首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To quantify carbon (C) and nitrogen (N) losses in soils of West African urban and peri‐urban agriculture (UPA) we measured fluxes of CO2‐C, N2O‐N, and NH3‐N from irrigated fields in Ouagadougou, Burkina Faso, and Tamale, Ghana, under different fertilization and (waste‐)water regimes. Compared with the unamended control, application of fertilizers increased average cumulative CO2‐C emissions during eight cropping cycles in Ouagadougou by 103% and during seven cropping cycles in Tamale by 42%. Calculated total emissions measured across all cropping cycles reached 14 t C ha?1 in Ouagadougou, accounting for 73% of the C applied as organic fertilizer over a period of two years at this site, and 9 t C ha?1 in Tamale. Compared with unamended control plots, fertilizer application increased N2O‐N emissions in Ouagadougou during different cropping cycles, ranging from 37 to 360%, while average NH3‐N losses increased by 670%. Fertilizer application had no significant effects on N2O‐N losses in Tamale. While wastewater irrigation did not significantly enhance CO2‐C emissions in Ouagadougou, average CO2‐C emissions in Tamale were 71% (1.6 t C ha?1) higher on wastewater plots compared with those of the control (0.9 t C ha?1). However, no significant effects of wastewater on N2O‐N and NH3‐N emissions were observed at either location. Although biochar did not affect N2O‐N and NH3‐N losses, the addition of biochar could contribute to reducing CO2‐C emissions from urban garden soils. When related to crop production, CO2‐C emissions were higher on control than on fertilized plots, but this was not the case for absolute CO2‐C emissions.  相似文献   

2.
The DNDC (DeNitrification-DeComposition)-Rice model, one of the most advanced process-based models for the estimation of greenhouse gas emissions from paddy fields, has been discussed mostly in terms of the reproducibility of observed methane (CH4) emissions from Japanese rice paddies, but the model has not yet been validated for tropical rice paddies under alternate wetting and drying (AWD) irrigation management, a water-saving technique. We validated the model by using CH4 and nitrous oxide (N2O) flux data from rice in pots cultivated under AWD irrigation management in a screen-house at the International Rice Research Institute (Los Baños, the Philippines). After minor modification and adjustment of the model to the experimental irrigation conditions, we calculated grain yield and straw production. The observed mean daily CH4 fluxes from the continuous flooding (CF) and AWD pots were 4.49 and 1.22?kg?C?ha?1?day?1, respectively, and the observed mean daily N2O fluxes from the pots were 0.105 and 34.1?g?N?ha?1?day?1, respectively. The root-mean-square errors, indicators of simulation error, of daily CH4 fluxes from CF and AWD pots were calculated as 1.76 and 1.86?kg?C?ha?1?day?1, respectively, and those of daily N2O fluxes were 2.23 and 124?g?N?ha?1?day?1, respectively. The simulated gross CH4 emissions for CF and AWD from the puddling stage (2 days before transplanting) to harvest (97 days after transplanting) were 417 and 126?kg?C?ha?1, respectively; these values were 9.8% lower and 0.76% higher, respectively, than the observed values. The simulated gross N2O emissions during the same period were 0.0279 and 1.45?kg?N?ha?1 for CF and AWD, respectively; these values were respectively 87% and 29% lower than the observed values. The observed total global warming potential (GWP) of AWD resulting from the CH4 and N2O emissions was approximately one-third of that in the CF treatment. The simulated GWPs of both CF and AWD were close to the observed values despite the discrepancy in N2O emissions, because N2O emissions contributed much less than CH4 emissions to the total GWP. These results suggest that the DNDC-Rice model can be used to estimate CH4 emission and total GWP from tropical paddy fields under both CF and AWD conditions.  相似文献   

