首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Influence of Organic Manure on Organic Phosphorus Fraction in Soils   总被引:5,自引:0,他引:5  
The transformation of organic P(Po) from organic manures in two types of soils (ultisol and entisol) and the influences of external addition of organic substance or inorganic P(Pi) on Po under the condition of the 60% maximum water capacity were investigated.The results obtained from Po fractionation experiments indicated that all the Po fractions except for the highly resistant Po fraction decreased during incubation.Application of pig feces and cow feces could largely increase each fraction of Po in the soils.Immediately after application of organic manure into the soils a large part of labile and moderately labile Po from organic manure was transferred into moderately resistant Po,which might be due to the fact that Ca-or Mg-inositol P was precipitated into Fe-inositol P.However,the availability of Po from organic manure in the soils would increase again after incubation because of the transformation of moderately labile and resistant Po fractions into labile Po fractions.Addition of cellulose or Pi into the soils showed a good effect on increasing all the Po fractions except for the highly resistant Po,and this effect was much more pronounced when cellulose was applied in combination with Pi.Therefore,in view of the effect of organic manure on improving P nutrition to plant,attention should be paid to both the Po and the organic substances from organic manure,It is suggested that application of Pi fertilizer combined with organic manure may be referred to as an effective means of protecting Pi from chemical fixation in soil.  相似文献   

2.
Investigations were made on living strains of fungi in a bioremediation process of three metal (lead) contaminated soils. Three saprotrophic fungi (Aspergillus niger, Penicillium bilaiae, and a Penicillium sp.) were exposed to poor and rich nutrient conditions (no carbon availability or 0.11 M d-glucose, respectively) and metal stress (25 µM lead or contaminated soils) for 5 days. Exudation of low molecular weight organic acids was investigated as a response to the metal and nutrient conditions. Main organic acids identified were oxalic acid (A. niger) and citric acid (P. bilaiae). Exudation rates of oxalate decreased in response to lead exposure, while exudation rates of citrate were less affected. Total production under poor nutrient conditions was low, except for A. niger, for which no significant difference was found between the poor and rich control. Maximum exudation rates were 20 µmol oxalic acid g?1 biomass h?1 (A. niger) and 20 µmol citric acid g?1 biomass h?1 (P. bilaiae), in the presence of the contaminated soil, but only 5 µmol organic acids g?1 biomass h?1, in total, for the Penicillium sp. There was a significant mobilization of metals from the soils in the carbon rich treatments and maximum release of Pb was 12% from the soils after 5 days. This was not sufficient to bring down the remaining concentration to the target level 300 mg kg?1 from initial levels of 3,800, 1,600, and 370 mg kg?1in the three soils. Target levels for Ni, Zn, and Cu, were 120, 500, and 200 mg kg?1, respectively, and were prior to the bioremediation already below these concentrations (except for Cu Soil 1). However, maximum release of Ni, Zn, and Cu was 28%, 35%, and 90%, respectively. The release of metals was related to the production of chelating acids, but also to the pH-decrease. This illustrates the potential to use fungi exudates in bioremediation of contaminated soil. Nonetheless, the extent of the generation of organic acids is depending on several processes and mechanisms that need to be further investigated.  相似文献   

3.
Release of Soil Nonexchangeable K by Organic Acids   总被引:4,自引:0,他引:4  
The amounts of soil nonexchangeable K extracted with 0.01mL/L oxalic acid and citric acid solutions and that with boiling 1mL/L HNO3 for ten minutes were remarkably significantly correlated with each other,and the amount extracted with the oxalic acid solution was higher than that with the citric acid solution.The soil nonexchangeable K release was comprised of two first-order kinetic processes.The faster one was ascribed to the interlayer K in outer sphere,while the slower one to that in inner sphere.The rate constants of the soil nonexchageable K were significantly correlated with the amounts of nonexchangeable K ex tracted with boiling 1mL/L HNO3 for ten minutes.Study on the fitness of different kinetic equations indicated that the first-order,parabolic diffusion and zero-order equations could all describe the release of soil nonexchangeable K well,but Elovich equation was not suitable to describe it.  相似文献   

