首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红壤中铝、锰和铁在酸雨作用下的释放特征   总被引:11,自引:2,他引:11  
酸雨作用下红壤中Al、Mn和Fe的释放大多具有阶段性特征,旦土壤不同,其阶段性特征存在明显的差异。多数情况下同一土壤中Al和Fe的阶段性释放特征较为相似。3种元素累积释放量(Q)随淋溶量(H)的变化符合二次模型:Q=A B1H B2H2。经过9150~10650mm的酸雨淋溶以后,与对照(pH5.6)相比,pH4.5的酸雨使Al累积释放量增加8.16%~87.49%,Mn增加-4.29%~24.75%,Fe增加5.78%~86.03%;pH3.5的酸雨使Al累积释放量增加68.59%~158.60%,Mn增加26.11%~205.53%,Fe增加8.48%~138.88%。3种元素对酸雨的敏感性依次是:Al>Fe>Mn。其累积释放量在不同土壤之间表现出基本一致的特点:Al和Mn的释放量较为接近,且远远大于Fe的释放量。  相似文献   

2.
Laboratory studies were conducted to investigate the rates ofrelease of Na, Mg, Al, Si, K, Ca and Fe from 10 samples of metamorphosed igneous rock of the Borrowdale Volcanic Group (BVG), consisting mainly of plagioclase feldspars, chlorite andquartz, with minor amounts of hornblende, epidote and carbonates.Experiments were performed using freshly-prepared rock pieces (ca. 12 mm cubes), in batch mode, but with frequent changes of the solution phase so that accumulation of dissolved solutes wasminimised. The initial element release rates were relatively high, but declined with time to reach approximate (pseudo-) steady state conditions. Element release rates declined withpH in the pH range 2–7, the dependence upon pH decreasing in the order Al ~ Fe > Si > Mg ~ Ca > K ~ Na. Thepseudo-steady state rates for Si were comparable to steady state values for single minerals. Calcium showed the greatestsample-to-sample variation (more than 100-fold). Rock dissolutionwas far from stoichiometric, with Ca and Mg being present in thesolution phase in proportions greater than in the rock, and Al and Si in lower proportions. In some samples the release rates ofMg and Ca were equal, while in others the Ca rate was up to 100times that of Mg. The rate of release of Ca is correlated with the carbonate content of the rocks. The results indicate that the main source of Ca in the faster-dissolving samples is calcite, while the highest release rates of Mg are consistent with dissolution of dolomite. Aluminium, Si and Fe are probablyreleased predominantly from chlorite. The results are discussed in terms of the supply of base cations to stream waters drainingcatchments underlain by rocks of the BVG.  相似文献   

3.
Abstract

Many attempts have been made to reconstruct past soil chemistry from tree rings' total element concentrations. However, a few recent studies have shown that some elements are highly mobile within some tree species' sapwood, which may complicate the interpretation of temporal trends. To investigate element mobility in xylem of balsam fir (BF) and white spruce (WS), a dendrogeochemical method was utilized, which consists in sequentially extracting tree ring samples with water and diluted hydrochloric acid (HCl; 0.05 M) followed by a complete digestion in nitric acid (residual). The results show that, within the sapwood of BF and WS, potassium (K) and phosphorus (P) are found mostly in the water extract whereas divalent cations [calcium (Ca), magnesium (Mg), strontium (Sr), manganese (Mn), zinc (Zn), and barium (Ba)] are mainly present as soluble or exchangeable forms. Total xylem concentration generally decreased in the following order for both tree species: Ca > Mg > Mn > Zn, Ba > Sr. At the opposite, the vast majority of aluminum (Al) (>99%) and iron (Fe) (>95%) is found in the residual fraction, suggesting that these elements are not affected by radial reequilibration during circulation of the sap. Because Al soil availability is known to increase with decreasing pH, this element can potentially be used for past reconstruction of soil pH.  相似文献   