3.
Agricultural peat soils are important sources of nitrous oxide (N2O). Emissions of N2O were measured from field plots of grass, barley, potatoes and fallow on a peat field in northern Finland during 2000–2002 and in southern Finland in 1999–2002. In the north the mean annual fluxes of N2O (with their standard errors) during 2 years were 4.0 (±1.2), 13 (±3.0) and 4.4 (±0.8) kg N ha?1 from the plots of grass, barley and fallow, respectively. In the north there were no significant thaw periods in the middle of winter. As a result, the thawing in the spring did not induce especially large N2O emissions. Emissions of N2O were larger in the south than in the north. In the southern peat field the mean annual fluxes during 3 years were 7.3 (±1.2), 15 (±2.6), 10 (±1.9) and 25 (±6.9) kg N2O‐N ha?1 for grass, barley, potato and fallow plots, respectively. Here, the largest single episodes of emission occurred during the spring thaw each year, following winter thaw events. An emission factor of 10.4 kg N2O‐N ha?1 year?1 for the N2O emission from the decomposition of the peat results from these data if the effect of fertilization according to the IPCC default emission factor is omitted. The direct effect of adding N as fertilizer on N2O emissions was of minor importance. On average, 52% of the annual N2O flux entered the atmosphere outside the cropping season (October–April) in the north and 55% in the south. The larger N2O fluxes from the peat soil in the south might be due to the more humified status of the peat, more rapid mineralization and weather with more cycles of freezing and thawing in the winter.  相似文献   

4.
Denitrification loss from a loam under a cut ryegrass sward receiving 0, 250 and 500 kg N ha?1 a?1 in four equal amounts was measured during 14 months using the acetylene-inhibition technique. The rate of denitrification responded rapidly to changes in soil water content as affected by rain. Mean rates of denitrification exceeded 0.2 kg N ha?1 day?1 only when the soil water content was >20% (w/w) and nitrate was >5μ N g?1 in the upper 20 cm of the profile and when soil temperature at 2 cm was >5–8°C. When the soil dried to a water content <20%, denitrification decreased to <0.05 kg N ha?1 day?1. Highest rates (up to 2.0 kg N ha?1 day?1) were observed following application of fertilizer to soil at a water content of about 30% (w/w) in early spring. Denitrification in the control plot during this period was generally about a hundredth of that in plots treated with ammonium nitrate. High rates of N2O loss (up to 0.30 kg N ha?1 day-1) were invariably associated with high rates of denitrification (> 0.2 kg N ha?1 day?1). However, within 2–3 weeks following application of fertilizer to the plot receiving 250 kg N ha?1 a?1 the soil acted as a sink for atmospheric N2O when its water content was >20% and its temperature >5–8°C. Annual N losses arising from denitrification were 1.6, 11.1 and 29.1 kg N ha?1 for the plots receiving 0, 250 and 500 kg N ha?1 a?1, respectively. More than 60% of the annual loss occurred during a period of 8 weeks when fertilizer was applied to soil with a water content >20%.  相似文献   

5.
Vegetable‐production systems often show high soil mineral‐N contents and, thus, are potential sources for the release of the climate‐relevant trace gas N2O from soils. Despite numerous investigations on N2O fluxes, information on the impact of vegetable‐production systems on N2O emissions in regions with winter frost is still rare. This present study aimed at measuring the annual N2O emissions and the total yield of a lettuce–cauliflower rotation at different fertilization rates on a Haplic Luvisol in a region exposed to winter frost (S Germany). We measured N2O emissions from plots fertilized with 0, 319, 401, and 528 kg N ha–1 (where the latter three amounts represented a strongly reduced N‐fertilization strategy, a target value system [TVS] in Germany, and the N amount fertilized under good agricultural practices). The N2O release from the treatments was 2.3, 5.7, 8.8, and 10.6 kg N2O‐N ha–1 y–1, respectively. The corresponding emission factors calculated on the basis of the total N input ranged between 1.3% and 1.6%. Winter emission accounted for 45% of the annual emissions, and a major part occurred after the incorporation of cauliflower residues. The annual N2O emission was positively correlated with the nitrate content of the top soil (0–25 cm) and with the N surpluses of the N balance. Reducing the amount of N fertilizer applied significantly reduced N2O fluxes. Since there was no significant effect on yields if fertilization was reduced from 528 kg N ha–1 according to “good agricultural practice” to 401 kg N ha–1 determined by the TVS, we recommend this optimized fertilization strategy.  相似文献   