4.
Since usual processes involve water as absorbent, they appear not always really efficient for the treatment of hydrophobic volatile organic compound (VOC). Recently, absorption and biodegradation coupling in a two-phase partitioning bioreactor (TPPB) proved to be a promising technology for hydrophobic compound treatment. The choice of the organic phase, the non-aqueous phase liquid (NAPL) is based on various parameters involved in both steps of the process, hydrophobic VOC absorption in a gas?Cliquid contactor, and biodegradation in the TPPB. VOC solubility and diffusivity in the selected NAPL, as well as NAPL viscosity, seems to be the main parameters during the absorption step, while biocompatibility, namely the absence of toxic effect of the NAPL towards microorganisms, non-biodegradability and VOC partition coefficient between NAPL and water were revealed as the key factors during the biodegradation step. The screening of the various NAPL available in the literature highlighted two families of compounds matching the required conditions for the proposed integrated process, silicone oils and ionic liquids.  相似文献   

5.
Long-term field experiment was established in 1978 on a coastal paddy soil to determine the effect of application of pig manure, rice straw and chemical N fertilizer on the physical property and humus characteristics of soil. Results showed that the porosity, the microstructural coefficient, the reactivities of organic C and N, the OlogK value, the degree of oxidation stability, the contents of o-alkyl C and alkyl C, and the ratio of aliphatic C to aromatic C of humic acid from soils received organic manure increased; whereas, the ratio of<10μm to >10μm of microaggregates, the humification degree of humus, the degree of organo-mineral complexation, the number-average molecular weight, the C/H ratio, the contents of carboxyl and aromatic C of HAs in them decreased. These results indicated that the application of organic manure not only improved the physical property of the paddy soil but also made the HA more aliphatic in structure and younger in origin.  相似文献   

6.
A new method was proposed for study of organic reducing substances in soils.According to the theoretical relationship between the voltammetric behaviors and reduction-oxidation reaction of reducing substances,the working conditions of differential pulse voltammetry (d.p.v.)for determining the organic reducing substances produced during the processes of the anaerobic decomposition of plant materials were established with a glass carbon electrode as working electrode,1M Ag-AgCl electrode with large area as reference electrode,0.2M NH4Ac as supporting from -0.5 to 1.2 voltage(vs.M Ag-AgCl).The peak current proportional to the concentration of reducing substances,and the characteristic peak potential of each organic reducing substance were regarded as the quantitative and qualitative base,respectively.These results obtained under the conditions mentioned above directly reflect both the reducing intensity and capacity of the organic reducing system in soils.  相似文献   

7.
Abstract

The actual content of the soil organic carbon (SOC) has to be periodically measured for soil classification and nutrient management purposes. Traditional SOC tests are relatively time consuming and costly. A rapid field test would be valuable to delineate soil map units with similar SOC to simplify the process of land evaluation while increasing precision. The objectives of this study were to develop and evaluate a new field measurement technique for the quick assessment of SOC. The new method measures the emitted CO2 concentration 3 min after treatment of the soil sample with acidic potassium (K) permanganate solution. The inorganic carbonate content of the soil is measured separately with the addition of sulphuric acid only. Carbon dioxide concentration from both procedures is measured with a portable infrared gas analyzer. The difference between the concentrations measured after the two separate reactions provide an estimate of SOC. Samples from brown forest soils (ca Hapludalf) (0.19–5.53% SOC) were used for the method development. The correlation coefficient between the SOC determined by the new method and laboratory wet combustion method content was 0.76 for the full range of SOC and 0.81 for the soil samples with less than 20% carbonate.  相似文献   

