首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coated urea fertilizers are assumed to enhance crop yield and reducing the environmental pollution. Nevertheless, many of the coated urea fertilizers are expensive, thus not readily available for most farmers. In addition, many of these fertilizers release N not in tandem with the plant’s need, thus retard growth. Therefore, a laboratory study was conducted to evaluate effects of coated urea fertilizers on N losses via volatilization. Measurement of ammonia volatilization was carried out using the closed-dynamic air flow system. The study for ammonia volatilization was conducted using different rates of fertilizer (50, 100, and 200 kg N ha?1) with different types of fertilizer (Urea, Sulfur-coated urea; SCU and Gypsum sulfur coated urea using rotating drum; GSCUD) in 37 days of incubation. The results indicate that SCU represents the best fertilizer which decreases the amount of ammonia volatilization at each rate of fertilizer. Besides, the rate of 50 kg N ha?1 has the lowest percentage of ammonia volatilization. Moreover, the result proved the effectiveness of coating urea fertilizer may reduce the ammonia loss to the environment and new product which GSCUD can be comparable to the commercial product.  相似文献   

2.
密闭室抽气法监测稻田氨挥发的几个问题   总被引:1,自引:0,他引:1  
密闭室抽气法是稻田氨挥发的常用监测方法,但该方法在实施过程中仍存在一些问题,导致不同研究结果之间缺乏可比性,影响稻田氨排放的系统分析与评估。研究了换气频率、抽气时间段、是否串联洗气瓶、抽气室与洗气瓶规格等监测参数以及抽气与自然风对比对氨挥发量的影响。结果表明,氨挥发随换气频率的增加而增加,其增加速度分三个阶段,挥发量与换气次数的对数呈线性相关;尿素快速水解期与水解基本结束后的氨挥发日变化规律不同;直通型、球形多孔型洗气头分别较圆盘多孔型洗气头氨挥发量低25.6%和8.5%;抽气室内径越大,气相高度越低,氨挥发量越低;串联洗气瓶测定的氨挥发仅为单独洗气瓶的88.6%;抽气室内田面水蒸发量随抽气速率增加而增加,抽气与自然放置情况下氨挥发量相近时,后者田面水蒸发量大。建议密闭室抽气法监测稻田氨挥发采用直径15 cm的抽气室,配单独流量计,气相高度5~8 cm,抽气量15~20 L?min?1左右,无需串联洗气瓶,选择圆盘多孔型或直杆多孔型洗气瓶。  相似文献   

3.
田间土壤氨挥发的原位测定——风洞法   总被引:11,自引:0,他引:11  
详细介绍了农田土壤氨挥发风洞法测定系统的原理、构造和特点,并通过回收率试验和田间试验进行了验证。所选用的德国风洞主要包括采样箱、采样系统和控制系统3部分,系统内部的气压、温度、湿度、风速等微气象条件接近自然环境条件,测量结果有较好的代表性。回收实验结果表明,回收率为90%,说明风洞的密闭性和浓度分布的均匀程度较好,适合于土壤氨挥发的多处理、多重复的田间原位测定,尤其适用于多因子对比实验。风洞法测定不受天气的影响,对实验区面积要求不高,重复性及可靠性较好,不仅可以测定农田土壤的氨挥发,还可以测定有机肥贮存和施用以及各种肥料形态的氨挥发状况。  相似文献   

4.
热带人工橡胶林地砖红壤中氨挥发规律的研究   总被引:2,自引:0,他引:2  
人工橡胶林栽培是海南特色农业,相对于一般的大田作物,其施肥量与施肥频率差别很大。而氨气挥发是造成氮肥直接损失的一个重要原因。本研究在海南岛人工橡胶林地利用静态箱自动采样测定了2010和2011年两年内4次施肥后NH3的挥发量。结果表明,施肥后第2天即有氨的挥发,最高值出现在施肥后第7天,此后氨气挥发量迅速降低,20天后基本上检测不到。研究发现,氨的总挥发量与施肥后25天内的土壤积温呈正相关,同时特殊天气,如海南特有的台风会显著增加氨的挥发量。统计结果表明,氨挥发损失率最高可达到氮肥施用量的10%。因此如何改进原有的施肥方法以提高氮肥利用率也是今后需要注意的问题。  相似文献   

