首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Field experiments were conducted at Water Management Research Station, Begopara, Nadia, WB, India, during the rabi seasons of 2008–2009 and 2009–2010 to find out the integrated effect of nitrogen (N), phosphorus (P), potassium (K), farmyard manure (FYM) and zinc (Zn) under the system of rice intensification (SRI) techniques using eight treatments on the fertility changes in soil. The results revealed that the amounts of organic carbon and available N content in soil were found to maintain the highest fertility status with the highest yield in T6 (NPK + FYM 10 tha?1 + Zn 5 kgha?1) and gave the highest N uptake (55.98 kgha?1). The availability of P decreased with the increased level of Zn application and gave the highest P uptake (23.52 kgha?1) in the treatment T5 (NPK + FYM 10 tha?1). The highest Zn content (4.71 mgkg?1) was recorded in the treatment T7 (NPK + FYM 10 tha?1+ Zn 10 kgha?1).  相似文献   

2.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

3.
A field experiment entitled “nitrogen and vermicompost interaction on soil and leaf nutrient status of kinnow mandarin in vertisols of Jhalawar district” was conducted at the Fruit Research Farm, Department of Fruit Science, College of Horticulture and Forestry, Jhalawar (Rajasthan) during 2012–13 to study the effect of different levels of nitrogen and vermicompost on physico-chemical properties of soil and leaf micro and macro nutrient contents of Kinnow mandarin. The result indicated that application of T15 treatment i.e. nitrogen at 350 g/plant + vermicompost 20 kg/plant was found best with regard to improvement in soil physico-chemical properties like organic carbon content (0.44%), available nitrogen (N) (379.36 kgha?1), available phosphorus (P) (25.56 kgha?1), available potassium (393.29 kgha?1) and reduces electrical conductivity (0.34 dSm?1), soil pH (7.42) and calcium carbonate (CaCO3) content percentage (15.20) of soil.  相似文献   

4.
Relative control of soil moisture [30, 60, and 80 percent water-holding capacity (WHC)] on nitrous oxide (N2O) emissions from Fargo-Ryan soil, treated with urea at 0, 150, and 250 kg N ha?1 with and without nitrapyrin [2-chloro-(6-trichloromethyl) pyridine] (NP), was measured under laboratory condition for 140 days. Soil N2O emissions significantly increased with increasing nitrogen (N) rates and WHC levels. Urea applied at 250 kg N ha?1 produced the greatest cumulative N2O emissions and averaged 560, 3919, and 15894 µg kg?1 at 30, 60, and 80 percent WHC, respectively. At WHC ≤ 60 percent, addition of NP to urea significantly reduced N2O losses by 2.6- to 4.8-fold. Additions of NP to urea reduced N2O emission at rates similar to the control (0 N) until 48 days for 30 percent WHC and 35 days for 60 and 80 percent WHC. These results can help devise urea-N fertilizer management strategies in reducing N2O emissions from silty-clay soils.  相似文献   

5.
A long-term experiment was conducted to evaluate the effect of integrated use of organic and inorganic sources of nutrients on soil quality and its relation to finger millet yield under two predominant crop rotations viz., groundnut–finger millet and finger millet monocropping in hot moist semiarid rainfed Alfisol soils in South India. Two experiments were laid out separately for each cropping system in a randomized complete block design with five treatments individually with FYM and maize residue-based combinations viz., Control (T1), FYM @ 10t ha ?1 or Maize residue (MR) @ 5t ha ?1 (T2), farm yard manure (FYM) @ 10t ha ?1 or Maize residue (MR) @ 5t ha ?1 + 50% RDF (Recommended Fertiliser Dose) N, P2O5 &; K2O (T3), FYM @ 10t ha ?1 or Maize residue (MR) @ 5t ha ?1 + 100% RDF N,P2O5 &; K2O (T4), Recommended N, P2O5 &; K2O (T5). Thus, four sets of nutrient management systems were evaluated. The results showed that farm yard manure or maize residue application in combination with recommended dose of fertilizer significantly improved the soil physical, chemical, and biological properties compared to control and application of inorganic fertilizers alone. Based on evaluation of 19 soil quality parameters under each of the four nutrient management systems, the common key soil quality indicators emerged out were: organic C (OC), available nitrogen (N), available sulfur (S), and mean weight diameter (MWD) of soil aggregates. A significant correlation between the finger millet yield and the relative soil quality indices (RSQI) indicates the importance of soil quality in these semiarid Alfisol soils. The results and the methodology adopted in the present study could be of importance in improving the soil quality not only for the region of the study, but also in other identical soils and cropping systems across the world.  相似文献   