6.
Nitrous oxide (N2O) emissions comprise the major share of agriculture's contribution to greenhouse gases; however, our understanding of what is actually happening in the field remains incomplete, especially concerning the multiple interactions between agricultural practices and N2O emissions. Soil compaction induces major changes in the soil structure and the key variables controlling N2O emissions. Our objective was to analyse the ability of a process‐based model (Nitrous Oxide Emissions (NOE)) to simulate the impact of soil compaction on N2O emission kinetics obtained from field experiments. We used automatic chambers to continuously monitor N2O and CO2 emissions on uncompacted and compacted areas in sugar beet fields during 2 years. Soil compaction led to smaller CO2 emissions and larger N2O emissions by inducing anoxic conditions favourable for denitrification. Cumulative N2O emissions during the crop cycles were 944 and 977 g N ha−1 in uncompacted plots and 1448 and 1382 g N ha−1 in compacted plots in 2007 and 2008, respectively. The NOE model ( Hénault et al., 2005 ) simulated 106 and 138 g N2O‐N ha−1 in uncompacted plots and 1550 and 650 g N2O‐N ha−1 in compacted plots in 2007 and 2008, respectively, markedly under‐estimating the nitrification rates and associated N2O emissions. We modified the model on the basis of published results in order to better simulate nitrification and account for varying N2O fractions of total end‐products in response to varying soil water and nitrate contents. The modified model (NOE2) better predicted nitrification rates and N2O emissions following fertilizer addition. Using a fine vertical separation of soil layers of configurable, but constant, thickness (1 cm) also improved the simulations. NOE2 predicted 428 and 416 g N‐N2O ha−1 in uncompacted plots and 1559 and 1032 g N‐ N2O ha−1 in compacted plots in 2007 and 2008, respectively. These results show that a simple process‐based model can be used to predict successfully the post‐fertilizer addition kinetics of N2O emissions and the impact of soil compaction on these emissions. However, large emissions later on during the cropping cycle were not captured by the model, emphasizing the need for further research.  相似文献   

7.
Abstract. Artificial urine containing 20.2 g N per patch of 0.2 m2 was applied in May and September to permanent grassland swards of a long‐term experiment in the western uplands of Germany (location Rengen/Eifel), which were fertilized with 0, 120, 240, 360 kg N ha?1 yr?1 given as calcium ammonium nitrate. The effect on N2O fluxes measured regularly during a 357‐day period with the closed‐chamber technique were as follows. (1) N2O emission varied widely among the fertilized control areas without urine, and when a threshold water‐filled pore space >60% was exceeded, the greater the topsoil nitrate content the greater the flux from the individual urine patches on the fertilized swards. (2) After urine application in May, 1.4–4.2% of the applied urine‐N was lost as N2O from the fertilized swards; and after urine application in September, 0.3–0.9% of the applied urine‐N was lost. The primary influence on N2O flux from urine patches was the date of simulated grazing, N‐fertilization rate being a secondary influence. (3) The large differences in N2O emissions between unfertilized and fertilized swards after May‐applied urine contrasted with only small differences after urine applied in September, indicating an interaction between time of urine application and N‐fertilizer rate. (4) The estimated annual N2O emissions were in the range 0.6–1.6 kg N2O‐N per livestock unit, or 1.4, 3.6, 4.1 and 5.1 kg N2O‐N ha?1 from the 0–360 kg ha?1 of fertilizer‐N. The study demonstrated that date of grazing and N‐fertilizer application could influence the N2O emission from urine patches to such an extent that both factors should be considered in detailed large‐scale estimations of N2O fluxes from grazed grassland.  相似文献   

