首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pot experiment was conducted to study the influence of liming on changes in different forms of acidity in relation to soil properties. Thirty-six surface (0–15 cm deep) soil samples were collected from different soil orders, namely Entisols, Inceptisols, Alfisols, and Entisols of coastal saline zone of West Bengal, India, and incubated for 21 days with three doses of lime [i.e., no lime (L0), half lime (L1/2), and full lime (L1)]. Results of analysis of soil showed that there were significant increases in pH in water (pHw) and pH in 0.02 M calcium chloride (CaCl2) (pHCa) (1.3 and 1.5 units) and decrease in total acidity, hydrolytic acidity, exchange acidity, electrostatically bound aluminium (EBAl3+), and electrostatically bound hydrogen (EBH+) upon liming being from 1.53 to 0.57, 1.40 to 0.54, 0.13 to 0.03, 0.08 to 0.01, and 0.06 to 0.02 cmol (p+) kg?1, respectively. The decrease in values of all the forms of acidity was greater in L1 than in L1/2 treatment under Entisols of the terai zone, followed by Entisols of coastal saline zone, Inceptisols, and Alfisols. The forms of acidity showed significant positive correlation with each other but negative correlation with pHw and pHCa, except for EBH+.  相似文献   

2.
Abstract

Fifteen acid soils of Mizoram representing Ultisols and Inceptisols, and Madhya Pradesh, representing Alfisols, were studied to characterize the nature of acidity in relation to different forms of iron (Fe) and aluminum (Al). The mean contents of Fe and Al were extracted by various extracting reagents and were found to be in descending order as followed: dithionite>oxalate>pyrophosphate>ammonium acetate>KCl. The electrostatically bonded EB‐H+ and EB‐Al3+ acidity comprised 28.3 and 71.7% of exchangeable acidity whereas EB‐H+, EB‐Al3+, exchangeable, and pH‐dependent acidities comprised 9.8, 30.7, 40.5, and 59.5% of total potential acidity. All forms, of acidity showed significant correlation with pHk and organic carbon. Among the different forms, Fe and Al caused most of the variations in different forms of soil acidity but the effect of different forms of Al are more active and directly participate in the formation of EB‐H+, EB‐Al3+, and exchangeable acidity.  相似文献   

3.
Profiles of semi-arid-zone soils in Punjab, northwestern India, were investigated for different forms of copper (Cu), including total Cu, diethylenetriaminepentaacetic acid (DTPA)–extractable Cu, soil solution plus exchangeable Cu, Cu adsorbed onto inorganic sites, Cu bound by organic sites, and Cu adsorbed onto oxide surfaces. When all soils were considered, total Cu content ranged from 7 to 37 mg kg?1, while DTPA-extractable and soil solution plus exchangeable Cu contents ranged from 0.30 to 3.26 mg kg?1 and from 0.02 to 0.43 mg kg?1, respectively. Copper adsorbed onto inorganic sites ranged from 0.62 to 2.6 mg kg?1 and that onto oxide surfaces ranged from 2.0 to 13.2 mg kg?1. The Cu bound by organic sites ranged from 1.2 to 12.2 mg kg?1. The magnitudes of different forms of Cu in soils did not exhibit any consistent pattern of distribution. Organic matter and size fractions (clay and silt) had a strong influence on the distribution of different forms of Cu. The content of all forms of Cu was generally greater in the fine-textured Alfisols and Inceptisols than coarse-textured Entisols. Soil solution plus exchangeable Cu, Cu held onto organic sites, and and Cu adsorbed onto inorganic sites (crystalline) had significant positive correlations with organic carbon and silt contents.The DTPA Cu was positively correlated with organic carbon, silt, and clay contents. Total Cu content strongly correlated with silt and clay contents of soils. Among the forms, Cu held on the organic site, water soluble + exchangeable Cu, and Cu adsorbed onto oxide surface were positively correlated with DTPA-extractable Cu. The DTPA-extractable Cu and soil solution plus exchangeable Cu seems to be good indices of Cu availability in soils and can be used for correction of Cu deficiency in the soils of the region. The uptake of Cu was greater in fine-textured Inceptisols and Alfisols than coarse-textured Entisols. Among the different forms only DTPA-extractable Cu was positively correlated with total uptake of Cu.  相似文献   