4.
M Schnitzer  H Kodama 《Geoderma》1976,15(5):381-391
Three micas commonly occurring in soils, that is, biotite, phlogopite and muscovite, were shaken with 0.2% (W/V) aqueous fulvic acid (FA) solution for 710 h at room temperature. Proportions of major constituent elements extracted (Fe, Al, Mg, K and Si from biotite, Al, Mg, K and Si from phlogopite and Al, K and Si from muscovite) were determined.Depending on the type of mineral and its Fe content, substantial amounts of Fe, Al, Mg, K and Si were brought into aqueous solution by the FA under mild conditions. The ease with which the micas were attacked by the FA decreased in the following order: biotite > phlogopite > muscovite. IR and ESR analyses indicated the formation of metal—FA complexes as a major reaction mechanism by which the minerals were dissolved. Our data show that aqueous FA solution can dissolve from micas relatively large amounts of metals and Si, which may then become more available to plant roots and microbes, active in soil genesis processes, as well as participants in the synthesis of new minerals.  相似文献   

5.
There is increasing interest in the current conditions of dynamic soil properties and element concentration in the US Great Plains as well as the nature and magnitude of change due to land use and management practices. The study was conducted on Pawnee soil, a major U.S. benchmark soil in the Great Plains. The objectives were to investigate the effects of four common land uses [NoTill (NT), Conventional Till (CT), Grass (G), and Conservation Reserve Program (CRP)] on: i) selected soil properties [total organic carbon (TOC), bulk density (BD), pH, cation exchange capacity (CEC), and electric conductivity (EC)] and ii) water-soluble concentration of 14 heavy metals and micronutrients. The analysis of variance (ANOVA test) indicated that the land use had significant effects on the TOC, CEC, and EC, whereas no relation was detected for BD and pH. Irrespective of land use, the mean element concentration in soil could be arranged in the order: Si (Silicon) > Al (Aluminum) > Fe (Iron) > Mn (Manganese) > B (Boron) > Zn (Zinc) > Cr (Chromium) > Ni (Nickel) > Cu (Copper) > As (Arsenic) > Pb (Lead) > Co (Cobalt) > Mo (Molybdenum) > Cd (Cadmium). Silicon, Al, and Fe which are usually form the major components of soil minerals were present in much higher levels (91 to 308 mg/kg) than other elements in soil. Essential plant micronutrients such as B, Cu, Mn, Mo, and Zn, generally presented moderate levels in soil (7 to 698 µg/kg), whereas toxic heavy metals such as As, Cd, Co, Ni, and Pb were present in the lowest values (0.7–96.2 µg/kg). The ANOVA test indicated land use had significant effects on As, B, Cd, Co, Cu, Ni, and Si concentration in soil while effects were insignificant for other elements. The data proved the important effects of land use on dynamic soil properties as well as nutrient and heavy metal for a major benchmark soil. Thus, more studies on other major soils are warranted. The information is needed to modify and adapt management practices to improve and sustain soil health and water quality in the US Great Plains.  相似文献   

6.
Ca, Mg, Fe, Mn and Al were determined in surficial sediment samples from Catatumbo River (including sediments from major tributaries) a binational basin shared by both Venezuela and Colombia in approximately 30% and 70%, respectively. The global mean concentration of the metals was Al > Fe > Mg > Ca > Mn (0.376; 0.304; 0.063; 0.042; 5.9 × 10-4 mmol g-1 dry weight). The objectives of this investigation were (1) to establish metal-concentration baselines, and (2) to determine spatial distribution of Ca, Mg, Fe, Mn and Al concentrations, in bed sediment samples from Catatumbo River (including sediments from major tributaries). As Catatumbo River is the main tributary to Lake Maracaibo system (South America's largest inland lake), its impact on the eutrophication process of Lake Maracaibo due to the formation of metal/phosphorus complexes is discussed.  相似文献   