8.
9.
Abstract

Organic acid production by plants and microorganisms was quantified in sand media amended with biosolids in the presence and absence of corn (Zea mays L.) in a sand‐culture hydroponic medium. Total quantities of organic acids were greatest in treatments containing both plants and biosolids, with lesser amounts in treatments with plants alone, biosolids‐treated media alone, and a nutrient solution–irrigated blank medium. Biosolids enhanced organic acid production in the rhizosphere and influenced the composition of organic acid mixtures. Only lactic, acetic, butyric, and oxalic acids were detected in media without plants. When the medium was planted, additional organic acids were recovered including tartaric, maleic, succinic, valeric, glutaric, pyruvic, and propionic. Lactic, acetic, and butyric acids were predominant in solutions recovered from the planted media and collectively accounted for 0.65 to 0.75 of the COO? mole fraction. Oxalic, maleic, and tartaric acids were the second most abundant and varied from 0.05 to 0.1 of the mole fraction, followed by succinic, valeric, glutaric, propionic, and pyruvic acids, comprising ≤0.05 of the mole fraction. Plant growth stage had no effect on relative proportions of organic acids but did influence the total quantities of organic acids recovered. Biosolids sources did not have a significant effect on either the quantity or composition of organic acids in any media. The predominance of organic acids that are microbial fermentation products suggests that the carbon contained in root exudates and biosolid amendments was transformed into a mixture of various fermentation products that accumulated in the rhizosphere solution and sand medium as a result of microbial growth and activity.  相似文献   

10.
A sandy soil was amended with different types of sewage sludge (digested, dried, and composted) and pig slurry. The composted sludges displayed higher organic‐matter stability (39–45%) than only digested sludge (26–39%) or digested + dried sludge (23–32%). The microbial biomass of the dried sludge was undetectable. Digested and composted sludges and pig slurry displayed microbial biomasses (12492–13887 µg g?1, 1221–2050 µg g?1, and 5511 µg g?1, respectively) greater than the soil (108 µg g?1). The wastes were applied at seven doses, ranging from 10 to 900 g kg?1. Soils were incubated for 28 days. Substrate‐induced respiration (SIR) was measured for 12 consecutive hours on day 1 and on day 28. The results showed that SIR increased with the dose of organic amendment. However, SIR decreased when moderate doses of pig slurry or high doses of digested + dried sludge were tested. The possibility of using this inhibition as an ecotoxicological indicator is discussed.  相似文献   

11.
The soil organic carbon (SOC) pool is the largest component of terrestrial carbon pools. With the construction of a geographically referenced database taken from the second national general soil survey materials and based on 1546 typical cropland soil profiles, the paddy field and dryland SOC storage among six regions of China were systematically quantified to characterize the spatial pattern of cropland SOC storage in China and to examine the relationship between mean annual temperature, precipitation, soil texture features and SOC content. In all regions, paddy soils had higher SOC storage than dryland soils, and cropland SOC content was the highest in Southwest China. Climate controlled the spatial distribution of SOC in both paddy and dryland soils, with SOC storage increasing with increasing precipitation and decreasing with increasing temperature.  相似文献   