5.
Summary Poultry manure (PM) is commonly applied to cropland as a fertilizer, usually at rates determined by the nitrogen content of the manure. Limited information is available, however, on the volatilization of ammonia from poultry manure-amended soils, despite the effect these losses may have on the fertilizer value of the manure. This study was initiated to determine the influence of incorporation and residue cover on NH3 losses from PM-amended soils. In the first experiment, a dynamic flow technique was used to measure NH3 losses from 18 manures applied to a bare soil surface at a rate of 12 Mg ha-1. In the second experiment, 3 of the 18 manures were incorporated either immediately, 24 h or 72 h after application. The third experiment compared the same three manures applied to a bare soil surface or to corn or soybean residues. Surface application of the manures resulted in the loss of from 4 to 31% of the total N applied in the manures. Incorporation of the PM with soil significantly reduced NH3 loss with the greatest decrease following immediate incorporation. Crop residues either had no effect or slightly reduced NH3 volatilization losses relative to PM application to a bare soil surface. Ammonia volatilization was not well correlated with individual manure properties, but a multiple regression approach using manure pH and total N content offered some promise as a means to segregate manures of the basis of volatilization potential.  相似文献   

6.
Ammonia loss from urea fertilizer is a major concern to farmers all over the world. Various environmental factors such as temperature, soil water content, wind speed, pH, rainfall, relative humidity, cation exchange capacity (CEC), soil organic matter, and others influence ammonia volatilization loss. The objective of this work was to establish a model for estimating ammonia loss utilizing published data. Also, using current day inputs (temperature, wind speed, and known soil pH) estimates could relate risk to producers considering surface applications of urea fertilizer without incorporation. Linear models for soil pH and ammonia loss, ambient temperature and ammonia loss, and wind speed and ammonia loss were determined based on more than 40 published articles. Final estimates of ammonia loss from surface applications of urea employed an additive effects model using inputs for pH, temperature, and wind speed. Web access to this model can be located at www.nue.okstate.edu/ammonia_loss.htm.  相似文献   

7.
Abstract

This research was conducted with Biscayne marl soil and Krome gravelly loam from Florida and Quincy fine sand and Warden silt loam from Washington to determine ammonia (NH3) volatilization at various temperature and soil water regimes. Potassium nitrate (KNO3), ammonium nitrate (NH4NO3), ammonium sulfate [(NH4)2SO4], or urea were applied to the soil at a rate of 75 kg N ha?1. Soil water regime was maintained at either 20% or 80% of field capacity (FC) and incubated at 11, 20, or 29°C, which represented the minimum, average, and maximum temperatures, respectively, during the potato growing season in Washington. Results indicated that the ammonia volatilization rate at 20% FC soil water regime was two‐ to three‐fold greater than that at 80% FC. The cumulative volatilization loss over 28 days was up to 25.7%. Results of this study demonstrated that ammonia volatilization was accelerated at low soil water regimes.  相似文献   