8.
Drainage and cultivation of organic soils often result in large nitrous oxide (N2O) emissions. The objective of this study was to assess the impacts of nitrogen (N) fertilizer on N2O emissions from a cultivated organic soil located south of Montréal, QC, Canada, drained in 1930 and used since then for vegetable production. Fluxes of N2O were measured weekly from May 2004 to November 2005 when snow cover was absent in irrigated and non‐irrigated plots receiving 0, 100 or 150 kg N ha−1 as NH4NO3. Soil mineral N content, gas concentrations, temperature, water table height and water content were also measured to help explain variations in N2O emissions. Annual emissions during the experiment were large, ranging from 3.6 to 40.2 kg N2O‐N ha−1 year−1. The N2O emissions were decreased by N fertilizer addition in the non‐irrigated site but not in the irrigated site. The absence of a positive influence of soil mineral N content on N2O emissions was probably in part because up to 571 kg N ha−1 were mineralized during the snow‐free season. Emissions of N2O were positively correlated to soil CO2 emissions and to variables associated with the extent of soil aeration such as soil oxygen concentration, precipitation and soil water table height, thereby indicating that soil moisture/aeration and carbon bioavailability were the main controls of N2O emission. The large N2O emissions observed in this study indicate that drained cultivated organic soils in eastern Canada have a potential for N2O‐N losses similar to, or greater than, organic soils located in northern Europe.  相似文献   

9.
In this study emissions of N2O from arable soils are summarized using data from long‐term N2O monitoring experiments. The field experiments were conducted at six sites in Germany between 1992 and 1997. The annual N‐application rate ranged from 0 to 350 kg N ha—1. Mineral and organic N‐fertilizer applications were temporarily split adapted to the growth stage of each crop. N‐fertilizer input and N‐yield by the crops were used to calculate the In/Out‐balance. The closed chamber technique was applied to monitor the N2O fluxes from soil into the atmosphere. If possible, plants were included in the covers. Annual N2O emission values were based on flux rate measurements of an entire year. The annual N2O losses ranged from 0.53 to 16.78 kg N2O‐N ha—1 with higher N2O emissions from organically fertilized plots as compared to minerally fertilized plots. Approximately 50% of the total annual emissions occurred during winter. No significant relationship between annual N2O emissions and the respective N‐fertilization rate was found. This was attributed to site‐ and crop‐specific effects on N2O emission. The calculation of the N2O emission per unit N‐yield from winter cereal plots indicates that the site effect on N2O emission is more important than the effect of N‐fertilization. From unfertilized soils at the sites Braunschweig and Timmerlah a N‐yield of 60.0 kg N ha—1 a—1 and N2O emissions of 2 kg N ha—1 a—1 were measured. This high background emission was assigned to the amount and turnover of soil organic matter. For a crop rotation at the sites Braunschweig and Timmerlah the N In/Out‐balance over a period of four years was identified as a suitable predictor of N2O emissions. This parameter characterizes the efficiency of N‐fertilization for crop production and allows for N‐mineralization from the soil.  相似文献   

10.
Our previous research showed large amounts of nitrous oxide (N2O) emission (>200?kg?N?ha?1?year?1) from agricultural peat soil. In this study, we investigated the factors influencing relatively large N2O fluxes and the source of nitrogen (N) substrate for N2O in a tropical peatland in central Kalimantan, Indonesia. Using a static chamber method, N2O and carbon dioxide (CO2) fluxes were measured in three conventionally cultivated croplands (conventional), an unplanted and unfertilized bare treatment (bare) in each cropland, and unfertilized grassland over a three-year period. Based on the difference in N2O emission from two treatments, contribution of the N source for N2O was calculated. Nitrous oxide concentrations at five depths (5–80?cm) were also measured for calculating net N2O production in soil. Annual N fertilizer application rates in the croplands ranged from 472 to 1607?kg?N?ha?1?year?1. There were no significant differences in between N2O fluxes in the two treatments at each site. Annual N2O emission in conventional and bare treatments varied from 10.9 to 698 and 6.55 to 858?kg?N?ha?1?year?1, respectively. However, there was also no significant difference between annual N2O emissions in the two treatments at each site. This suggests most of the emitted N2O was derived from the decomposition of peat. There were significant positive correlations between N2O and CO2 fluxes in bare treatment in two croplands where N2O flux was higher than at another cropland. Nitrous oxide concentration distribution in soil measured in the conventional treatment showed that N2O was mainly produced in the surface soil down to 15?cm in the soil. The logarithmic value of the ratio of N2O flux and nitrate concentration was positively correlated with water filled pore space (WEPS). These results suggest that large N2O emission in agricultural tropical peatland was caused by denitrification with high decomposition of peat. In addition, N2O was mainly produced by denitrification at high range of WFPS in surface soil.  相似文献   

