首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value.  相似文献   

2.
Radio Doppler data from the Galileo spacecraft's encounter with Amalthea, one of Jupiter's small inner moons, on 5 November 2002 yield a mass of (2.08 +/- 0.15) x 10(18) kilograms. Images of Amalthea from two Voyager spacecraft in 1979 and Galileo imaging between November 1996 and June 1997 yield a volume of (2.43 +/- 0.22) x 10(6) cubic kilometers. The satellite thus has a density of 857 +/- 99 kilograms per cubic meter. We suggest that Amalthea is porous and composed of water ice, as well as rocky material, and thus formed in a cold region of the solar system, possibly not at its present location near Jupiter.  相似文献   

3.
The mass of extraterrestrial material accreted by the Earth as submillimeter particles has not previously been measured with a single direct and precise technique that samples the particle sizes representing most of that mass. The flux of meteoroids in the mass range 10(-9) to 10(-4) grams has now been determined from an examination of hypervelocity impact craters on the space-facing end of the Long Duration Exposure Facility satellite. The meteoroid mass distribution peaks near 1.5 x 10(-5) grams (200 micrometers in diameter), and the small particle mass accretion rate is (40 +/- 20) x 106 kilograms per year, higher than previous estimates but in good agreement with total terrestrial mass accretion rates found by geochemical methods. This mass input is comparable with or greater than the average contribution from extraterrestrial bodies in the 1-centimeter to 10-kilometer size range.  相似文献   

4.
We measured the Newtonian constant of gravity, G, using a gravity gradiometer based on atom interferometry. The gradiometer measures the differential acceleration of two samples of laser-cooled Cs atoms. The change in gravitational field along one dimension is measured when a well-characterized Pb mass is displaced. Here, we report a value of G = 6.693 x 10(-11) cubic meters per kilogram second squared, with a standard error of the mean of +/-0.027 x 10(-11) and a systematic error of +/-0.021 x 10(-11) cubic meters per kilogram second squared. The possibility that unknown systematic errors still exist in traditional measurements makes it important to measure G with independent methods.  相似文献   

5.
The region bounded by the inner tens of light-years at the center of the Milky Way Galaxy contains five principal components that coexist within the central deep well of gravitational potential. These constituents are a black hole candidate (Sgr A*) with a mass equivalent to 2.6 +/- 0.2 x 10(6) solar masses, a surrounding cluster of evolved stars, a complex of young stars, molecular and ionized gas clouds, and a powerful supernova-like remnant. The interaction of these components is responsible for many of the phenomena occurring in this complex and unique portion of the Galaxy. Developing a consistent picture of the primary interactions between the components at the Galactic center will improve our understanding of the nature of galactic nuclei in general, and will provide us with a better-defined set of characteristics of black holes. For example, the accretion of stellar winds by Sgr A* appears to produce far less radiation than indicated by estimates based on models of galactic nuclei.  相似文献   

6.
The discovery of dwarf planet Eris was followed shortly by the discovery of its satellite, Dysnomia, but the satellite orbit, and thus the system mass, was not known. New observations with the Keck Observatory and the Hubble Space Telescopes show that Dysnomia has a circular orbit with a radius of 37,350 +/- 140 (1-sigma) kilometers and a 15.774 +/- 0.002 day orbital period around Eris. These orbital parameters agree with expectations for a satellite formed out of the orbiting debris left from a giant impact. The mass of Eris from these orbital parameters is 1.67 x 10(22) +/- 0.02 x 10(22) kilograms, or 1.27 +/- 0.02 that of Pluto.  相似文献   

7.
One of the open key issues in the astrophysics of stellar coronae is the determination of their spatial structure and density. From almost all previous measurements, one can infer merely the presence of a corona, which for the most energetic stellar coronae may exceed the solar x-ray output by as much as five orders of magnitude, but no information can be obtained on the densities and hence volumes and sizes of the hot x-ray emitting material. A direct spectroscopic measurement of the coronal density was obtained for the star Procyon with the spectrometer on board the Extreme Ultraviolet Explorer satellite; the ratio of two Fe XIV lines at 211.32 and 264.79 angstroms was used to determine a density of approximately 4 x 10(9) to 7 x 10(9) electrons per cubic centimeter, which is a factor of 2 to 3 higher than typical solar active region densities. From this value, we estimate that approximately 6 percent of the stellar surface is covered with approximately 7 x 10(4) coronal loops.  相似文献   