4.
Different forms of manganese (Mn) were investigated, including total, diethylenetriamine penta-acetic acid (DTPA) extractable, soil solution plus exchangeable (Mn), Mn adsorbed onto inorganic sites, Mn bound by organic sites, and Mn adsorbed onto oxide surfaces, from four soil taxonomic orders in northwestern India. The total Mn content was 200–950 mg kg?1, DTPA-extractable Mn content was 0.60–5.80 mg kg?1, soil solution plus exchangeable Mn content was 0.02–0.80 mg kg?1, Mn adsorbed onto inorganic sites was 2.46–90 mg kg?1, and Mc adsorbed onto oxide surfaces was 6.0–225.0 mg kg?1. Irrespective of the different fractions of Mn their content was generally greater in the fine-textured Alfisols and Inceptisols than in coarse-textured Entisols and Aridisols. The proportion of the Mn fractions extracted from the soil was in the order as follows: Adsorbed onto oxide surfaces > adsorbed onto inorganic site > organically bound > DTPA > soil solution + exchangeable. Based on coefficient of correlation, the soil solution plus exchangeable Mn, held onto organic site and oxide surface (amorphous) and DTPA-extractable Mn, increased with increase in organic carbon of the soil. The two forms, adsorbed onto inorganic site (crystalline) and DTPA extractable, along with organic carbon, increased with increase in clay content of the soil. DTPA-Mn and Mn adsorbed onto oxide surfaces and held on organic site decreased with increased with an increase in calcium carbonate and pH. Total Mn was strongly correlated with organic carbon and clay content of soil. Among the forms, Mn held on the organic site, water soluble + exchangeable and adsorbed onto oxide surface were positively correlated with DTPA-extractable Mn. DTPA-extractable Mn seems to be a good index of Mn availability in soils and this form is helpful for correction of Mn deficiency in the soils of the region. The uptake of Mn was greater in fine-textured Inceptisols and Alfisols than in coarse-textured Entisols and Aridisols. Among the different forms only DTPA-extractable Mn was positively correlated with total uptake of Mn. Among soil properties Mn uptake was only significantly affected by pH of the soil.  相似文献   

5.
Abstract

Profiles of semi‐arid–zone soils in Punjab, northwest India, were investigated for different forms of zinc (Zn), including total, diethylenetriamine penta‐acetic acid (DTPA)-extractable, soil solution plus exchangeable (Zn), Zn adsorbed onto inorganic sites, Zn bound by organic sites, and Zn adsorbed onto oxide surfaces. Irrespective of the different fractions of Zn present, its content was higher in fine‐textured Alfisols and Inceptisols than in coarse‐textured Entisols. In general, the higher content of Zn was observed in the surface horizon and then decreased in the subsurface horizons. However, none of the forms of Zn exhibited any consistent pattern of distribution. Organic matter and size fractions (clay and silt) had a strong influence on the distribution of different forms of Zn. Based upon the linear coefficient of correlation, the soil solution plus exchangeable Zn, adsorbed onto inorganic sites, and DTPA‐Zn increased with increase in organic carbon but decreased with increase in pH and calcium carbonate content. Total Zn increased with increase in clay and silt content. Among the different forms, Zn bound by organic sites, water soluble plus exchangeable Zn and Zn adsorb onto oxide (amorphous surfaces) were all correlated with DTPA extractable Zn. The uptake of Zn was more in recent floodplain Entisols than very fine textured Alfisols and Inceptisols. Among the different forms soil solution +exchangeable and DTPA‐extractable Zn was positively correlated with total uptake of Zn.  相似文献   