7.
The influence of some complexing agents of (poly)aminopolycarboxylic acids (diethylenetriaminopentaacetic acid (DTPA), ethylenediaminotetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and iminodiacetic acid (IDA)) on the sorption of Cu2+ by crystal and amorphous (hydr)oxides of Fe(III), Al(III), and Mn(IV) that are widespread mineral components of soils was studied. The obtained results are considered in terms of complex-formation in the solution and on the sorbent’s surface. The effect of the complexing agents on the metal sorption (mobilization/immobilization) is determined by (1) the stability, structure, and sorption capability of compexonates formed in the solution; (2) the acidity, and (3) the nature of the sorbent. The desorption effect on Cu2+ cations was found to change in the following sequence of complexing agents: EDTA > DTPA ? NTA > IDA. The high-dentate complexing agents (EDTA, DTPA) had the greatest impact on ?u2+ cations bound with crystalline (hydr)oxides of Fe, Al, and Mn. The low denticity of the complexing agents (IDA, NTA) and binding of ?u2+ with amorphous sorbents leads to the weakening of desorption. The decrease in acidity promoted the mobilization of the metal under the influence of complexing agents; the increase in acidity caused its immobilization. The growth in the mobility of heavy metals bound with soil (hydr)oxides of Fe, Al, and Mn due to the complexing agents entering the surface and ground water is considered a factor of ecological risk.  相似文献   

8.
The objective of the present study was to provide experimental evidence on the active role of plant roots in rock weathering and the importance of the proximity of roots to rock in the weathering process. The analysis was based on the release of different elements from basalt rock particles by three crop species: rice, soybean and maize. Quantitative results were obtained by chemical analyses. We designed two types of hydroponic crop pots, in which fine roots were allowed (or not allowed) to make contact with rock particles by using coarse (or fine) net bags. Experiments were carried out in a controlled glasshouse during a 42 d period. The release of elements in the presence of the plants was calculated by subtracting the decrease in the amounts of elements in the media from the amounts absorbed by the plants. We observed the positive effect of plants on the release of elements from the rock particles and the highest amounts were released in the soybean pots. The amounts of Si, Ca, Mg, Mn and Al released increased by a factor of 2–5, 2–7, 16–112, 3–19 and 6–60, respectively. The amount of Fe released by soybean plants from the rock particles was 4–6 times higher than that by other plants. Between the coarse and fine net pots, the amount of released elements differed significantly only for soybean (Si, Mg and Mn at p < 0.01 level and Fe at p < 0.05 level), which displayed the most vigorous growth. Our results imply that weathering may be caused partially by the absorption of nutrient elements directly through the interface of fine roots and rock particles, and is most likely associated with alterations of the local rhizosphere conditions surrounding the roots.  相似文献   

9.
Abstract

The release of solid‐phase soil aluminum (Al) from two soils was studied under acidic conditions and also in the presence of monosilicic acid. The soils support mixed‐conifer forests in the mid‐elevation Western Sierra Nevada in northern California, but differ in their state of development and mineralogy as shown by Al, iron (Fe), and silicon (Si) concentrations. The pyrophosphate‐extractable Al (Alp) pool, which was a main source of released Al, decreased after a two‐month leaching with nitric (HNO3) or oxalic (HO2C‐CO2H) acids. Addition of monosilicic acid (SiO2.XH2O) to the acid extractants resulted in a further decrease of Al. Solution monosilicic acid was removed from solution by sorption on Fe oxides/hydroxides in the soil with the higher dithionite‐extractable Fe pool. In the less developed soil with lower pedogenic Fe, the formation of short‐range‐ordered aluminosilicates, even in the presence of a strong Al chelator, was responsible for the removal of a portion of the monosilicic acid from solution. Pedogenic Fe inhibited the formation of short‐range‐ordered aluminosilicates more than the presence of a strong Al chelator. Both the solution phase and surface reactions are important in the pedogenic formation of alumino‐silicate minerals.  相似文献   

10.
Abstract

Selenite adsorption by a variety of oxides consisting of iron (Fe), aluminum (Al), titanium (Ti), manganes (Mn), and silicon (Si), and by two humic acids were investigated in order to grasp selenite behavior and fixation mechanisms in soil. It was found that selenite was apparently adsorbed even by the Mn oxides on which surface negative charge was dominant in normal pH range (pH <4). No selenite adsorption was observed in the silicon dioxide (SiO2) and the two humic acids. A sequential extraction of adsorbed selenite with competitive anions showed the differences of binding force or stability of adsorbed selenite among the minerals. While the goethite fixed selenite strongly, selenite adsorbed on the Mn oxide was easily released to the liquid phase with other anions, such as phosphate. Each mineral had its inherent characteristic in ligand exchange reactions accompanied with selenite sorption. Selenite sorption by the Mn and the Ti oxides resulted in large increase of surface negative charge, while only a little increase in the Fe and Al oxides. Proton consumption with selenite sorption was extremely smaller for the Mn oxide than for the others.  相似文献   