8.
基于不同监测方法的太湖地区稻田基蘖肥期氨排放研究   总被引:4,自引:1,他引:4  
田玉华  曾科  尹斌 《土壤学报》2019,56(5):1180-1189
稻田施用化学氮肥易产生氨挥发损失,目前我国稻田氨排放研究尚缺乏不同监测方法的同步对比研究,这影响到对稻田氨排放的科学评价以及稻田氮肥的合理施用。在太湖地区水稻基肥和分蘖肥施用后同时采用微气象学法(IHF)、密闭室抽气法和通气法对稻田氨排放进行监测研究。结果表明,采用三种方法监测的氨排放变化趋势大体一致,基肥施用后峰值出现在施肥后第3~4天,分蘖肥施用后峰值出现在施肥后第2天,两次施肥后氨排放持续时间均为1周左右。基肥施用后采用微气象学法、密闭室抽气法和通气法监测的氨排放峰值分别为8.8、11.3和3.2kg·hm~(-2)·d~(-1)(以N计,下同),氨排放量分别为34.6、38.2和12.9kg·hm~(-2),占基肥施氮量的32.0%、35.4%和11.9%;分蘖肥施用后三种方法监测的峰值分别为12.5、7.7和5.3kg·hm~(-2)·d~(-1),氨排放量分别为26.7、16.8和11.8kg·hm~(-2),占分蘖肥施氮量的33.0%、20.7%和14.6%。三种方法之间具有良好的相关性。综合基肥和分蘖肥期氨排放总量,密闭室抽气法与微气象学法结果接近,通气法低估了氨排放量。密闭室抽气法可用于监测稻田基蘖肥施用后的氨排放,须保证监测期间的换气次数及抽气流量,并确保施肥后试验区田埂保水保肥。  相似文献   

9.
不同氮肥形态的氨挥发损失比较   总被引:11,自引:0,他引:11  
利用从德国引进的农田土壤氨挥发风洞法测定系统,对不同N肥形态的肥料进行对比实验。结果表明,在相同施N量条件下,硝酸铵、硝酸铵钙、硫硝酸铵的氨挥发损失分别比尿素减少22.5%、3.2%和8.3%,不同N肥的氨挥发损失差异很大。相同条件下,尿素的氨挥发损失为25.7%,添加DMPP后氨挥发损失为27.6%;硫硝酸铵的氨挥发损失为18.6%,添加DMPP后为20.6%;添加DMPP对尿素和硫硝酸铵的氨挥发影响不显著。  相似文献   

10.
陈若谷  胡正华  曾科  姚元林  尹斌  庄锦贵 《土壤》2023,55(2):245-253
红萍对水体铵态氮浓度较为敏感,稻田放养红萍模式下,红萍的生物固氮作用及其抑制氨挥发的作用对不同施氮量的响应未知。红萍为水生蕨藻共生体,具有很强的生物固氮能力。红萍可作为优质绿肥放养于稻田,以替代部分化学氮肥,起到节能减排的效应。为明确稻田养萍模式下不同施氮量对红萍生物固氮作用和田间氨挥发的影响,采用盆栽试验设置了0、75、150、225、300kg/hm2共5个施氮(以纯N量计)水平,监测了稻田放养红萍和水稻单种各处理的氨挥发量、生物固氮速率和水稻产量。结果表明:(1)同一施氮水平下,稻田放养红萍可显著降低氨挥发日通量峰值及氨挥发总量。在施氮量为225 kg/hm2时,稻田放养红萍对氨挥发总量的抑制作用最大,与水稻单种相比,抑制幅度可达83.2%。(2)红萍的生物固氮速率及固氮总量与施氮量呈线性负相关关系,随施氮量的增加,固氮速率和固氮量逐渐降低,施氮量300 kg/hm2并放养红萍处理得到的固氮速率及总量同不施氮肥不养萍处理之间无显著差异。(3)与不养萍处理相比,放养红萍组各处理的水稻产量都明显增加,其中施氮量为225...  相似文献   

11.
藻类在稻田生态系统中的作用及其对氨挥发损失的影响   总被引:9,自引:0,他引:9  
张启明  铁文霞  尹斌  贺发云  朱兆良 《土壤》2006,38(6):814-819
本文在总结已有稻田藻类研究结果的基础上,结合温室盆栽试验的初步结果,阐述了藻类对稻田氨挥发损失过程的影响,及其在稻田土壤N素转化、供应与调节中所起的重要作用。提出了减少N素氨挥发损失和合理利用稻田藻类的方法。  相似文献   