8.
We determined some basic properties of stars that produce spectacular gamma-ray bursts at the end of their lives. We assumed that accretion of the outer portion of the stellar core by a central black hole fuels the prompt emission and that fall-back and accretion of the stellar envelope later produce the plateau in the x-ray light curve seen in some bursts. Using x-ray data for three bursts, we estimated the radius of the stellar core to be approximately (1 - 3) x 10(10) cm and that of the stellar envelope to be approximately (1 - 2) x 10(11) cm. The density profile in the envelope is fairly shallow, with rho approximately r(-2) (where rho is density and r is distance from the center of the explosion). The rotation speeds of the core and envelope are approximately 0.05 and approximately 0.2 of the local Keplerian speed, respectively.  相似文献   

9.
Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk.  相似文献   

10.
Mixing in starts     
Analysis of the chemical and isotopic composition of stellar surfaces reveals the types of nuclear reactions that have occurred in the stellar interiors as well as the timing and depths from which material once deep in the star has reached the surface. Mass loss from the stellar surface and, in some cases, mass transfer from a companion enhance the opportunity to observe material that is the product of internal nuclear reactions. Detailed studies show substantial deficiencies in current models with the timing and depth of convective and other forms of mixing.  相似文献   

11.
The ranging instrument aboard the Hayabusa spacecraft measured the surface topography of asteroid 25143 Itokawa and its mass. A typical rough area is similar in roughness to debris located on the interior wall of a large crater on asteroid 433 Eros, which suggests a surface structure on Itokawa similar to crater ejecta on Eros. The mass of Itokawa was estimated as (3.58 +/- 0.18) x 10(10) kilograms, implying a bulk density of (1.95 +/- 0.14) grams per cubic centimeter for a volume of (1.84 +/- 0.09) x 10(7) cubic meters and a bulk porosity of approximately 40%, which is similar to that of angular sands, when assuming an LL (low iron chondritic) meteorite composition. Combined with surface observations, these data indicate that Itokawa is the first subkilometer-sized small asteroid showing a rubble-pile body rather than a solid monolithic asteroid.  相似文献   

12.
Measured concentrations of CO(2), O(2), and related chemical species in a section across the Florida Straits and in the open Atlantic Ocean at approximately 25 degrees N, have been combined with estimates of oceanic mass transport to estimate both the gross transport of CO(2) by the ocean at this latitude and the net CO(2) flux from exchange with the atmosphere. The northward flux was 63.9 x 10(6) moles per second(mol/s); the southward flux was 64.6 x 10(6) mol/s. These values yield a net CO(2) flux of 0.7 x 10(6) mol/s (0.26 +/- 0.03 gigaton of C per year) southward. The North Atlantic Ocean has been considered to be a strong sink for atmospheric CO(2), yet these results show that the net flux in 1988 across 25 degrees N was small. For O(2) the equivalent signal is 4.89 x 10(6) mol/s northward and 6.97 x 10(6) mol/s southward, and the net transport is 2.08 x 10(6) mol/s or three times the net CO(2) flux. These data suggest that the North Atlantic Ocean is today a relatively small sink for atmospheric CO(2), in spite of its large heat loss, but a larger sink for O(2) because of the additive effects of chemical and thermal pumping on the CO(2) cycle but their near equal and opposite effects on the CO(2) cycle.  相似文献   

13.
The region of W-44 was mapped at 8350 megacycles per second. The degree of linear polarization of the most intense portion of W-44 integrated over the 10.8-minute-of-arc beam was 11+/-2 percent at position angle 45 degrees +/-5 degrees . This high degree of polarization is further evidence that W-44 is a supernova remnant. The integrated flux density of (95+/-25) x 10(-26) watt per square meter per cycle per second for this source is consistent with measurements at lower frequencies extrapolated with the use of a spectral index of-0.44, obtained by other observers. In addition, the compact source 3 minutes of right ascension west of W-44 was unpolarized, within the error of measurement. The flux density of (23+/-6)x 10(-26) watt per square meter per cycle per second determined for it along with the results of other observers indicate that this source has a thermal spectrum.  相似文献   

14.
Deuterium on Mars has been detected by the resolution of several Doppler-shifted lines ofHDO near 3.7 micrometers in the planet's spectrum. The ratio of deuterium to hydrogen is (9 +/- 4) x 10(-4); the abundance of H(2)0 was derived from lines near 1.1 micrometers. This ratio is enriched on Mars over the teiluric value by a factor of6 +/- 3. The enrichment implies that hydrogen escaped more rapidly from Mars in the past than it does now, consistent with a dense and warm ancient atmosphere on the planet.  相似文献   