6.
The growth and yield performance of green maize (Zea mays), followed by a late-season vegetable cowpea (Vigna unguiculata), was assessed with two rates of three different types of organic-based fertilizers (OBFs) fortified with an inorganic nutrient source. There was also an inorganic fertilizer treatment of NPK 20–10–10 applied at 300 kg ha?1 and a no-fertilizer control treatment. Maize growth was affected by fertilizer type and rate. Organic fertilizer, applied at 5 t ha?1, 3 weeks before maize released enough nutrients to have comparable growth as inorganic fertilizer. Applying the OBF at 2.5 t ha?1 was inadequate to give comparable growth. Application of fortified OBF with total nitrogen content higher than 2.4% N at 5.0 t ha?1 gave maize grain yields comparable with NPK fertilizer. Cowpea yields following early-season maize were highest with DPW + NPK. They were significantly lower with 2.5 t ha?1 of the OBFs. Application of the IAR&T-OBF (OBF made by Institute of Agricultural Research and Training) and decomposed poultry waste (DPW) + NPK at 5.0 t ha?1 gave comparable seed yields significantly higher than OYO-OBF (OBF made by Oyo State Government of Nigeria). NPK fertilizer application supported early-season maize cultivation, but it was not adequate to support the following cowpea. OBF should have nitrogen content up to 2.4% and applied at 5.0 t ha?1 to support an early-season maize cultivation with a late-season cowpea.  相似文献   

7.
Abstract

In this paper, we proposed a new approach for on-site colorimetric analysis of ferrous ions (Fe2+) and ammonium-nitrogen (NH4 +-N) using a soil color meter as an alternative method to conventional spectrophotometry. The soil color meter we used can express solution color numerically on the basis of L*a*b* color space. After coloring of water by the 1, 10 phenanthroline method and the Indophenol blue method, the color of solution was measured by the soil color meter. A linear relationship between Fe2+ and a* or b* values, and systematic change of NH4 +-N with L* value, enable us to make a calibration curve. The Fe2+ and NH4 +-N concentrations in groundwater samples (Fe2+: 0.3–1.3 mg L?1; NH4 +-N: 0.02–0.62 mg L?1) determined by the proposed method agreed well with those determined by conventional spectrophotometry with the difference being ± 0.05 mg L?1 and ± 0.02 mg L?1, respectively. Since a similar apparatus is widely used in the soil science field, this technique would facilitate field surveys.  相似文献   

8.
Soil microbes are frequently limited by carbon (C), but also have a high phosphorus (P) requirement. Little is known about the effect of P availability relative to the availability of C on soil microbial activity. In two separate experiments, we assessed the effect of P addition (20 mg P kg?1 soil) with and without glucose addition (500 mg C kg?1 soil) on gross nitrogen (N) mineralization (15N pool dilution method), microbial respiration, and nitrous oxide (N2O) emission in a grassland soil. In the first experiment, soils were incubated for 13 days at 90% water holding capacity (WHC) with addition of NO3? (99 mg N kg?1 soil) to support denitrification. Addition of C and P had no effect on gross N mineralization. Initially, N2O emission significantly increased with glucose, but it decreased at later stages of the incubation, suggesting a shift from C to NO3? limitation of denitrifiers. P addition increased the N2O/CO2 ratio without glucose but decreased it with glucose addition. Furthermore, the 15N recovery was lowest with glucose and without P addition, suggesting a glucose by P interaction on the denitrifying community. In the second experiment, soils were incubated for 2 days at 75% WHC without N addition. Glucose addition increased soil 15N recovery, but had no effect on gross N mineralization. Possibly, glucose addition increased short-term microbial N immobilization, thereby reducing N-substrates for nitrification and denitrification under more aerobic conditions. Our results indicate that both C and P affect N transformations in this grassland soil.  相似文献   