11.
This study determines the seasonal variability of metal partition coefficients [aluminium (Al), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn)] and analyses the importance of suspended sediments (SS), dissolved organic carbon (DOC) concentrations, pH, and discharge (Q) on the seasonal variability of metal partition coefficients (KDs) in the headwaters of the Mero River catchment, which drains an agroforestry area in northwestern Spain. Metal partition coefficients were used as an approach to relate dissolved and particulate fractions. Water samples were collected over 3 years (2005–2008) at the catchment outlet. The mean metal dissolved concentrations were: Fe (43.5 μg L?1) > Al (23.3 μg L?1) > Zn (1.8 μg L?1) > Mn (1.2 μg L?1) > Cu (0.3 μg L?1). Partition coefficients followed the order Mn > Al > Fe > Zn > Cu, and their values exhibited low variability. Al, Cu, and Zn partition coefficients presented the greatest values in summer, except during 2007–2008, when the greatest KDs value was observed in autumn, whereas the KDs of Fe showed the greatest values in winter. The KD of Mn has no seasonality. For Al, Cu, and Zn, the seasonal SS concentrations were closely related to Kd. For Fe, Kd was more closely related to DOC concentration than to SS concentration.  相似文献   

12.
Silicon (Si) is one of the most abundant elements in the earth's crust, although its availability may be affected by some edaphic and abiotic factors such as soil moisture and salinity. In a laboratory experiment, effects of silicon (Si), salinity, and soil moisture on changes of extractable Si, iron (Fe), and manganese (Mn) concentrations were investigated on a sandy loam calcareous soil. The experiment was arranged as a factorial completely randomized design with three replications. Two levels of Si (8 and 200 mg per kg of soil), three salinity levels [0.46 dS m?1, 8 dS m?1 as sodium chloride (NaCl), and 8 dS m?1 as four-salt combination], two soil moisture regimes (–20 kPa and waterlogged), and four incubation times (0, 7, 30, and 45 days) were applied. Salt composition consisted of sodium chloride, sodium sulfate, calcium chloride, and magnesium sulfate at a molar ratio of 4:2:2:1. Acetic acid–extractable Si, Fe, and Mn were determined after 0, 7, 30, and 45 days of incubation. Waterlogging caused significant increase in the extractable Si, Fe, and Mn. Soil salinity of 8 dS m?1, only in the form of sodium chloride, resulted in a marked decrease in extractable Si, Fe, and Mn. Silicon addition enhanced the soil Si concentration, with no effect on Fe and Mn. Equilibrium time for Si and Fe was 30 days, whereas Mn concentration reached to a constant level after 1 week of waterlogging. It was concluded that Si, Fe, and Mn fertilizers should be applied in sufficient amounts to the saline soils to prevent their deficiencies in plants. Meanwhile, overfertilization in waterlogged conditions must be avoided, because of the probability of nutrient imbalance or toxicity.  相似文献   

13.
钙盐诱导下土壤锰和铁的释放及其对胡椒的生物有效性   总被引:9,自引:7,他引:9  
Releases of manganese and iron ions from an albic soil (Albic-Udic Luvisol), a yellow-red soil (Hap-Udic Ferrisol) and a yellow-brown soil (Arp-Udic Luvisol) induced by calcium salt addition and their bioavailability to pepper (Capsicum frutescens L.) were studied in a pot experiment. Addition of Ca(NO3)2 decreased soil pH and increased both exchangeable and DTPA (diethylenetriamine pentaacetic acid)-extractable Mn and Fe in soils. Meanwhile, total Mn accumulation in the shoots of Capsicum frutescens L. on the salt-treated soils increased significantly (P< 0.01) compared with the control, suggesting that salt addition to soil induced Mn toxicity in Capsicum frutescens L. Although exchangeable and DTPA-extractable Fe increased also in the salt-treated soils, Fe uptake by the shoots of Capsicum frutescens L. decreased. The effect of added salts in soils on dry matter weight of pepper varied with the soil characteristics, showing different buffer capacities of the soils for salt toxicity in an order of yellow-brown soil > albic soil > yellow-red soil. Fe/Mn ratio in shoots of Capsicum frutescens L. decreased with increasing salt addition for all the soils, which was ascribed to the antagonistic effect of Mn on Fe accumulation. The ratio of Fe/Mn in the tissue was a better indicator of the appearance of Mn toxicity symptoms than Mn concentration alone.  相似文献   