11.
Abstract

Field experiments were designed to quantify N2O emissions from corn fields after the application of different types of nitrogen fertilizers. Plots were established in South Kalimantan, Indonesia, and given either urea (200 kg ha?1), urea (170 kg ha?1) + dicyandiamide ([DCD] 20 kg ha?1) or controlled-release fertilizer LP-30 (214 kg ha?1) prior to the plantation of corn seeds (variety BISI 2). Each fertilizer treatment was equivalent to 90 kg N ha?1. Plots without chemical N fertilizer were also prepared as a control. The field was designed to have three replicates for each treatment with a randomized block design. Nitrous oxide fluxes were measured at 4, 8, 12, 21, 31, 41, 51, 72 and 92 days after fertilizer application (DAFA). Total N2O emission was the highest from the urea plots, followed by the LP-30 plots. The emissions from the urea + DCD plots did not differ from those from the control plots. The N2O emission from the urea + DCD plots was approximately one thirtieth of that from the urea treatment. However, fertilizer type had no effect on grain yield. Thus, the use of urea + DCD is considered to be the best mitigation option among the tested fertilizer applications for N2O emission from corn fields in Kalimantan, Indonesia.  相似文献   

12.
Irrigation management has an important influence on emissions of nitrous oxide (N2O) and nitric oxide (NO) from irrigated agricultural soils. In order to develop strategies to reduce the emission of these gases, a field experiment was carried out to compare the influence of different irrigation systems: furrow (FI) and drip-irrigation (DI), on N2O and NO emissions from a soil during the melon crop season. Two fertilizer treatments were evaluated for each irrigation regime: ammonium sulphate (AS) as a mineral N fertilizer, at a rate of 175 kg N ha?1; and a control without any N fertilizer (Control). On plots where the AS treatment was applied, drip irrigation reduced total N2O and NO emissions (by 70% and 33% respectively) with respect to values for furrow irrigation. This was probably due to the lower amount of water applied and the different soil wetting pattern associated with DI. Dry areas of the drip-irrigated plots emitted a similar amount of N2O to the wet areas (0.45 kg N2O-N ha?1) in the Control and greater quantities in the AS treatment (0.92 kg N2O-N ha?1 for dry and 0.70 kg N2O-N ha?1 for wet areas). We suggest that the N oxide pulses observed throughout the irrigation period on DI plots could have been the result of frequent increases in the soil wetting volume after the addition of water. Denitrification losses (from depths of 0–10 cm) were estimated at 11.44 kg N2O- N ha?1 for the AS treatment under FI and at 4.96 kg N2O-N ha?1 for DI. Under DI, nitrification was an important source of N2O, whereas denitrification was the most important source under FI. The addition of NH4+ and the use of DI enhanced the N2O/N2 ratio of gases produced through denitrification. The quantity of dissolved organic C (DOC) in the soil generally decreased with addition of NH4+.This work showed that, in comparison with furrow irrigation, drip irrigation is a method that can be used to save water and mitigate emissions of the atmospheric pollutants NO and N2O.  相似文献   

13.
Nitrous oxide emission (N2O) from applied fertilizer across the different agricultural landscapes especially those of rainfed area is extremely variable (both spatially and temporally), thus posing the greatest challenge to researchers, modelers, and policy makers to accurately predict N2O emissions. Nitrous oxide emissions from a rainfed, maize-planted, black soil (Udic Mollisols) were monitored in the Harbin State Key Agroecological Experimental Station (Harbin, Heilongjiang Province, China). The four treatments were: a bare soil amended with no N (C0) or with 225?kg?N ha?1 (CN), and maize (Zea mays L.)-planted soils fertilized with no N (P0) or with 225?kg?N ha?1 (PN). Nitrous oxide emissions significantly (P?<?0.05) increased from 141?±?5?g N2O-N?ha?1 (C0) to 570?±?33?g N2O-N?ha?1 (CN) in unplanted soil, and from 209?±?29?g N2O-N?ha?1 (P0) to 884?±?45?g N2O-N?ha?1 (PN) in planted soil. Approximately 75?% of N2O emissions were from fertilizer N applied and the emission factor (EF) of applied fertilizer N as N2O in unplanted and planted soils was 0.19 and 0.30?%, respectively. The presence of maize crop significantly (P?<?0.05) increased the N2O emission by 55?% in the N-fertilized soil but not in the N-unfertilized soil. There was a significant (P?<?0.05) interaction effect of fertilization?×?maize on N2O emissions. Nitrous oxide fluxes were significantly affected by soil moisture and soil temperature (P?<?0.05), with the temperature sensitivity of 1.73–2.24, which together explained 62–76?% of seasonal variation in N2O fluxes. Our results demonstrated that N2O emissions from rainfed arable black soils in Northeast China primarily depended on the application of fertilizer N; however, the EF of fertilizer N as N2O was low, probably due to low precipitation and soil moisture.  相似文献   