12.
ABSTRACT

Ammonia (NH3) volatilization from fertilizer applications reduces efficiency and poses environmental hazards. This study used semi-open static chambers to measure NH3 volatilization from organic fertilizers (feather meal, blood meal, fish emulsion, cyano-fertilizer) to evaluate the impacts of fertilizer source, application method, and rate on NH3 volatilization. In 2014, two application rates (28 and 56 kg N ha?1) were applied to lettuce (Lactuca sativa L.). Solid fertilizers (feather meal, blood meal) were preplant applied in a subsurface band, whereas liquid fertilizers (fish emulsion, cyano-fertilizer) were applied weekly through drip irrigation beginning two weeks after transplanting. In 2015, a single application rate (28 kg N ha?1) was applied to cucumber (Cucumis sativus L.). Solid fertilizers were applied in either subsurface or surface bands. There was a significant difference in NH3 volatilization among fertilizers, but there was little difference between application rates. Liquid fertilizers had lower NH3 emissions than solid fertilizers due to their timing and placement. In 2014, blood meal at 56 kg N ha?1 and feather meal at both rates had the highest NH3 fluxes. In 2015, surface-banded blood and feather meal had the highest NH3 fluxes. Fertilizer decisions for organic systems should consider NH3 emission losses and practices for their reduction.  相似文献   

13.
Abstract. Ammonia volatilization with and without gypsum incorporation was measured in Gujranwala soil (Udic Haplustalf) in an incubation study using different nitrogen fertilizers e.g. urea, ammonium sulphate (AS), calcium ammonium nitrate (CAN), and urea nitrophos (UNP). Nitrogen from different fertilizers was applied at the rate of 200 mg N kg−1 to two sets of soils in plastic bags (1.0 kg soil) and plastic jars (0.5 kg soil). Soil moisture was maintained at field capacity. Application of urea increased soil pH to 9, three hours after its addition. Ammonium sulphate and calcium ammonium nitrate had little effect on soil pH. Ammonium volatilization losses from fertilizers were related to the increase in soil pH caused by the fertilizers. Consequently maximum losses were recorded due to application of urea. Losses through ammonia volatilization were significantly lower with AS, CAN and UNP in descending order. Gypsum incorporation significantly reduced the losses. Therefore, application of gypsum to soil before urea may substantially improve N use efficiency for crop production by reducing N losses.  相似文献   

14.
Ammonia (NH3) volatilization is the major pathway for mineral nitrogen (N) loss from N sources applied to soils. The information on NH3 volatilization from slow-release N fertilizers is limited. Ammonia volatilization, over a 78-d period, from four slow-release N fertilizers with different proportions of urea and urea polymer [Nitamin 30L (liquid) (L30), Nitamin RUAG 521G30 (liquid) (G30), Nitamin 42G (granular) (N42), and Nitroform (granular) (NF)] applied to a sandy loamy soil was evaluated. An increase in temperature from 20 to 30 °C increased cumulative NH3 volatilization loss in the sandy soil by 1.4-, 1.7-, and 1.8-fold for N42, L30, and G30, respectively. Increasing the proportion of urea in the slow-release fertilizer increased NH3 volatilization loss. At 30 °C, the cumulative NH3 volatilization over 78 d from a sandy soil accounted for 45.6%, 43.9%, 22.4%, and <1% of total N applied as N42, L30, G30, and NF, respectively. The corresponding losses in a loamy soil were 9.2%, 3.1%, and 1.7%. There was a significantly positive correlation between NH3 volatilization rate and concentration of NH4-N released from all fertilizers, except for NF (n = 132; r = 0.359, P = 0.017 for N42; r = 0.410, P = 0.006 for L30; and r = 0.377, P < 0.012 for G30). Lower cumulative NH3 volatilization from a loamy soil as compared to that from a sandy soil appeared to be related to rapid nitrification of NH4-N in the former soil than that in the latter soil. These results indicate the composition of slow-release fertilizer, soil temperature, and soil type are main factors to dominate NH3 volatilization from slow- release fertilizers.  相似文献   