14.
Effect of Fine Root Contact on Plant-Induced Weathering of Basalt   总被引:1,自引:0,他引:1  
The objective of the present study was to provide experimental evidence on the active role of plant roots in rock weathering and the importance of the proximity of roots to rock in the weathering process. The analysis was based on the release of different elements from basalt rock particles by three crop species: rice, soybean and maize. Quantitative results were obtained by chemical analyses. We designed two types of hydroponic crop pots, in which fine roots were allowed (or not allowed) to make contact with rock particles by using coarse (or fine) net bags. Experiments were carried out in a controlled glasshouse during a 42 d period. The release of elements in the presence of the plants was calculated by subtracting the decrease in the amounts of elements in the media from the amounts absorbed by the plants. We observed the positive effect of plants on the release of elements from the rock particles and the highest amounts were released in the soybean pots. The amounts of Si, Ca, Mg, Mn and Al released increased by a factor of 2–5, 2–7, 16–112, 3–19 and 6–60, respectively. The amount of Fe released by soybean plants from the rock particles was 4–6 times higher than that by other plants. Between the coarse and fine net pots, the amount of released elements differed significantly only for soybean (Si, Mg and Mn at p < 0.01 level and Fe at p < 0.05 level), which displayed the most vigorous growth. Our results imply that weathering may be caused partially by the absorption of nutrient elements directly through the interface of fine roots and rock particles, and is most likely associated with alterations of the local rhizosphere conditions surrounding the roots.  相似文献   

15.
Knowledge of the release of heavy metals (HM) and their chemical speciation is necessary for characterizing HM behavior in soils. The kinetics and characteristics of iron (Fe) and manganese (Mn) release were studied in 10 contaminated calcareous soils using 0.01 M calcium chloride (CaCl2), 0.01 M ethylenediamine tetraacetic acid (EDTA), and 0.01 M malic acid (malic acid) extractions. Iron and Mn in soil samples were fractionated before and after 2084 h kinetic release using a sequential extraction procedure. The proportion of Fe and Mn released by EDTA was greater than that with CaCl2 and malic acid. A power model satisfactorily described Fe and Mn release from soils. In general, the mean release rate of Fe was greater than that of Mn, indicating a greater rate of Fe release from contaminated soils. It was shown that Fe and Mn distributions were similar in native soils and they were mainly found in Fe-Mn oxides and organic-matter (OM) fractions. There were changes in the proportional distribution of Fe and Mn in all soils during the 2084 h kinetic study with different extraction solutions. In general, the proportions of Fe and Mn associated with carbonate (CARB) and OM fractions tended to decrease, with corresponding increases in the Fe-Mn oxides for Mn and residual (RES) fractions for Fe during the kinetic study with all extraction solutions. The Fe and Mn solubility at the initial and final stages of release was controlled by siderite (FeCO3), vivianite [(Fe)3(PO4)2·8H2O], MnCO3(am), MnHPO4, and rhodochrosite (MnCO3) minerals in all extraction solutions. Based on a risk assessment and percentage of release of metals, there is a high potential for Mn release into the food chain from contaminated soils.  相似文献   

16.
Abstract

X‐ray fluorescence (XRF) is an effective and rapid technique for the analysis of many mineral elements in plant tissue. Plant samples sometimes are too small to make good pellets and to provide good XRF analyses. Leaf tissue was mixed with cellulose or boric acid at different ratios to assess whether pellets from these mixtures could be analyzed by XRF and to determine the effects of these inert substances on analysis of Al, Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Si, and Zn. Concentrations of all elements decreased linearly at all leaf/cellulose ratios. Concentrations of Mn, Fe, Zn, and Cu decreased linearly at all leaf/boric acid ratios, but concentrations of the other elements decreased linearly only when leaf/boric acid ratios were above about 40/60, and decreases in concentration of these other elements were more pronouned at leaf/boric acid ratios below 40/60. Concentrations of P, S, Cl, K, Mg, Ca, Si, and Al were higher in leaf/boric acid than in leaf/cellulose pellets, and similar concentrations were noted for Cu, Mn, Fe, and Zn in both kinds of pellets. Mechanically shaking cellulose with leaf tissue generally resulted in higher mineral element concentrations than if samples were mixed by hand. Cellulose would be the preferred inert substance to mix with plant samples if plant samples are below ~40 mg in size. Small samples of plant tissue can effectively be analyzed by XRF when mixed with cellulose or boric acid.  相似文献   