6.
Depth distribution of boron (B) extractable by hot calcium chloride (HCC), potassium dihydrogen phosphate (PDP), and tartaric acid (TA) in some typical B‐deficient Inceptisols, Entisols, and Alfisols in relation to soil properties was studied. The magnitude of B extraction followed the order HCC > PDP > TA for Inceptisols, TA > HCC > PDP for Entisols, and PDP > HCC > TA for Alfisols and showed a decrease along soil depth. The low pH of TA and effective desorption of B by phosphate of PDP are attributed to their higher efficiency in extracting B in Entisols and Alfisols, respectively. A decrease in organic carbon (C), clay, and amorphous iron oxide content was responsible for the observed decrease in extractable B along depth of soil profile. The HCC showed more efficiency than PDP and TA for extracting B in soils high in organic C. Multiple regression equations explained only 21, 57, and 59% of the variability in PDP‐, HCC‐, and TA‐extractable B content in soils by the soil properties analyzed, of which organic C and clay were the most important. There were dynamic equilibria among the amount of B extracted by the extractants, indicating B extraction by them from more or less similar pools in the soils.  相似文献   

7.
A laboratory incubation study was conducted to study the influence of liming on extractable boron (B) in acidic soil. Six soils, three each from the Inceptisols and Alfisols, were incubated for 30 days with combinations of lime and B. The soils were acutely deficient in plant-available B (0.09–0.21 mg kg?1). Only <50 percent of applied B was recovered from the soils in available form. Such recovery was lower in Alfisols than that in Inceptisols due to adsorption of a greater amount of added B with iron (Fe?) and aluminium (Al?) oxides in the former soil group. Required dose of lime showed an increase in availability of native soil B, particularly in Inceptisols (26 percent), and a net decrease in recovery of added B (32.5 percent) as compared to no lime control (41.6 percent). The results thus suggest that liming to acidic soils increases extractable B.  相似文献   

8.
Field experiments were conducted during 2005–2007 to test effects of nineteen treatments on turmeric rhizome yield in Alfisol at Utukur and Inceptisol at Jagtial in India. The treatments were comprised of nitrogen (N) at 0, 60, 120 and 180 kg ha?1; phosphorus (P) at 0, 40, 80, and 120 kg ha?1; and potassium (K) at 0, 50, 100, and 150 kg ha?1. Application of 180-120-100 kg ha?1 NPK gave maximum yield of 4302 kg ha?1 in Alfisols, whereas application of 120-80-100 kg ha?1 gave 4817 kg ha?1 in Inceptisols. Regression and principal component (PC) models were calibrated through soil-plant-fertilizer variables. The regression model gave significant R2 of 0.75 in Alfisols compared to 0.88 in Inceptisols, whereas the PC model explained variance of 66.5 percent in Alfisols and 76.3 percent in Inceptisols. Regression model through PC scores gave R2 of 0.54 in Alfisols and 0.47 in Inceptisols. Maximum sustainability yield indexes of 58.8 and 55.5 percent by 180-120-120 kg ha?1 (Alfisol) and 67.1 and 60.6 percent by 120-80-100 kg ha?1 (Inceptisol) were attained based on regression and PC models respectively.  相似文献   

9.
Some Inceptisols representing the Singla catchment area in Karimgaunge district of Assam, India, were studied for lime requirement as influenced by the nature of soil acidity. The electrostatically bonded (EB)-H+ and EB-Al3+ acidities constituted 33 and 67 percent of exchangeable acidity while EB-H+, EB-Al3+,exchangeable and pH-dependent acidities comprised 6, 14, 20 and 80 percent of total potential acidity. The pH-dependent acidity made a major contribution towards the total potential acidity (67%~84%). Grand mean of lime requirement determined by the laboratory incubation method and estimated by the methods of New Woodruff, Woodruff and Peech as expressed in MgCaCO3 ha-1 was in the order: Woodruff (15.6) > New Woodruff (14.9) > Peech (5.1) > incubation (5.0). Correlations analysis among different forms of acidity and lime requirement methods with selected soil properties showed that pH in three media, namely water, 1 mol L-1 KCl and 0.01 mol L-1 CaCl2, had a significant negative correlation with different forms of acidity and lime requirement methods. Exchangeable Fe and Al showed significant positive correlations with EB-Al3+ acidity, exchangeable acidity, pH-dependent acidity and total potential acidity, and also lime requirement methods. Extractable Al showed positive correlations with different forms of acidity except EB-H+ and EB-Al3+ acidities. The lime requirement by different methods depended upon the extractable aluminium.Significant positive correlations existed between lime requirements and different forms of acidity of the soils except EB-H+ acidity and incubation method. The nature of soil acidity was mostly pH-dependent. Statistically, the Woodruff method did slightly better than the New Woodruff, incubation and Peech methods at estimating lime requirement and hence the Woodruff procedure may be recommended for routine soil testing because of its speed and simplicity.  相似文献   