15.
典型红壤区稻田树脂包膜控释氮肥氨挥发研究   总被引:3,自引:0,他引:3  
王霞  崔键  周静 《土壤》2011,43(1):56-59
本文研究了红壤水稻土上,树脂包膜尿素(控释N肥)和普通尿素施用后氨挥发损失的过程及数量。结果表明:①基施后2~4天内和追施后的1~2天内,控释N肥氨挥发通量相对普通尿素处理均有下降,下降幅度分别为28.57%和25.00%;控释N肥氨挥发峰值分别于基肥后第5天和追肥后第4天出现,均滞后于普通尿素处理。②追肥2天后,控释N肥氨挥发通量极显著高于普通尿素处理。因此,只有采取合理的基施方式,控释N肥才能比普通尿素发挥更大的环境效益。  相似文献   

16.
日光温室栽培下土面及整棚氨挥发比较   总被引:1,自引:0,他引:1  
日光温室氮素投入量高,氨挥发损失是值得关注的问题之一。但目前对温室系统氨挥发排放测定多以土面氨挥发为主,而日光温室是一种半封闭式种植系统,由土面挥发出的部分NH3会被植物冠层吸收或溶解于棚膜水中回流于土壤,因此土面氨挥发难以准确反映日光温室排放到大气中氨的量,从而难以准确估计日光温室栽培系统NH3的实际排放量。为此,采用间歇式密闭室通气法连续测定了三季作物(番茄、西瓜、番茄)生长期间不同施肥处理(包括:不施氮+常规灌溉(N0+FI)、常规施氮+常规灌溉(FT+FI)、优化施氮+常规灌溉(OPT+OI)及优化施氮+优化灌溉(OPT+OI)4个处理)土面氨挥发损失量;同时连续两季采用风量罩测定通风口处气体流量,采用抽气法对通风口处氨浓度进行连续监测,以估算监测整棚(通风口处)氨挥发损失速率及损失量。结果表明,温室施肥后当天土面氨挥发速率出现峰值,7 d后施肥与未施肥对照无显著差异,三季种植期间各施氮处理其氨挥发排放量分别为N 2.82~4.97、6.59~9.97和15.77~21.83 kg hm-2,相应的氨挥发系数分别为0.64%~1.50%、3.11%~4.21%和2.59%~3.90%;整棚氨挥发速率趋势与土面氨挥发基本一致,整棚氨挥发量第二季及第三季分别为N 2.22 kg hm-2和N 2.92 kg hm-2,仅占土面表氨挥发的13.38%~33.69%,氨挥发系数仅为0.46%~1.48%,显著低于土面氨挥发量。可见若以土面氨挥发来估算日光温室氨挥发会显著高估了我国日光温室系统氨挥发损失量,建议采用整棚观测的方法估算日光温室体系氨排放损失。  相似文献   

17.
Broadcasting of urea to agricultural soils can result in considerable losses by NH3 volatilization. However, it is unclear if the impact of this practice on NH3 emissions is further enhanced when performed on no-till (NT) soils. The objective of this study was to compare NH3 volatilization following broadcasting of urea to NT and moldboard plowed (MP) soils. Intact soil cores were taken shortly after harvest from NT and MP plots of three long-term tillage experiments in Québec (Canada) and stored for 4.5 months prior to incubation. Urea (14 g N m−2) was applied at the soil surface and NH3 volatilization was measured for 30 d using an open incubation system. Mean cumulative NH3 losses were greater (P < 0.001) in NT (3.00 g N m−2) than in MP (0.52 g N m−2). Several factors may have contributed to the higher emissions from the NT soils. Urease activity in the top 1 cm of soils was on average 4.2 times higher in NT than in MP soils. As a result, hydrolysis of urea occurred very rapidly in NT soils as indicated by enhanced NH3 emissions 4 h after application of urea. The presence of crop residues at the surface of NT soils also decreased contact of the urea granules with the soil, possibly reducing adsorption of NH4+ on soil particles. Lower volatilization on the MP soils may also have partly resulted from a fraction of urea granules falling into shallow cracks. Field trials are needed to confirm our finding that NT soils bear greater potential for NH3 volatilization following surface application of urea than MP soils.  相似文献   