12.
A transition period of at least 2 years is required for annual crops before the produce may be certified as organically grown. There is a need to better understand the various management options for a smooth transition from conventional to organic production. The purpose of this study was to evaluate the effects of different organic amendments and biofertilizers (BFs) on productivity and profitability of a bell pepper–french bean–garden pea system as well as soil fertility and enzymatic activities during conversion to organic production. For this, the following six treatments were established in fixed plots: composted farmyard manure (FYMC, T1); vermicompost (VC, T2); poultry manure (PM, T3) along with biofertilizers (BF) [Rhizobium/Azotobacter + phosphorus solubilizing bacteria (Pseudomonas striata)]; mix of three amendments (FYMC + PM + VC + BF, T4); integrated nutrient management (FYMC + NPK, T5); and unamended control (T6). The yields of bell pepper and french bean under organic nutrient management were markedly lower (25.2–45.9% and 29.5–46.2%, respectively) than with the integrated nutrient management (INM). Among the organic treatments, T4 and T1 produced greater yields of both bell pepper (27.96 Mg ha?1) and french bean (3.87 Mg ha?1) compared with other treatments. In garden pea, however, T4 gave the greatest pod yield (7.27 Mg ha?1) and was significantly superior to other treatments except T5 and T1. The latter treatment resulted in the lowest soil bulk density (1.19 Mg m?3) compared with other treatments. Similarly, soil organic C was significantly greater in all the treatments (1.21–1.30%) except T2 compared to T6 (1.06%). Plots under INM, however, had greater levels of available nitrogen–phosphorus–potassium (NPK) than those under organic amendments. T1 plots showed greater dehydrogenase and acid phosphatase activities compared with other treatments. However, T4 and T5 plots had greater activities of β-glucosidase and urease activities, respectively. The cost of cultivation was greater under organic nutrient management (except T2) compared with INM. The latter treatment gave greater gross margin and benefit/cost (B/C) ratio for all vegetables, except that T2 gave greater B/C ratio in garden pea compared with other treatments. We conclude that T1 and T4 were more suitable for enhancing the productivity of bell pepper–french bean–garden pea system, through improved soil properties, during transition to organic production.  相似文献   

13.
The organic matter (OM) quantity in soils is of fundamental importance for agriculture. The indirect determination of the OM through the Total Organic Carbon (TOC) quantity is performed by most soil laboratories in Brazil using the Walkley–Black (WB) method. This procedure involves oxidation with potassium dichromate which is a cancerous reagent. The objective of this study is to optimize the parameters for OM determination by the gravimetric method and to estimate the van Bemmelen factor for the studied soil. The studied region is the second and third plateau of Parana State, Brazil, from which 50 agricultural soil samples were analyzed. The temperature and exposition time in muffle were determined after a thermal analysis. The optimized parameters for the gravimetric method were 3 h at 420°C in the muffle furnace. The results for WB and gravimetric methods presented a good correlation and the van Bemmelen factor for the studied soil was 4.37.  相似文献   

14.
Exudation of low molecular weight organic acids by fungi was studied in a project focusing on bioremediation of metal-contaminated soils. The production of acids (mainly oxalic and citric acid) as a response to nutrient variations and presence of metals has recently been reported (Arwidsson et al. 2009). A significant release of metals was observed and was related not only to the production of organic acids but also to the resulting pH decrease in the systems. The processes governing the release and redistribution of metals in the soil–water fungus system were the focus of the present continuation of the project, based on observations of Aspergillus niger, Penicillium bilaiae, and a Penicillium sp. The release of lead was 12% from the soil with the second highest initial load (1,600 mg kg?1), while the release of copper was 90% from the same soil (140 mg kg?1). The dominating mechanism behind the release and subsequent redistribution was the change in pH, going from near neutral to values in the range 2.1–5.9, reflecting the production of organic acids. For some of the systems, the formation of soluble complexes is indicated (copper, at intermediate pH) which favors the metal release. Iron is assumed to play a key role since the amount of secondary iron in the soils is higher than the total load of secondary heavy metals. It can be assumed that most of the heavy metals are initially associated with iron-rich phases through adsorption or coprecipitation. These phases can be dissolved, or associated metals can be desorbed, by a decrease in pH. It would be feasible to further develop a process in technical scale for remediation of metal-contaminated soil, based on microbial metabolite production leading to formation of soluble metal complexes, notably with copper.  相似文献   

15.
A method to estimate the amount of soil organic carbon (SOC) physically protected within macroaggregates (>200 μm) consists of crushing soil samples and measuring the following SOC mineralization increase. This study investigated the effect of grinding the plant residues during soil crushing on the calculated amount of the protected SOC on two tropical soils (Arenosol and Ferralsol). Incubations of crushed and uncrushed soil samples amended with ground or unground plant residues were conducted. Our results showed that soil crushing increased SOC mineralization and that the presence of plant residues enhanced soil respiration also. The plant residues of the two soils had different decomposition rates, but grinding plant residues did not increase the amounts of cumulative carbon (C) mineralized after the 28 days of the experiment. We propose that the extra C mineralized after soil crushing is due to the breakdown of the soil structure and not to the grinding of plant residues.  相似文献   