10.
Two sequential extractions with unbuffered 0.1 m BaCl2 were done to study the release of salt-exchangeable H+ and Al from mineral horizons of five Podzols and a Cambisol. Released Al was found to have a charge close to 3+ in all horizons and in both extractions. This finding was supported by the near-equality of the titrated exchangeable acidity (EAT) and the sum of exchangeable acids (EA = He + 3Ale, calculated from the pH and Al concentration of the extract). The ratio between EA of the second and the first extraction was over 0.50 in the Bs2 and C horizons and smaller in the other horizons. H+ was assumed to be in equilibrium with weak acid groups, and the modified Henderson–Hasselbach equation, pKHH = pH ? n log (α/(1 ? α)), was used to explain pH of the extract. The degree of dissociation (α) was calculated as the ratio between effective and potential cation exchange capacity. Value of the empirical constant n was found to be near unity in most horizons. When the monoprotic acid dissociation was assumed in all horizons, pKHH had the same value in both extractions. For Al3+, two equilibrium models were evaluated, describing (i) complexation reactions of Al3+ with soil organic matter, and (ii) equilibrium with Al(OH)3. Apparent equilibrium constants were written as (i) pKo = xpH ? pAl3+, and (ii) log Qgibbs= log Al3+ ? 3log H+. The two extractions gave an average reaction stoichiometry x close to 2 in all horizons. Results suggest that an equilibrium with organic Al complexes can be used to express dissolved Al3+, aluminium being apparently bound to bidentate sites. The value of log Qgibbs was below the solubility of gibbsite (log Kgibbs = 8.04) in many horizons. In addition, log Qgibbs of the second extraction was greater than that of the first extraction in all horizons except the C horizon. This indicates that equilibrium with Al(OH)3 cannot explain dissolved Al3+ in the soils. We propose that the models of pKHH and pKo can be used to simulate exchangeable H+ and Al3+ in soil acidification models.  相似文献   

11.
Profiles of arid and semi‐arid zones soils of Punjab, northwestern India, were investigated for different forms of iron (Fe): total Fe, diethylenetriamine penta‐acetic acid (DTPA)–extractable Fe, soil solution plus exchangeable Fe, Fe adsorbed onto inorganic sites and oxide surfaces, and Fe bound by organic sites. Irrespective of the different fractions of Fe present, its content was higher in the fine‐textured Alfisols and Inceptisols than in the coarse‐textured Entisols and Aridisols. Lower content of total Fe was observed in the surface horizon and then increased in the subsurface horizons, whereas no set pattern was observed in Entisols. Also, irrespective of the soil orders, the contents of different forms of Fe were higher in the surface horizon and then decreased by depth. None of the forms of Fe exhibited any consistent pattern of distribution.

Organic matter and the content of clay and silt fractions had a strong bearing on the distribution of forms of Fe. Based on a linear coefficient of correlation, the soil solution plus exchangeable Fe adsorbed onto inorganic sites and DTPA‐extractable Fe increased with increase in soil organic carbon but decreased with increase in soil pH and calcium carbonate content. Total Fe increased with increase in cation exchange capacity (CEC) and clay and silt content. The results also revealed that there was equilibrium in different fractions of this element. Among the different Fe forms, Fe bound by organic sites, water‐soluble plus exchangeable Fe, and Fe adsorbed onto oxides (amorphous surfaces) were positively correlated with the DTPA‐extractable Fe. Though some forms are interrelated, none of the forms had any relationship with the total Fe.  相似文献   