18.
施氮量和田面水含氮量对紫色土丘陵区稻田氨挥发的影响   总被引:3,自引:1,他引:3  
采用密闭室连续抽气法研究了四川省丘陵区紫色土上不同施氮量条件下(0、112.5、150、187.5、225 kg/hm2)稻田氨(NH3)挥发特征及田面水含氮量对其的影响。结果表明,施氮肥后的1~3天内出现NH3挥发峰值,随后逐渐下降。稻田NH3挥发总量随施氮量的增加而增加,二者呈极显著的相关关系(r=0.916 6***)。通过稻田NH3挥发损失的氮素占施氮量的比例为29.4%~38.0%。施氮肥后稻田田面水NH4+-N、可溶性氮和总氮浓度均迅速升高,稻田NH3挥发速率与田面水中的NH4+-N、可溶性氮和总氮浓度均具有显著的相关关系,观测期内的最高相关系数分别为0.926 9、0.841 2和0.881 3。因此,控制施氮量可有效降低田面水NH4+-N、可溶性氮和总氮浓度,以此来减少紫色土丘陵区稻田NH3挥发损失。  相似文献   

19.
朱文彬  曾科  田玉华  张超  李晓  葛仁山  尹斌 《土壤》2023,55(4):729-738
本研究以太湖地区稻田为研究对象开展连续两年的田间试验,通过设置不施氮肥(CK)、常规施氮(CN)、减氮表施(RN)、减氮侧深施(RNS)和减氮穴施(RNP)5种施氮处理,探究不同深施方式对稻田氨挥发与氮肥利用率的影响。结果表明,与表施处理(CN和RN)相比,RNS和RNP通过降低田面水NH4+-N浓度和pH分别减少30.95%~41.54%和66.71%~72.23%的氨挥发排放(P<0.05)。相较于RN处理,RNP促进水稻根系生长并增加根区土壤有效氮含量,进而增加水稻产量(6.23%),提高氮肥利用率(50.15%),降低土壤氮盈余(63.92%)(P<0.05)。与CN处理相比,RNS显著降低土壤氮盈余(29.20%)(P<0.05),但水稻吸氮量和氮肥利用率均未显著增加。相较于RNS,RNP进一步降低氨挥发损失(50.84%)和土壤氮盈余(51.07%),提高氮肥利用率(40.40%)(P<0.05)。综上所述,RNP的农学和环境效益最高,但因穴施机械及肥料造粒技术等因素的限制,尚难应用于实际生产;而侧深施肥在我国水稻大规模集约化生产中效益较高且切实可行。  相似文献   

20.
不同施氮量和施氮方式对稻田氨挥发损失的影响   总被引:47,自引:6,他引:47  
邓美华  尹斌  张绍林  朱兆良  石孝均 《土壤》2006,38(3):263-269
采用密闭室法研究苏南地区稻麦轮作体系中,不同施N量和施N方式对水稻和小麦生育期氨挥发损失的影响。结果表明,优化施肥能明显降低稻-麦轮作系统中的氨挥发损失,在整个稻麦轮作体系中,优化和习惯的氨挥发损失占N肥施用量的百分比分别为7.05%±1.37%和9.81%±0.38%。稻季与麦季的氨挥发损失差异显著。稻季氨挥发损失量与N肥施用量呈乘幂关系上升,麦季则呈正的线性关系。水稻施肥后氨挥发持续的时间短,主要发生在施肥后1周以内,麦季持续时间较长,在施肥后10天左右。稻季和麦季的基肥阶段是主要的氨挥发时期,占各自氨挥发损失N的50%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号