9.
Field experiments were conducted in farmyard manure (FYM) and maize-residue (MR) blocks during 1984–2011 with the objective of identifying a superior treatment for attaining maximum finger millet yield and soil fertility at Bangalore. The treatments tested in the FYM block were Control; FYM@10tha?1; FYM@10tha?1 + 50% nitrogen, phosphorus, and potassium (NPK); FYM@10tha?1 + 100%NPK; 100%NPK; and in the MR block, Control; MR@5tha?1; MR@5t ha?1 + 50%NPK; MR@5tha?1 + 100%NPK; 100%NPK. FYM@10t/ha + 100%NPK gave a maximum mean yield of 3207 kg/ha in the FYM block, while MR@5t/ha + 100%NPK gave 2548 kg/ha in the MR block. Regression and principal component (PC) models of yield were developed through soil fertility and rainfall variables to assess the treatments. Maximum yield predictability of 60% and 65% under regression, and 76% and 75% under the PC model were observed for the FYM and MR blocks, respectively. FYM@10t/ha + 50%NPK was superior, with maximum gross returns of Rs.41286/ha and benefit–cost ratio (BCR) of 2.27 in the FYM block compared to MR@5t/ha + 100%NPK (gross returns of Rs.34530/ha and BCR of 2.09) in the MR block with maximum soil fertility, and are recommended for adoption under semi-arid Alfisols.  相似文献   

10.

Purpose

Impacts of a commercially available decay-facilitating microbial inoculum on carbon (C) and nitrogen (N) mineralization were evaluated during decomposition of rice straw in a paddy soil.

Materials and methods

Two incubation experiments were conducted for 105 days with a typical low-yield high-clay soil in central China to monitor effects of straw and the inoculum on CO2 evolution, as well as dissolved organic C (DOC), NH4 +, NO3 ?, and pH under conditions of 15 °C 70 %, 25 °C 40 %, 25 °C 70 %, 25 °C 100 %, and 35 °C 70 % of water-holding capacity (WHC) with adequate N, supplied as urea or manure, respectively.

Results and discussion

Treatments of 25 °C 70 % WHC, 25 °C 100 % WHC, and 35 °C 70 % WHC generally achieved significant higher CO2 evolution while treatment of 25 °C 40 % WHC had least. This was more evident with added manure compared to urea (P?<?0.05). The inoculum generally increased the decomposition of C inputs and the largest increases were in the initial 28 day in treatments 25 °C 70 % WHC, 25 °C 100 % WHC, and 35 °C 70 % WHC; only the 25 °C 40 % WHC actually immobilized C. The CO2 release rates were positively correlated with DOC, but with different slopes within treatments. Despite equivalent N application rates, manure treatments had significantly less N (including NO3 ?, NH4 +, and total dissolved N) than those with urea. Incubation of 25 °C 40 % WHC decreased soil pH the least, probably due to relative low moisture causing delayed nitrification.

Conclusions

The results implied that the inoculum, especially fungi, would adjust to edaphic and N fertilization in regulating organic C mineralization, during which water potential would exhibit a great role in regulating substrate and nutrient availability.
  相似文献   