12.
Abstract

Fixation and recovery of added phosphorus (P) and potassium (K) were studied in different soil types of pulse‐growing regions. Amounts of P and K fixed increased in all the soils irrespective of type and texture. With the increase in levels of added P and K, maximum P fixation was observed at lower levels of added P (50 mg kg?1). Alfisols showed maximum P‐fixation capacity (92.7%), followed by Vertisols (86.5%) and Inceptisols (76.6%) at 50 mg kg?1 added P. However, K fixation increased with increasing levels of added K up to 200 mg kg?1, and thereafter fixation either decreased or was maintained at similar levels. Vertisols showed higher K fixation than Inceptisols and Alfisols. Fertilizer P requirement per unit increase in available P in soil was highest in Bangalore (3.23) and lowest in Delhi (2.38). Fertilizer K requirement per unit increase in available K in soil was highest in Raipur and Gulbarga (1.75) and lowest in Ranchi (1.28).  相似文献   

13.
A Typic Palexerult from northern Spain was subjected to acidity correction field tests over a period of 2 years. The experimental crop was a local rye variety and the amendments included gypsum, dolomite, limestone, and sugar foam waste, all at a 6000 kg ha–1 rate as calcium carbonate (CaCO3). General analyses were integrated with specific tests for soluble and easily exchangeable aluminum (Al) forms (Al-CaCl2) in addition to potassium chloride (KCl)–, barium chloride (BaCl2)–, and copper chloride (CuCl2)–extracted Al and adsorbed and amorphous Al. Two types of multiple linear regression models for production each year were established; some encompassed all studied variables and others the six Al forms only. As shown here, Al-KCl, Al-CaCl2, base saturation, and exchangeable Ca were the individual variables most strongly correlated with production, with R 2 = 0.865, within the topmost 12 cm. A principal component analysis exposed a substantial share of pH-dependent charge in organic matter on the cation exchange capacity of the soil.  相似文献   

14.
Between 1985 and 1990, bulk precipitation and soil solution from the organic (Oh) and mineral (Bs) horizons of a well developed podzol were regularly sampled at a moorland catchment in Mid-Wales. Samples were analysed for pH, major cations, major anions, and dissolved organic carbon (DOC). Acid neutralizing capacity (ANC) was estimated by the charge balance method. Average monthly ANC of soil solutions from the Oh horizon varied seasonally, with a maximum in July and a minimum in February. In contrast, H+ concentrations varied little. Solute deposition, dominated by sodium and chloride, also varied seasonally with a winter maximum, which is reflected in the soil solution chemical composition. In the Oh horizon during winter, the increase in base cation (Na) concentrations led to release of H+ through ion exchange. ANC declined in the absence of any buffering mechanism. In summer, the depletion of exchangeable acidity that occurred in winter, was replenished by H+ produced by the dissociation of organic acids. During this period, organic anions contribute to an increase in ANC, while H+ concentrations remained similar to those in winter. These processes probably influenced the acidity and ANC of Bs horizon soil solutions but to a lesser extent than in the Oh horizon. Other mechanisms such as weathering and ion exchange involving H+ and Al may buffer solution acidity in the mineral soil.  相似文献   

15.
Data from two Podzol O and E horizons, sampled in 1-cm layers at 13 points within 2 m × 2 m plots, were used to test the hypothesis that the composition of hydrogen ions (H) and aluminium (Al) adsorbed to the solid-phase soil organic matter (SOM) determines pH and Al solubility in organic-rich acidic forest soils. Organically adsorbed Al was extracted sequentially with 0.5 m CuCl2 and organically adsorbed H was determined as the difference between total acidity titrated to pH 8.2 and Al extracted in 0.5 m CuCl2. The quotient between fractions of SOM sites binding Al and H (NAl/NH) is shown to determine the variation in pH and Al solubility. It is furthermore shown that models in which pH and Al solubility are linked via a pH-dependent solubility of an Al hydroxide and in which cation exchange between Al3+ and Ca2+, rather than cation exchange between Al3+ and H+, is the main pH-buffering process cannot be used to simulate pH or Al solubility in O and E horizons. The fraction of SOM sites adsorbing Al increased by depth in the lower O and throughout the E horizon at the same magnitude as sites adsorbing H decreased. The fraction of sites binding the cations Ca2+ + Mg2+ + K+ + Na+ remained constant. It is suggested that a net reaction between Al silicates (proton acceptors) and protonated functional groups in SOM (proton donors) is the long-term chemical process determining the composition of organically adsorbed H and Al in the lower part of the O and in the E horizon of Podzols. Thus, in the long term, pH and Al solubility are determined by the interaction between organic acidity and Al alkalinity.  相似文献   