16.
The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were studied by using electrochemical methods.Interaction between soils and organic reducing substances was also observed.The results indicate that the organic reducing substances were mainly the organic compounds with negative and amphoteric charges,which were distributed in two groups at anodic peak potentials of 0.25 and 0.69 volt in differential pulse voltammograms,respectively.Their apparent molecular weights are all less than 700 daltons,in which those active in oxidation-reducion reaction were distributed in the fraction with apparent molecular weight less than 200 daltons.The organic reduction substances can be oxidized by manganese oxides in their interaction with soils.  相似文献   

17.
18.
SUN BO  LIN XIN-XIONG 《土壤圈》1993,3(2):133-144
Decomposition experiments of ^14C-labelled sickle alfalfa in chao soils of different texture and these soils after removal of CaCO3 were carried out under field and laboratory conditions respectively.The amount of residual ^14C in,or ^14CO2 evolved from,the soils at intervals after the beginning of devomposition were measured and the distribution of native and labelled C between particle size fractions isolated from these soils was edtermined.Results showed that contents of both labelled (^14C) and non-labelled (^12C) carbon decreased with increasing particle size.The enrichment factor for ^14C was higher than that for ^12C in the clay fraction,the reverse being true for the silt enrichment factors.The effect of soil texture on the decomposition of plant material could not be observed in chao soils when the clay content was lower than 270g kg^-1,while it became obvious once CaCO3 was removed was correlated from these soils.The decomposition rate of plant material in the soil from which the native CaCO3 Was removed was correlated significantly to both the clay content of the soil and the application rate of CaCO3.A preliminary correction equation describing the effect of clay and CaCO3 on the decomposition of organic material in chao soil was derived from the results obtained.  相似文献   

19.
Abstract

Sewage‐sludge‐amended soils generally contain elevated levels of organic matter and heavy metals compared to control soils. Because organic matter is known to complex with heavy metals, the solubility behavior of the organic matter in such soils may exert a significant influence on the solubility of the metals. Little is known about such a process. Using batch experiments in which the solubility of organic matter in a heavily sludge‐amended soil was artificially manipulated, we show that the solubilities of the heavy metals copper (Cu), nickel (Ni), and lead (Pb) show a strong positive relationship to the solubility of organic matter, particularly at high pH. The results suggest that under field conditions, spatiotemporal variations in the solid–solution partitioning of organic matter may have a bearing on the environmental significance (mobility and bioavailability) of these heavy metals.  相似文献   

20.
Abstract

Low‐molecular‐weight (LMW) organic acids are found in soils. They originate from the activities of various microorganisms in soils or may be exuded from the roots of living plants. Several of those organic acids are capable of forming stable organo‐metal complexes with various metal ions found in soil solutions. As a result, these processes may lead to the release of inorganic phosphorus (P) associated with aluminum (Al), iron (Fe), and calcium (Ca) in soil minerals. The release of P from soils by LMW organic acids may be important to the P nutrition of plants. Studies on the release of P from soils by a variety of LMW organic acids showed that, in general, the di‐ and tricarboxylic acids were the most effective in releasing P from two Iowa soils, whereas the monocarboxylic, phenolic, and mineral acids released similar amounts of P. Oxalic, malonic, citric, and, in some cases, malic and tartaric acids were the most effective in releasing inorganic P from the two surface soils studied. There was an inverse relationship between the amounts of P released from soils and the pKa values of the organic acids. The amounts of P released from soils were significantly correlated with the published stability constants for the formation of organic complexes of Al, Fe, or Ca (log KAl, log KFe, or log KCa values). In general, the aliphatic acids containing α‐caboxyl and β‐hydroxyl functional groups or phenolic acids containing ortho‐hydroxyl groups were more effective in causing the release of P from soils than similar organic acids having other functional group combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号