11.
Yak and Tibetan sheep graze extensively on natural grasslands in the Qinghai-Tibetan Plateau, and large amounts of excrement are directly deposited onto alpine grasslands. However, information on greenhouse gas (GHG) emissions from this excrement is limited. This study evaluated the short-term effects of yak and Tibetan sheep dung on nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) emissions from alpine steppe soil at a water holding capacity (WHC) of 40 or 60 % and from alpine meadow soil at a WHC of 60 or 80 % under laboratory conditions. Cumulative N2O emissions over a 15-day incubation period at low soil moisture conditions ranged from 111 to 232 μg N2O–N kg soil?1 in the yak dung treatments, significantly (P?<?0.01) higher than that of sheep dung treatments (28.7 to 33.7 μg N2O–N kg soil?1) and untreated soils (1.04–6.94 μg N2O–N kg soil?1). At high soil moisture conditions, N2O emissions were higher from sheep dung than yak dung and non-treated soils. No significant difference was found between the yak dung and non-treated alpine meadow soil at 80 % WHC. Low N2O emission in the yak dung treatment from relatively wet soil was probably due to complete denitrification to N2. Yak dung markedly (P?<?0.001) increased CH4 and CO2 emissions, likely being the main source of these two gases. The addition of sheep dung markedly (P?<?0.001) elevated CO2 emissions. Dung application significantly (P?<?0.01) increased global warming potential, particularly for alpine steppe soil. In conclusion, our findings suggest that yak and Tibetan sheep dung deposited on alpine grassland soils may increase GHG emissions.  相似文献   

12.
In order to improve the effectiveness of phosphate rock as phosphorus fertilizer, elemental sulfur and Thiobacillus have been evaluated as amendments. First, Thiobacillus was isolated from different soil samples. Then, a greenhouse pot experiment was conducted using a completely randomized factorial design with three factors included: elemental sulfur at four levels of 0, 1000, 2000, and 5000 mg kg?1; phosphate rock at three levels of 0, 1000 and 2000 mg kg?1; four Thiobacillus inoculums (T1, T2, T3, T4) and without inoculation (T0) in three replications. Results showed that all the four Thiobacillus inoculums increased significantly extractable soil-P. Combined application of phosphate rock and sulfur in equal proportion (1:1) along with inoculum Thiobacillus had a significant effect in improving phosphorus availability in soil. Combined application of sulfur (at rates of 1000 and 2000 mg kg–1) and Thiobacillus significantly increased phosphorus uptake by plants as compared to the control.  相似文献   

13.
The effects of thiamine (vitamin B1) application as seed dressing and of N form supplied (NH4+ versus NO3?) on rhizosphere pH and on rhizosphere microorganisms were evaluated in two different soils. Imbibition of maize (Zea mays L.) seeds with thiamine (1 g kg?1) increased seed thiamine content by a factor of 370. Maize plants from untreated and treated seeds were cultivated in a growth chamber under controlled conditions for 10 d in a sandy loam soil, pH 7.1 (Mascherode soil) or in a sandy soil, pH 4.8 (Niger soil) fertilized with two different N sources (NO3?N or NH4?N with dicyandiamide, 100 and 250 mg N kg?1 soil). The rhizosphere pH was not affected by thiamine, only slightly affected by N source in the Mascherode soil, but markedly affected in the Niger soil. Thiamine application and N source affected the most probable number (MPN) of diazotrophs and total bacteria isolated from the rhizosphere soil of 10 d old maize plants. In the Mascherode soil, thiamine application increased MPN of diazotrophs 4-fold and total bacteria 2-fold when the soil was fertilized with 100 mg NO3?N compared to untreated seedlings. Compared to Mascherode soil, in the Niger soil, MPN of diazotrophs was extremely low, especially after NH4?N treatment which significantly decreased pH of the rhizosphere. Thiamine application had only marginal effects on the MPN of diazotrophs and total bacteria. Total bacteria isolated from Niger soil fertilized with NH4?N were about 10-fold lower compared to the soil from Mascherode. However, in the other two treatments, total bacteria were higher in the Niger soil compared to the Mascherode soil. In the Niger soil, apparently some of the heterotrophs (the Actinomycetes dominated in this soil) might have suppressed the diazotrophs. The results of the present study demonstrate that in many cases seed treatment with thiamine enhances MPN of diazotrophs and total bacteria in the rhizosphere of maize seedlings.  相似文献   