14.
We determined N2O fluxes from an unfertilized control (CON), from a treatment with mineral N‐fertilizer (MIN), from cattle slurry with banded surface application and subsequent incorporation (INC), and from slurry injection (INJ) to silage maize (Zea mays, L.) on a Haplic Luvisol in southwest Germany. In both years, amount of available N (total N fertilized + Nmin content before N application) was 210 kg N ha?1. In the slurry treatment of the 1st year, 140 kg N ha?1 were either injected or incorporated, whereas 30 kg N ha?1 were surface applied to avoid destruction of the maize plants. In the 2nd year, all fertilizers were applied with one single application. We calculated greenhouse gas emissions (GHG) on field level including direct N2O emissions (calculated from the measured flux rates), indirect N2O emissions (NH3 and NO 3 - induced N2O emission), net CH4 fluxes, fuel consumption and pre‐chain emissions from mineral fertilizer. NH3 losses were measured in the 2nd year using the Dräger‐Tube Method and estimated for both years. NH3 emission was highest in the treatment without incorporation. It generally contributed less than 5% of the greenhouse gas (GHG) emission from silage maize cultivation. The mean area‐related N2O emission, determined with the closed chamber method was 2.8, 4.7, 4.4 and 13.8 kg N2O‐N ha?1 y?1 for CON, MIN, INC, and INJ, respectively. Yield‐related N2O emission showed the same trend. Across all treatments, direct N2O emission was the major contributor to GHG with an average of 79%. Trail hose application with immediate incorporation was found to be the optimum management practice for livestock farmers in our study region.  相似文献   

15.
A dynamic chamber method was developed to measure fluxes of N2O from soils with greater accuracy than previously possible, through the use of a quantum cascade laser (QCL). The dynamic method was compared with the conventional static chamber method, where samples are analysed subsequently on a gas chromatograph. Results suggest that the dynamic method is capable of measuring soil N2O fluxes with an uncertainty of typically less than 1–2 µg N2O‐N m?2 hour?1 (0.24–0.48 g N2O‐N ha?1 day?1), much less than the conventional static chamber method, because of the greater precision and temporal resolution of the QCL. The continuous record of N2O and CO2 concentration at 1 Hz during chamber closure provides an insight into the effects that enclosure time and the use of different regression methods may introduce when employed with static chamber systems similar in design. Results suggest that long enclosure times can contribute significantly to uncertainty in chamber flux measurements. Non‐linear models are less influenced by effects of long enclosure time, but even these do not always adequately describe the observed concentrations when enclosure time exceeds 10 minutes, especially with large fluxes.  相似文献   