16.
The knowledge of profile distribution of soil organic carbon (SOC) in long‐term agricultural systems could help to store atmospheric carbon in the soil. We investigated profile distribution of easily oxidisable Walkley–Black SOC pool (SOCWB) under long‐term rice‐wheat (R‐W) and maize‐wheat (M‐W) cropping systems under soils of different pedogenesis. The soil samples were collected from the characteristic genetic horizons and analysed for carbon fractions. The SOCWB was the highest in soils under R‐W systems in both Alfisols and Inceptisols. The SOCWB stock in the deeper profile horizons under R‐W system was significantly (p < 0·05) higher than that under M‐W system especially in Typic Hapludalfs. Long‐term R‐W system could store on average 3·55 Mg ha−1 more SOCWB than M‐W system in the Ap horizon. The SOCWB stock in the Ap horizon of all pedons was significantly (p < 0·05) higher in Alfisols than that in Inceptisols. About 60–90% of the total profile SOCWB stock was contributed by B‐horizon because of its greater extent. Considering the whole profile, clay was negatively correlated with SOC fractions; however, the SOC fractions were closely related to each other. This study reveals that the distribution of SOCWB is different in long‐term R‐W and M‐W systems not only in surface but also in the deeper horizons and the magnitude of the variation is influenced by the specific pedogenic processes. This indicates the significance of profile SOCWB stock instead of topsoil SOCWB stock in quantifying carbon retention potential of the long‐term management practices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.

Purpose

Soil acidification is universal in soybean-growing fields. The aim of our research was to evaluate the effects of soil additives (N fertilizers and biochar) on crop performance and soil quality with specific emphasis on ameliorating soil acidity.

Materials and methods

Four nitrogen treatments were applied as follows: no nitrogen (N0), urea (N1), potassium nitrate (N2), and ammonium sulfate (N3), each providing 30 kg N ha?1. Half plot area of the N1, N2, and N3 treatments was also treated with biochar (19.5 t ha?1) to form N-biochar treatments (N1C, N2C, N3C). Both bulk and rhizosphere soils were sampled separately for the following analyses: pH, exchangeable base cations (EBC), exchangeable acidity (EA), total inorganic N (IN), total N (TN), and microbial phospholipid fatty acids (PLFAs). Soybean biomass and nutrient contents were also determined. Correlation analysis was applied to analyze the relationships between soil chemical properties and soybean plant parameters.

Results and discussion

With N-biochar additions (N1C, N2C, N3C), soil chemical properties changed as follows: pH increased by 0.6–1.2 units, EBC, IN, and TN increased by 175–419, 38.5–54.7, and 136–452 mg kg?1, respectively, and PLFAs increased by 23.6–40.9 nmol g?1 compared to the N0 in the rhizosphere. Microbial PLFAs had positive correlations with soil pH; EBC; exchangeable K, Ca, Na, and Mg; TN; IN; NH4 +; and NO3 ? (r?=?0.66–0.84, p?<?0.01). There were negative correlations between PLFAs and EA or exchangeable Al (r?=??0.64, ?0.66, p?<?0.01), which indicated that the additives increased microbial biomass by providing a suitable environment with less acid stress and more nutrients. The additives increased soil NH4 + and NO3 ? by promoting soil organic N mineralization and reducing NH4 + and NO3 ? leaching. Moreover, the soybean seed biomass and the nutrient contents in seeds increased with N-biochar additions, especially in the N3C treatment.

Conclusions

N-biochar additions were effective in ameliorating soil acidity, which improved the microenvironment for more microbial survival. N-biochars influenced N transformations at the plant–soil interface by increasing organic N mineralization, reducing N leaching, and promoting N uptake by soybeans. The soil additive ammonium and biochar (N3C) were best in promoting soybean growth.
  相似文献   

