ( m 2 = 0.22), whereas maternal permanent environmental effects were significant for W6 ( c 2 = 0.15), ADGb ( c 2 = 0.16), ADGc ( c 2 = 0.14) and W6KR ( c 2 = 0.16). Results of bivariate analyses indicated the variable genetic correlations between traits. The largest positive genetic relationships were between adjacent measurements. The moderate estimates of h 2 for early growth traits indicate that in Afshari sheep faster genetic improvement through selection is possible for these traits. In order to increase the efficiency of feed conversion, use of Kleiber ratio in selection programmes was recommended.  相似文献   

12.
为了筛选出适宜于河北省唐山地区养殖的肉用绵羊最佳杂交组合,更好地指导生产实践,本研究以小尾寒羊为母本,分别以澳洲白羊(AWF)、杜泊羊和夏洛莱羊为父本,分3组进行杂交试验,其中,1组为澳洲白羊和小尾寒羊杂交(AH组),2组为杜泊羊和小尾寒羊杂交(DH组),3组为夏洛莱羊和小尾寒羊杂交(XH组)。对3组肉羊杂交F1代羊的生长性能和CLPG基因的遗传效应进行测定和分析。结果表明,在相同饲养条件下,除夏寒F1代母羊的初生重略低于澳寒F1代母羊外,夏寒杂交F1代羊的初生重(公羊)、断奶重、6月龄体重、初生到断奶时的平均日增重均为最高,且显著或极显著的高于杜寒和澳寒F1代羊(P<0.05,P<0.01)。断奶到6月龄时的平均日增重,杜寒F1代公、母羊均为最高,其次是夏寒F1代公、母羊,杜寒F1代公、母羊与其余两组均未达显著性差异(P>0.05)。3月龄体尺指标除了体长和胸宽,6月龄体尺指标除了体长和体高,其余均是夏寒F1代羊最大,且部分指标极显著高于澳寒F1代羊(P<0.01)。以上研究结果说明,夏寒F1代羊,基础体重较高,出生后生长速度始终较快,而杜寒F1代羊在断奶后表现出较快的生长速度。3个肉羊杂交组合F1代羊CLPG基因的遗传效应分析结果表明,CLPG基因的第41 bp处存在一个错义突变位点(g.C > T),该位点有CC和CT 2种基因型,其中CC为优势基因型,C为优势等位基因。具CT型个体的初生重、断奶重、6月龄体重以及3月龄和6月龄各体尺指标,均明显高于具CC型的个体。综合以上结果,提示夏洛莱羊与小尾寒羊杂交优势较为明显,T等位基因可促进肉用绵羊的生长发育,建议在河北省唐山地区进行肉羊生产时,尽可能选择夏寒杂交组合且携带有T等位基因的个体。  相似文献   

13.
Lactation and growth of three contemporary lines of grade Targhee sheep developed from the same genetic base were characterized by three experiments performed over a period of 2 yr. Two lines (HW and DH) had been selected for 120-d weaning weights for 24 yr prior to beginning these experiments. A third line (C) was a randomly selected control. Year I experiment contrasted 10 DH with 7 C ram lambs fed to 58 kg. Year II experiments utilized 9 C, 14 DH and 10 HW ram lambs and 11 ewes suckling twins from each line. All Year II ram lambs were born and weaned as twins, then fed to 50 kg. Mature DH and HW ewes were heavier (P less than .05) than C ewes (65.2 and 68.8 vs 54.9 kg), and the DH and HW lambs grew faster than C lambs both before (P less than .05) and after weaning (P less than .05). While both DH and HW lambs drank more milk (2,419 and 2,368 vs 2,059 g X d-1 X pair-1; P less than .10) only HW ewes showed a trend towards greater potential milk production than controls (HW = 2,774 vs C = 2,155 g X d-1 X ewe-1 P less than .12). The HW lambs tended to be leaner than C lambs (P less than .05), but DH lambs did not differ from either line. Lambs from DH and HW lines required less post-weaning feed (121.9 and 129.3 vs 152.0 kg P less than .05) and exhibited 17 and 16% greater weight per day of age at 50 kg than controls (P less than .05). The DH line displayed lower feed: gain ratios than controls in both post-weaning trials (6.68 vs 7.30 to 58 kg; 5.83 vs 6.24 at 50 kg; P = .06).  相似文献   