16.
Abstract

To investigate the effects of renovation (ploughing and resowing) on nitrous oxide (N2O) emissions from grassland soil, we measured N2O fluxes from renovated and unrenovated (control) grassland plots. On 22 August in both 2005 and 2006 we harvested the sward, ploughed the surface soil and then mixed roots and stubble into the surface soil with a rotovator. Next, we compacted the soil surface with a land roller, spread fertilizer at 40 kg N ha?1 on the soil surface and sowed orchardgrass (Dactylis glomerata L., Natsumidori). In the control plot, we just harvested the sward and spread fertilizer. We determined N2O fluxes for 2 months after the renovation using a vented closed chamber. During the first 2 weeks, the renovated plot produced much more N2O than the control plot, suggesting that N was quickly mineralized from the incorporated roots and stubble. Even after 2 weeks, however, large N2O emissions from the renovated plot were recorded after rainfall, when the soil surface was warmed by sunshine and the soil temperature rose 2.7–3.0°C more than that of the control plot. In 2005, during the 67-day period from 19 August to 26 October, the renovated and control plots emitted 5.3 ± 1.4 and 2.8 ± 0.7 kg N2O-N ha?1, with maximum fluxes of 3,659 and 1,322 µg N2O-N m?2 h?1, respectively. In 2006, during the 65-day period from 21 August to 26 October, the renovated and control plots emitted 2.1 ± 0.6 and 0.96 ± 0.42 kg N2O-N ha?1, with maximum fluxes of 706 and 175 µg N2O-N m?2 h?1, respectively. The cumulative N2O emissions from plots in 2005 were greater than those in 2006, presumably because rainfall just after renovation was greater in 2005 than in 2006. These results suggest that incorporated roots and stubble may enlarge the anaerobic microsites in the soil in its decomposing process and increase the N2O production derived from the residues and the fertilizer. In addition, rainfall and soil moisture and temperature conditions during and after renovation may control the cumulative N2O emission.  相似文献   

17.
The aim of this study was to investigate the effect of crop residues from winter oilseed rape on N2O emissions from a loamy soil and to determine the effect of different tillage practices on N2O fluxes. We therefore conducted a field experiment in which crop residues of winter oilseed rape (Brassica napus L., OSR) were replaced with 15N labelled OSR residues. Nitrous oxide (N2O) emissions and 15N abundance in the N2O were determined for a period of 11 months after harvest of OSR and in the succeeding crop winter wheat (Triticum aestivum L.) cultivated on a Haplic Luvisol in South Germany. Measurements were carried out with the closed chamber method in a treatment with conventional tillage (CT) and in a treatment with reduced soil tillage (RT). In both tillage treatments we also determined N2O fluxes in control plots where we completely removed the crop residues. High N2O fluxes occurred in a short period just after OSR residue replacement in fall and after N‐fertilization to winter wheat in the following spring. Although N2O emissions differed for distinct treatments and sub‐periods, cumulative N2O emissions over the whole investigation period (299 days) ranged between 1.7 kg and 2.4 kg N2O‐N ha?1 with no significant treatment effects. More than half of the cumulative emissions occurred during the first eight weeks after OSR replacement, highlighting the importance of this post‐harvest period for annual N2O budgets of OSR. The contribution of residue N to the N2O emission was low and explained by the high C/N‐ratio fostering immobilization of mineral N. In total only 0.03% of the N2O‐N emitted in the conventional tillage treatment and 0.06% in the reduced tillage treatment stemmed directly from the crop residues. The 15N recovery in the treatments with crop residues was 62.8% (CT) and 75.1% (RT) with more than 97% of the recovered 15N in the top soil. Despite our measurements did not cover an entire year, the low contribution of the OSR residues to the direct N2O emissions shows, that the current IPCC tier 1 approach, which assumes an EF of 1%, strongly overestimated direct emissions from OSR crop residues. Furthermore, we could not observe any relationship between tillage and crop residues on N2O emission, only during the winter period were N2O emissions from reduced tillage significantly higher compared to conventional tillage. Annual N2O emission from RT and CT did not differ.  相似文献   

18.
In order to evaluate the climatic and soil variables which control the denitrification processes in the field, measurements of N2O-losses using the C2H2 inhibition technique were carried out in an Inceptisol cropped with spring wheat. The silty sand was amended with mineral fertilizer (120 kg N ha?1) or additionally with sewage sludge (620 kg total N ha?1). Soil temperature, moisture, nitrate and available carbon, the release of nitrous oxide (N2O) from the soil surface as well as the N2O concentrations along the soil profile were measured from March until November 1985 The N2O surface fluxes from the inorganically fertilized field were well correlated with those from the sewage sludge amended plots (r = 0.76). Multivariate correlation analyses show that particularly soil moisture and nitrate content had a significant effect on the nitrate respiration. The correlation with the soil water content was more clearly expressed by the N2O surface fluxes than by the N2O concentrations of the soil air. The N2O surface fluxes during 1985 totalled about 3 kg N ha?1 in the minerally fertilized field. Sewage sludge amendments increased the N2O evolution by 5 times. Spatial variability was high and the N2O surface fluxes were not well correlated (r = 0.4) with the N2O concentrations in the soil atmosphere. These experiments provide the background data for a denitrification model and better knowledge about the variables which have to be considered for its validation.  相似文献   