14.
Water loss as deep percolation is considerable in furrow irrigation in light soils due to the high infiltration rate. Application of soil conditioners such as bentonite reduces the infiltration rate and improves irrigation application efficiency (Ea) in these soils. The effects of bentonite application rates (BAR) of 0, 2, 4 and 6 g L?1 on infiltration of a loamy sand soil were determined in a soil column in the laboratory. The exponent of the Kostiakov infiltration equation was not influenced by BAR. Maximum reduction in infiltration equation coefficient and final infiltration rate (i f) occurred with 2 g bentonite L?1 and this reduction was lower on increasing BAR from 2 to 4 and 4 to 6 g L?1 compared with control. The effect of 2 g L?1 BAR on infiltration and its effect on the design of furrow irrigation in a field with a loamy sand soil indicated that in the first irrigation after field ploughing and seed planting, longer furrow length, lower deep percolation and higher Ea are obtained.  相似文献   

15.
An experiment was conducted to study the response of maize to magnesium (Mg) and to find out the residual effect of Mg and green manure (GM) on transplanted aman (T. aman) rice in the maize–GM–T. aman cropping pattern. There were six treatments: T1 (recommended dose of fertilizer (RDF) + 0 kg Mg + 2 t CaCO3 ha?1), T2 (RDF + 10 kg Mg + 2 t CaCO3 ha?1), T3 (RDF + 20 kg Mg +2 t CaCO3 ha?1), T4 (RDF + 30 kg Mg + 2 t CaCO3 ha?1), T5 (RDF) and T6 (2 t CaCO3 ha?1). The response of maize to Mg was quadratic and the optimum dose of Mg was found to be 19 kg ha?1, which resulted in maximum yield of 10,507 kg ha?1. The residual effect of Mg along with GM and reduced dose of chemical fertilizer resulted in significant increase of grain yield of rice. Thus, N250P60K100Mg19S40Zn5B2 kg ha?1 for maize, only 20 kg N ha?1 for GM (Sesbania) and N60P9K33S10Zn1B1 kg ha?1 for T. aman appeared as the best combination for maximizing the productivity and may be recommended for this pattern at non-calcareous light-textured soils of Bangladesh. Application of lime increased soil pH, and this together with fertilizer and GM tended to improve soil fertility and thus may be recommended for soil amelioration.  相似文献   

16.
The contents of ten elements [Cd, Pb, W, Zn, Mn, As, Se, Cr, Cu, and organic carbon (Corg)] have been determined in the surficial sediments of Keratsini harbor, Saronikos Gulf, Greece. The contamination of the sediments was assessed on the basis of geoaccumulation index and to corresponding sediment quality guidelines (SQGs) effects range low/effects range median. The results revealed highly elevated Cd, Pb, W, Zn, As, Se, Cr, Cu, and Corg values (Cd, 190–1,763 mg kg?1; Pb, 521–1,263 mg kg?1; W, 38–100 mg kg?1; Zn, 409–6,725 mg kg?1; Mn, 95–1,101 mg kg?1; As, not detectable–1,813 mg kg?1; Se, not detectable–58 mg kg?1; Cr, 264–860 mg kg?1; Cu, 195–518 mg kg?1; and Corg, 0.69–4.41%). The enrichment of metals in the sediments results from the contribution of the central Athens sewage outfall through which the waste of the Attica basin ends up in Keratsini harbor as well as from industrial and ship contaminants.  相似文献   

17.
Three incubation experiments were carried out with a non-saline soil (electrical conductivity in a saturation paste (ECe) 1 dS m?1) to which NaCl was added to achieve ECe 10 and 30 dS m?1; pea straw was added at 20 g kg?1 as a nutrient source. Experiment 1 showed that cumulative respiration was highest in soil EC 1 and lowest in soil EC 30. The optimal water content for respiration was 60–70 % of WHC in all soils. There were two periods (days 1–7 and days 8–17) in Experiment 2. In the treatments with the same water content in both periods [optimal (O-O) and medium (M-M)], respiration rates decreased over time and were lower in M-M than in O-O. Cumulative respiration at medium water content did not differ between slow (L-SM) or rapid rewetting (L-RM) from low to medium water content. There were two periods in Experiment 3 with the water content in the first period 50, 40 or 30 % of WHC adjusted from 60 % during pre-incubation either slowly or rapidly. The water content in the second period was maintained or adjusted slowly to 30–60 %. Cumulative respiration differed between water contents but was not consistently different between rapid and slow drying in the first period. We conclude that the response of microbial activity to a certain water content is influenced by the previous water content whereas the speed at which the water content is adjusted had little effect on respiration at target water content.  相似文献   