17.
The transmission of atmospherically derived trace elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) was evaluated in a small, undeveloped, forested watershed located in north-central Maryland. Atmospheric input was determined for wet-only and vegetative throughfall components. Annual throughfall fluxes were significantly enriched over incident precipitation for most elements, although some elements exhibited evidence of canopy release (Mn) or preferential uptake (As, Cr, and Se). Stream export was gauged based on systematic sampling under varied flow regimes. Particle loading appears to contribute significantly to watershed export (> 10%) for only As, Pb, and Fe, and then only during large precipitation/runoff events. The degree of watershed transmission for each trace element was evaluated based on a comparison of total, net atmospheric input (throughfall) to stream export over an annual hydrologic cycle. This comparison indicates that the atmospheric input of some elements (Al, Cd, Ni, Zn) is effectively transmitted through the watershed, but other elements (Pb, As, Se, Fe, Cr, Cu) appear to be strongly sequestered, in the respective orders noted. Results suggest that precipitation and subsequent soil pH are the primary factors that determine the mobility of sequestered trace element phases. To further resolve primary atmospheric and secondary weathering components, the geochemical model NETPATH was applied. Results indicate that minerals dissolved include chlorite, plagioclase feldspar, epidote, and potassium feldspar; phases formed were kaolinite, pyrite, and silica. The model also indicates that weathering processes contribute negligible amounts of trace elements to stream export, indicative of the unreactive orthoquartzite bedrock lithology underlying the watershed. Thus, the stream export of trace elements primarily reflects atmospheric deposition to the local watershed.  相似文献   

18.
Abstract: There is no information regarding genotypic variation in essential and nonessential nutrient accumulation of sunflower grown under drought stress with the presence or absence of supplemental silicon (Si) despite the role of this element in improving growth of some cultivars under drought conditions. Accumulation of elements in sunflower cultivars might be important for the genetic improvement of the crop's response to drought. An experiment under controlled conditions was carried out to study the genotypic response of 12 sunflower (Helianthus annuus L.) cultivars to drought and Si and the relationship to the uptake of elements [phosphorus (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), chloride (Cl), molybdenum (Mo), Si, sodium (Na), vanadium (V), aluminum (Al), strontium (Sr), rubidium (Rb), titanium (Ti), chromium (Cr), nickel (Ni), bromine (Br), and barium (Ba)]. This was determined by polarized energy‐dispersive X‐ray fluorescence (PEDXRF). It was observed that uptake of nutrient and nonessential elements by sunflower cultivars were differentiated in response to applied Si and drought stress. Drought stress decreased mineral uptake of all the cultivars, and generally, application of Si under drought stress significantly improved Si, K, S, Mg, Fe, Cu, Mn, Na, Cl, V, Al, Sr, Rb, Ti, Cr, and Ba uptake whereas Zn, Mo, Ni, and Br uptake were not affected.  相似文献   

19.
Fluxes,residence times,and sources of some elements to Lake Michigan   总被引:1,自引:0,他引:1  
Fluxes of 28 elements to Lake Michigan are calculated from literature data on sedimentation rates and concentrations in sediments and water. Lake Michigan residence times are roughly 104 lower than oceanic residence times. A mass balance has been formulated for 24 elements, with soil and aerosol as the only sources. These sources provide fourfold excesses of Cu, Hg, Sb, Se, and V, and order of magnitude deficits for Ca, Mg, Na, and Cl, but account (to within 50%) for the observed inputs of Ag, Al, As, Br, Co, Cr, Fe, K, La, Mn, S, Si, Sc, Th, and Zn. Except for Al, Co, La, Si, and Th, deposition from aerosol accounts for at least one-fifth of the total input.  相似文献   

20.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号