19.
With a world population now > 7 billion, it is imperative to conserve the arable land base, which is increasingly being leveraged by global demands for producing food, feed, fiber, fuel, and facilities (i.e., infra‐structure needs). The objective of this study was to determine the effect of varying fertilizer‐N rates on soil N availability, mineralization, and CO2 and N2O emissions of soils collected at adjacent locations with contrasting management histories: native prairie, short‐term (10 y), and long‐term (32 y) no‐till continuous‐cropping systems receiving five fertilizer‐N rates (0, 30, 60, 90, and 120 kg N ha–1) for the previous 9 y on the same plots. Intact soil cores were collected from each site after snowmelt, maintained at field capacity, and incubated at 20°C for 6 weeks. Weekly assessments of soil nutrient availability along with CO2 and N2O emissions were completed. There was no difference in cumulative soil N supply between the unfertilized long‐term no‐till and native prairie soils, while annual fertilizer‐N additions of 120 kg N ha–1 were required to restore the N‐supplying power of the short‐term no‐till soil to that of the undisturbed native prairie soil. The estimated cumulative CO2‐C and N2O‐N emissions among soils ranged from 231.8–474.7 g m–2 to 183.9–862.5 mg m–2, respectively. Highest CO2 fluxes from the native prairie soil are consistent with its high organic matter content, elevated microbial activity, and contributions from root respiration. Repeated applications of ≥ 60 kg N ha–1 resulted in greater residual inorganic‐N levels in the long‐term no‐till soil, which supported larger N2O fluxes compared to the unfertilized control. The native prairie soil N2O emissions were equal to those from both short‐ and long‐term no‐till soils receiving repeated fertilizer‐N applications at typical agronomic rates (e.g., 90 kg N ha–1). Eighty‐eight percent of the native soil N2O flux was emitted during the first 2 weeks and is probably characteristic of rapid denitrification rates during the dormant vegetative period after snowmelt within temperate native grasslands. There was a strong correlation (R2 0.64; p < 0.03) between measured soil Fe‐supply rate and N2O flux, presumably due to anoxic microsites within soil aggregates resulting from increased microbial activity. The use of modern no‐till continuous diversified cropping systems, along with application of fertilizer N, enhances the soil N‐supplying power over the long‐term through the build‐up of mineralizable N and appears to be an effective management strategy for improving degraded soils, thus enhancing the productive capacity of agricultural ecosystems. However, accounting for N2O emissions concomitant with repeated fertilizer‐N applications is imperative for properly assessing the net global warming potential of any land‐management system.  相似文献   

20.
 N2O emissions were periodically measured using the static chamber method over a 1-year period in a cultivated field subjected to different agricultural practices including the type of N fertilizer (NH4NO3, (NH4)2SO4, CO(NH2)2 or KNO3 and the type of crop (rapeseed and winter wheat). N2O emissions exhibited the same seasonal pattern whatever the treatment, with emissions between 1.5 and 15 g N ha–1 day–1 during the autumn, 16–56 g N ha–1 day–1 in winter after a lengthy period of freezing, 0.5–70 g N ha–1 day–1 during the spring and lower emissions during the summer. The type of crop had little impact on the level of N2O emission. These emissions were a little higher under wheat during the autumn in relation to an higher soil NO3 content, but the level of emissions was similar over a 7-month period (2163 and 2093 g N ha–1 for rape and wheat, respectively). The form of N fertilizer affected N2O emissions during the month following fertilizer application, with higher emissions in the case of NH4NO3 and (NH4)2SO4, and a different temporal pattern of emissions after CO(NH2)2 application. The proportion of applied N lost as N2O varied from 0.42% to 0.55% with the form of N applied, suggesting that controlling this agricultural factor would not be an efficient way of limiting N2O emissions under certain climatic and pedological situations. Received: 1 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号