18.
The charge characteristics of A1 or Ap and B2 horizon samples of total 23 Ultisols, Alfisols and Oxisols in Korea and Thailand were studied by measuring the retention of NH4+ and NO3? at different pH values (4–8) and NH4NO3 concentrations (0.1–0.005 m ). The magnitude of their negative charge (σ?; meq/100g) was dependent on pH and NH4NO3 concentration (C; m ) as represented by a regression equation: log σ?=apH +blogC +c. The values of the coefficient a (0.04–0.226), b (0.03–0.264) and c (–0.676–1.262) were correlated with the kinds of the soil and horizon and with the region where the soil exists. The retention of NO3? was less than 1 and 2–3 meq/100 g for the A1 or Ap and B2 horizon samples, respectively. The sum of exchangeable base and Al (‘effective’ CEC) was close to and higher than the magnitude of permanent charge (=σ? measured at pH = 4.3 and at C = 0.005 m ) for one-third and two-thirds of samples, respectively. A σ? value of 16 meq/100 g clay at pH = 7 and C = 0.01 m was found appropriate to separate the B2 horizons of Thai Ultisols and Oxisols from those of Korean Ultisols and Alfisols. Korean Alfisols and Ultisols and Thai Ultisols were distinguished from each other on the status of exchangeable base and Al  相似文献   

19.
Pair correlation coefficients (r) between the acidity parameters for the main genetic horizons of soddy-podzolic soils (SPSs), typical podzolic soils (TPSs), gley-podzolic soils (GPSs), and tundra surfacegley soils (TSGSs) have been calculated on the basis of a previously developed database. A significant direct linear correlation has been revealed between the pHwater and pHKCl values in the organic and eluvial horizons of each soil, but the degree of correlation decreased when going from the less acidic SPSs to the more acidic soils of other taxons. This could be related to the fact that, under strongly acid conditions, extra Al3+ was dissolved in the KCl solutions from complex compounds in the organic horizons and from Al hydroxide interlayers in the soil chlorites. No significant linear correlation has been found between the exchangeable acidity (H exch) and the activity of the [H]+ ions in the KCl extract (a(H+)KCl) calculated per unit of mass in the organic horizons of the SPSs, but it has been revealed in the organic horizons of the other soils because of the presence of the strongest organic acids in their KCl extracts. The high r values between the H exch and a(H+)KCl in all the soils of the taiga zones have been related to the common source and composition of the acidic components. The correlation between the exchangeable and total (H tot) acidities in the organic horizons of the podzolic soils has been characterized by high r values because of the common source of the acidity: H+ and probably Al3+ ions located on the functional groups of organic acids. High r values between the H exch and a(H+)KCl have been observed in the mineral horizons of all the soils, because the Al3+ hydroxo complexes occurring on the surface and in the interlayer spaces of the clay minerals were sources of both acidity forms.  相似文献   

20.
Al chemistry was studied in two acidic watersheds, one with a podzol, the other with an acid brown soil, in the Vosges mountains (N.E. France), by analysing both leaching and centrifugation soil solutions and spring waters over 3 yr. In the podzol, Al was mobilized in the eluvial horizons under the predominant influence of organic acidity, then leached down the profile as organic and F-bound Al. Strong undersaturation with respect to proto-imogolite and imogolite showed that the proto-imogolite theory of podzolization could not apply. Al was transferred from the soil to spring water mostly as Al3+ and Al-F. Al3+, as well as additional minor species (AlOH2+, AlSO4 +), originated from the redissolution of the top of the spodic horizons under the influence of both soil solution acidity and the occurrence of mobile anions derived from atmospheric deposition. Conversely, in the acid brown soil, Al mobilization was regulated by nitrate and occurred mainly as Al3+. Most of Al was retained in the deep soil and only traces of monomeric Al reached spring water. In the podzol eluvial horizons, soil solutions were undersaturated with respect to all relevant mineral phases and their chemical composition agree with the concept of a mobilization of Al from the solid soil organic Al and a control of Al3+ activity by complexation reaction with the solid and soluble soil organic matter and F. In the acid brown soil, soil solutions were found to be in equilibrium with natural alunite, and the formation of this mineral, if confirmed, would account for the occurrence of 'open' vermiculites instead of the expected hydroxy-Al interlayered vermiculites. Al solubility control in surface water of both watersheds remains unclear. The Al-F species in both watersheds and the likely control of Al solubility by alunite in the acid brown soil emphasize the influence of acid deposition on Al chemistry in acid watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号