14.
Plasma concentrations of insulin-like growth factor-I (IGF-I) were determined in male and female turkeys from a medium weight (RBC2) and a related heavy weight line (F) from 1 to 28 wks of age. At hatch, the concentrations of IGF-I were relatively low and not different between lines or sexes. During the neonatal period (1 to 7 wks), the concentrations of IGF-I increased and were higher in the faster growing F line and in males. During the juvenile period (8 to 15 wks) the concentrations of IGF-I were higher in males but not different between lines. During the preadolescent period (16 to 21 wks), the concentrations of IGF-I were higher in males but was not different between lines in males while the females of the RBC2 line had higher concentrations than females of the F line. During the adolescent period (22 to 28 wks) the concentrations of IGF-I were higher in males but was not different between lines in males while the females of the RBC2 line had higher concentrations than females of the F line. A phenotypic correlation (+.25) between plasma IGF-I and growth rate was present after statistical absorption of model effects during the neonatal period but not at the later ages. We conclude that IGF-I concentration was positively correlated with growth rate during the neonatal period, but that this relationship changed during the preadolescent and adolescent periods so that IGF-I concentrations were not related to growth rate in males but were negatively related to growth rate in females.  相似文献   

15.
A 2-yr study using crossbred male calves (n = 228) evaluated castrating at birth or at 4 mo of age and use of anabolic growth implants (none, zeranol or estradiol-17 beta). Angus, Hereford and Brahman crossbred calves produced in seven cow-calf units that varied by breed component, stocking rate and calving season were allotted to treatment at birth in a 2 x 3 factorial arrangement. Growth implants decreased (P less than .01) testicular weight and expression (P less than .05) of male secondary sex characteristics in suckling bull calves at 4 mo. Implanted calves were shorter (P less than .05) at the hips and had shorter front legs (P less than .01) at both 4 mo and at weaning. Cannon bone circumference at weaning was increased (P less than .05) by growth implants. Age at castration did not affect (P greater than .05) calf performance or body characteristics. Calves given growth implants had higher (P less than .05) rates of gain from birth to 4 mo than did nonimplanted calves (.75 vs .71 kg/d). Implanted calves were heavier (P less than .01) at weaning and had higher (P less than .01) ADG from 4 mo to weaning than did nonimplanted calves. These data indicate no benefit from delaying age at castration, but implanting increased weaning weight an average of 8.2 kg.  相似文献   

16.
Growth rates during rearing affect the age and body weight (BW) of replacement heifers at first calving. Diet and disease can affect growth via altered metabolic hormone concentrations, but are difficult to monitor accurately on commercial farms. This study investigated the effect of management and metabolic indices (IGF-I, insulin, glucose and urea) on the growth rate of 509 Holstein-Friesian heifers on 19 UK dairy farms. Size (BW, heart girth, height and crown-rump length) was measured at approximately 1, 6 and 15 months. The mean daily weight gain up to 6 months for all calves was 0.77 kg/day, with extreme variability both between cohorts of calves (range 0.49–1.02 kg/day) and between individual calves within farms (range 0.45–1.13 kg/day). Growth was enhanced by supplemental colostrum, by milk replacer as opposed to whole milk and by ad libitum milk feeding and was reduced by gradual weaning and dehorning after weaning. Larger group size slowed growth before weaning (>6 calves) but increased it post-weaning (>20 calves). These management differences were reflected in altered plasma IGF-I concentrations, which were positively associated with growth throughout the rearing period. Larger calves at 1 month had a greater weight gain up to 6 months. Sub-optimum growth of some heifers within each cohort was established at an early age and resulted in animals reaching the start of breeding at an inadequate size (BW range 209–498 kg at 15 months). This could be alleviated by altered management strategies and improved monitoring of growing heifers.  相似文献   

17.
The aim of this study was investigate the effect of growing associated with different gender on circulating total and free iodothyronine concentrations during the first 13 mo of age in foals. In addition, we investigated the evolution of circulating concentrations of thyroid hormones during the first 3 d of weaning. Blood was collected from 13 clinically healthy Thoroughbred foals every month. All foals were weaned at the 4 mo and blood samples were taken also at 24, 48 and 72 h after weaning. The results obtained showed growing effects for tri-iodothyronine (T3), thyroxine (T4), free tri-iodothyronine (fT3) and free thyroxine (fT4) values (P < .001).

Serum T3 concentrations averaged respectively 2.89 and 0.29 nmol/L at 7 and 9 mo. Serum T4 concentrations averaged respectively 100.17 and 21.77 nmol/L at 1 and at 10 mo. Serum fT3 concentrations averaged respectively 6.96 and 1.50 pmol/L at 1 and 4 mo. Serum fT4 concentrations averaged respectively 31.40 and 4.93 pmol/L at 1 and 9 mo. Significant correlations between T3, T4, fT3 and fT4 with body weight (BW) and between T3, T4 and fT4 with age were observed.