18.
Field experiments were conducted to assess the effect of nutrients management practices on yield and rainwater use efficiency of green gram (Vigna radiata), and soil fertility under moist sub-humid Alfisols at Phulbani, India, during 2005–2008. Ten treatment combinations of lime @ 10% and 20% of lime requirement (LR) @ 8.3 t ha?1, farmyard manure (FYM) @ 5 t ha?1, green leaf manure @ 5 t ha?1, and nitrogen, phosphorus, and potassium (N–P–K) (20–40–20 kg ha?1) were tested. The analysis of variance indicated that treatments differed significantly from each other in influencing yield and rainwater use efficiency. Application of lime @ 20% LR + FYM @ 5 t/ha + 40 kg P + 20 kg K ha?1 was superior with maximum mean yield of 531 kg ha?1, while lime @ 10% LR + FYM @ 5 t ha?1 + 40 kg P + 20 kg K ha?1 was the second best with 405 kg ha?1 and maintained maximum soil fertility of nutrients. The superior treatment gave maximum sustainability yield index of 67.5%, rainwater use efficiency of 0.49 kg ha?1 mm?1, improved soil pH, electrical conductivity, and soil nutrients over years.  相似文献   

19.

Purpose

Biogas slurry (BS) was known to influence soil–plant ecosystems when applied as a fertilizer, especially in combination with a chemical fertilizer (CF). Limited information was available regarding how this combination of BS–CF actually affected the soil–plant ecosystems. The purpose of this study was to evaluate the effects of BS–CF combinations on peanut yield, soil properties, and carbon (C) storage in a red soil (Ultisol) in southern China.

Materials and methods

The soil was fertilized with five treatments, including a control (T1), CF-only (T2) treatment, and three treatments with different BS–CF combinations (T3–T5). The final quantities of N/P2O5/K2O applied in T2–T5 were 120:90:135 kg ha?1. In T3–T5, 15 % (18 kg ha?1), 30 % (36 kg ha?1), and 45 % (54 kg ha?1) of total N (TN), respectively, were applied with BS and the remaining TN was applied with CF. Crop yield, soil nutrients, C storage, and microbial activity were determined through field and laboratory experiments.

Results and discussion

In the field experiment, peanut grain yields of T3–T5 were higher than those of T1 (44.5–55.7 %) and T2 (10.8–19.4 %), with the highest yield from T4 (3588 kg ha?1). The relationship between BS–TN inputs and peanut grain yield conformed to the linear-quadratic equation: y?=??1.14x 2?+?59.1x?+?2988 (R 2?=?0.98). The biomasses of peanut plants, at the flowering, pod production, and harvesting stages, were higher in T4 compared with those in T1 and T2. Moreover, T4 produced higher soil N and P (total and available) concentrations at the pod production and harvesting stages relative to other treatments, with increased soil microbial biomass C and N, and enhanced dehydrogenase and urease activities, at the flowering, pod production, and harvesting stages. Data from the incubation experiment were fitted to a first-order kinetic model, which showed that although the application of BS increased potentially mineralizable C, the additional C seemed to slowly degrade, and so would be retained in the soil for a longer period.

Conclusions

A BS–CF combination increased peanut grain yield and biomass, due to increases in soil N and P availability, microbial biomass C and N concentrations, and urease and dehydrogenase activities. Moreover, the organic C retention time in the red soil was extended. Combined application of BS–CF at a suitable ratio (36 kg BS–TN ha?1), together with proper management practices, could be effective to improve the quality and nutrient balance of amended soils.
  相似文献   

20.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号