15.
Molecular gas in the host galaxy of the lensed quasar 0957+561 (QSO 0957+561) at the redshift of 1.41 has been detected in the carbon monoxide (CO) line. This detection shows the extended nature of the molecular gas distribution in the host galaxy and the pronounced lensing effects due to the differentially magnified CO luminosity at different velocities. The estimated mass of molecular gas is about 4 x 10(9) solar masses, a molecular gas mass typical of a spiral galaxy like the Milky Way. A second, weaker component of CO is interpreted as arising from a close companion galaxy that is rich in molecular gas and has remained undetected so far. Its estimated molecular gas mass is 1.4 x 10(9) solar masses, and its velocity relative to the main galaxy is 660 kilometers per second. The ability to probe the molecular gas distribution and kinematics of galaxies associated with high-redshift lensed quasars can be used to improve the determination of the Hubble constant H(0).  相似文献   

16.
Beryllium-10 (10Be) in excess of that expected from in situ cosmic ray spallation reactions is present in lunar surface soil 78481; its presence was revealed with a sequential leaching technique. This excess 10Be, representing only 0.7 to 1.1% of the total 10Be inventory, is associated with surface layers (<1 micrometer) of the mineral grains composing 78481. This excess 10Be and its association with surficial layers corresponds to (1.9 +/- 0.8) x 10(8) atoms per square centimeter, requiring a 10Be implantation rate of (2.9 +/- 1.2) x 10(-6) atoms per square centimeter per second on the surface of the Moon. The most likely site for the production of this excess (10)Be is the Sun's atmosphere. The 10Be is entrained into the solar wind and transported to the lunar surface.  相似文献   

17.
At least 16 fragments were detected in images of comet C/1999 S4 (LINEAR) taken on 5 August 2000 with the Hubble Space Telescope (HST) and on 6 August with the Very Large Telescope (VLT). Photometric analysis of the fragments indicates that the largest ones have effective spherical diameters of about 100 meters, which implies that the total mass in the observed fragments was about 2 x 10(9) kilograms. The comet's dust tail, which was the most prominent optical feature in August, was produced during a major fragmentation event, whose activity peaked on UT 22.8 +/- 0.2 July 2000. The mass of small particles (diameters less than about 230 micrometers) in the tail was about 4 x 10(8) kilograms, which is comparable to the mass contained in a large fragment and to the total mass lost from water sublimation after 21 July 2000 (about 3 x 10(8) kilograms). HST spectroscopic observations during 5 and 6 July 2000 demonstrate that the nucleus contained little carbon monoxide ice (ratio of carbon monoxide to water is less than or equal to 0.4%), which suggests that this volatile species did not play a role in the fragmentation of C/1999 S4 (LINEAR).  相似文献   

18.
We present measurements of the dust particle flux and mass distribution from the Stardust Dust Flux Monitor Instrument (DFMI) throughout the flyby of comet 81P/Wild 2. In the particle mass regime from 10(-14) to 10(-7) kilograms, the spacecraft encountered regions of intense swarms of particles, together with bursts of activity corresponding to clouds of particles only a few hundred meters across. This fine-scale structure can be explained by particle fragmentation. We estimate that 2800 +/- 500 particles of diameter 15 micrometers or larger impacted the aerogel collectors, the largest being approximately 6 x 10(-7) kilograms, which dominates the total collected mass.  相似文献   

19.
Samarium-neodymium data for nine granitic and tonalite gneisses occurring as remnants within the Singhbhum granite batholith in eastern India define an isochron of age 3775 +/- 89 x 10(6) years with an initial (143)Nd/(144)Nd ratio of 0.50798 +/- 0.00007. This age contrasts with the rubidium-strontium age of 3200 x 10(6) years for the same suite of rocks. On the basis of the new samarium-neodynium data, field data, and petrologic data, a scheme of evolution is proposed for the Archean crust in eastern India. The isotopic data provide evidence that parts of the earth's mantle were already differentiated with respect to the chondritic samarium-neodymium ratio 3800 x l0(6) years ago.  相似文献   

20.
The neutral mass spectrometer on board the Pioneer Venus multiprobe bus measured composition and structral parameters of the dayside Venus upper atmosphere on 9 December 1978. Carbon dioxide and helium number densities were 6 x 10(6) and 5 x 10(6) per cubic centimeter, respectively, at an altitude of 150 kilometers. The mixing ratios of both argon-36 and argon-40 were approximately 80 parts per million at an altitude of 135 kilometers. The exospheric temperature from 160 to 170 kilometers was 285 +/- 10 K. The helium homopause was found at an altitude of about 137 kilometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号