Weaning effects (P < .001) were shown for T3 and fT4 levels. No differences (P > .05) in T4 and fT3 levels were observed over the 3-day period. Gender effects (P < .001) were shown for T3, T4, fT3, and fT4 levels. Significant correlations between T4 and fT4 with BW and age were observed in colts and fillies. T3 concentrations were correlated with age only in colts and fT3 with BW only in colts. The results obtained seem to lend support to the recognized effects of growing and weaning in modulating the thyroid function of Thoroughbred foals. In fact, significant and differentiated effects of growing and weaning on total and free iodothyronine levels have been demonstrated.  相似文献   


18.
Linear functions of body weight and condition score at weaning and 18 mo of age were used to predict the mature weight (A) and maturing rate (k) parameters of an asymptotic growth model of Angus cows at the Subtropical Agricultural Research Station, Brooksville, FL. From 1981 through 1988 a heavy-mature-weight line (Line A) and a rapid-maturing line (Line K) were selected based on predicted A and k values. Linear contrasts (A-K) of least squares means for weight at fixed ages indicated that the weight difference between lines increased from birth to maturity during the period of the study. Animals from Line A were heavier (P less than .01) at all ages. A negative response in maternal ability, relative to increased growth potential of their calves, seems to have occurred in the cows of Line A. Mature weight was reached at approximately 4.5 yr of age in Line K and at approximately 5.5 yr in Line A. Brody's three-parameter and Richards' four-parameter functions were fitted to 2,855 quarterly weights of cows, from birth to 6.5 yr of age, to estimate the average growth curve for each line. Brody's model gave better estimates of weights from 18 mo to maturity, but the asymptotic residual mean squares were slightly higher because early weights were overestimated. Linear and nonlinear regression analyses of weight-age data and comparisons of degree of maturity at different premature ages showed differences in the growth patterns of the two lines selected for early predicted values of A and k.  相似文献   

19.
The objectives were to determine the association of maturing patterns with growth rates and body weights and to estimate heritabilities and genetic and phenotypic correlations among these characters of sheep. Records of 1,109 range ewes from the Montana Agricultural Experiment Station Red Bluff Research Ranch at Norris were analyzed. Body weight and degree of maturity of body weight at birth, weaning, 12 mo of age, 18 mo of age and maturity (body weight only), and absolute growth rate (AGR), absolute maturing rate (AMR) and relative growth rate (RGR) over various age intervals were examined. Mature weight, required to calculate degree of maturity and AMR, was estimated by the average of the fall weights taken at 42, 54, 66 and 78 mo of age. Heritability estimates were .53 +/- .12 for mature weight and from .26 to .46 for immature weights. Genetic correlations among body weights at all ages were positive and generally large between immature weights and mature weights. Heritability estimates for degree of maturity ranged from .63 +/- .12 at 12 mo of age to .19 +/- .11 at 30 mo of age, at which time maturity was being approached. Genetic correlations between degree of maturity and body weight at the same age were positive; however, degree of maturity at all ages was negatively correlated with mature weight. Animals more mature at any age or stage during growth tended to be more mature at later stages, to be lighter at maturity, and to grow faster and weigh more up to 12 mo of age. Heritability estimates for AGR, RGR and AMR were moderate to high and were similar for the same age intervals. Selection for any one of the measures of growth rate would tend to expand the shape of the growth curve toward heavier weights and lower degree of maturity for any interval.  相似文献   

20.
Genetic parameters of growth curve parameters in male and female chickens.   总被引:11,自引:0,他引:11  
1. Individual growth curves of 7143 chickens selected for the form of the growth curve were fitted using the Laird form of the Gompertz function, BW4=BW0xe(L/K)(1-e-Kt) where BWt is the body weight at age t, BW0 the estimated hatching weight, L the initial specific growth rate and K the maturation rate. 2. Line and sex effects were significant for each parameter of the growth curve. In males, L, BW0, age and body weight at inflection (T(I)and BWI) were higher whereas K was lower than in females. Lines selected for high adult body weight had higher BW0 and BW(I) whereas lines selected for high juvenile body weight had larger estimates of L and lower estimates of T(I). 3. Data from 38,474 animals were included in order to estimate the genetic parameters of growth curve parameters in males and females, considering them as sex-limited traits. Genetic parameters were estimated with REML (REstricted Maximum Likelihood) and an animal model. Maternal genetic effects were also included. 4. Heritabilities of the growth curve parameters were moderate to high and ranged between 0.31 and 0.54, L, BW0 in both sexes and BW(I) in males exhibited significant maternal heritability. Heritabilities differed between males and females for BWI and T(I). Genetic correlations between sexes differed significantly from one for all parameters. L, K and T(I) were highly correlated but correlations involving BW0 and BW(I) were low to moderate. 5. Sexual dimorphism of body weight at 8 and 36 weeks and of L, K and T(I) was moderately heritable. Selection on growth curve parameters could modify the difference between sexes in precocity and thus in body weight at a given age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号