首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
Phosphate applications are still rare in sugarcane cultivation and can be done with phosphorus fertilizers of residual over. This study aims to evaluate the agronomic efficiency of phosphate fertilization before sugarcane planting and its effect on sugarcane yield. The study was carried out over three crop cycles at the Jalles Machado sugar-mill in Goianésia, GO, Brazil. The treatments consisted of five different phosphorus sources (soluble and insoluble) applied at a rate of 300 kg ha?1 phosphorus pentoxide (P2O5). The phosphorus fertilizers used were: triple superphosphate, mono-ammonium phosphate (MAP), Arad rock phosphate, Itafós rock phosphate, and magnesium term phosphate. The effects of these fertilizers were evaluated by plant height (ground to Top Visible Dewlap; TVD), leaf phosphorus content, agronomic efficiency, and sugarcane yield from cane-plants, first ratoon, and second ratoon. Magnesium term phosphate and triple superphosphate resulted in greater plant-cane height. Leaf phosphorus concentrations were highest with applications of MAP, magnesium term phosphate, and triple superphosphate. Phosphate applications did not affect sugarcane plant yield, but did increase ratoon yield. In general, the residual effect of insoluble phosphate increased over the years. The agronomic efficiency (AE) of phosphate was (in descending order): triple superphosphate (100%), term phosphate (89%), MAP (80%), Itafós rock phosphate (67%), and Arad rock phosphate (60%).  相似文献   

2.
Optimization of phosphorus (P) fertilization is important for balancing soil fertility especially in vertisol to support economic crop production. The objective of the study was to determine the impact of P fertilization (1998 to 2014) on crop yield and nutrient uptake, and soil fertility under continuous annually tilled corn (Zea mays L.)-wheat (Triticum aestivum L.) system in semi-arid Mediterranean conditions. The study was conducted on Arik clay (isohyperthermic, fine clay Typic Haploxerert) using randomized complete block design with four replications for each treatment at the research farm of the Dept. of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey. P fertilizer at 0, 50, 100, 200 kg P2O5 ha?1 as triple superphosphate (TSP), respectively was applied a week before planting corn. Results showed that increasing P fertilization rates significantly decreased the number of mycorrhizal spores associated with corn roots. Similarly, a 10% decrease in corn root mycorrhizal colonization was observed with 200 kg P2O5 ha?1 fertilization. In the control treatment, corn yield was 4.3 Mg ha?1 as compared to 5.6, 5.7 and 6.1 Mg ha?1 in 50, 100 and 200 kg of P2O5/ha, respectively. The relationship between P fertilization and relative yield showed that more than 95% of the corn yield was produced when P applied at 100 kg P2O5 ha?1. While P fertilization significantly increased the leaf N, P, and K contents but decreased the leaf Zn, Fe and Mn contents, as compared with the control. However, P fertilization did not consistently affect the grain N and P contents. Both physiological efficiency- and agronomic efficiency of P fertilization have shown a significant non-linear increase than that of the control. Total organic C (TOC) and total N (TN) concentrations were more than 34 and 26% higher in 100 and 200 kg P2O5 ha?1rates as compared with the control. Likewise, available P (AP), manganese (Mn) and zinc (Zn) concentrations increased with an increase in P fertilization rates. The AP, Mn and Zn contents significantly stratified by P fertilization. Our results suggested that 100 kg P2O5 ha?1 is optimum to sustain Vertisol fertility for supporting economic corn production in the Mediterranean climates of Turkey.  相似文献   

3.
Phosphorus (P) deficiency is one of the most yield limiting factors for dry bean (Phaseolus vulgaris) production in tropical acid soils. Dry beans are invariably grown as mono-crops or as inter-crops under the perennial tropical crops. Information is limited regarding the influence of phosphorus fertilization on dry bean yield and yield components and P use efficiency in tropical acid soils. A greenhouse experiment was conducted to evaluate the influence of phosphorus fertilization on dry bean growth, yield and yield components and P uptake parameters. Phosphorus rates used were 0, 50, 100, 150, 200, and 250 mg P kg?1 of soil. Soil used in the experiment was an acidic Inceptisol. Grain yield, shoot dry weight, number of pods, and 100 grain weight were significantly (P < 0.01) increased with phosphorus fertilization. Maximum grain yield, shoot dry matter, number of pods, and 100 grain weight were obtained with the application of 165, 216, 162, and 160 mg P kg?1 of soil, respectively, as calculated by regression equations. Grain yield was significantly and positively associated with shoot dry weight, number of pods, P concentration in grain and total uptake of P in shoot and grain. Phosphorus use efficiency defined in several ways, decreased with increasing P rates from 50 to 250 mg P kg?1 of soil. Maximum grain yield was obtained at 82 mg kg?1 of Mehlich 1 extractable soil P. Results suggest that dry bean yield in Brazilian Inceptisols could be significantly increased with the use of adequate rates of phosphorus fertilization.  相似文献   

4.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

5.
The broadcast application of phosphate fertilizers may be more effective than localized application methods for the growth of corn in medium textured oxisol, which have lower phosphorus (P) adsorption capacity. This study aimed to evaluate three phosphate fertilizer application methods at five different doses onto corn grown in oxisol, over two seasons. The experiment was conducted on corn crops in Passos city, Minas Gerais state, Brazil. Stripes with split plots were used to investigate the different application methods where each plot represented double furrow, single furrow, or broadcast application. Within the sub plots, the five doses (0.0, 50, 100, 200, and 400 kg ha?1) of phosphorus pentoxide (P2O5) as granulated monoammonium phosphate (MAP) were applied. Four replications were used. The doses were reapplied in the second cultivation year only for the localized treatments (single and double furrow). The nitrogen in the MAP was held constant among treatments. The corn grain yield in both years was dependent upon both dose and application method, primarily for the single furrow and broadcast methods. In the first year, the broadcast application method of P fertilizer at a estimated dose of 319 kg ha?1 of P2O5 provided a greater accumulated yield over two seasons. Broadcast application is therefore a viable method for growing corn with a reduced spacing distribution on medium textured oxisol.  相似文献   

6.
Fertilizer recommendations are needed to increase organic vegetable yields. Thus, organic lettuce growth and nutrient uptake was investigated in a randomized block pot experiment with twelve treatments from the factorial structure of three factors: (i) Gafsa phosphate [0 and 200 kg phosphorus pentoxide (P2O5) ha?1], (ii) compost from source separated municipal organic waste (0, 15, and 30 t ha?1) and (iii) limestone [0 and 8 t ha?1 calcium carbonate (CaCO3) equivalent]. Lettuce yield increased with compost application and a first order interaction between lime and phosphate was clear because lime partially replaced the need for phosphate. This was explained by the effect of liming on P availability in acid soils. Nitrogen (N), phosphorus (P), and potassium (K) accumulation increased in lettuces produced with compost or phosphate but only the accumulation of N was increased with lime. This compost is recommended to increase nutrient availability for organic lettuce whereas the need for phosphate fertilization may decrease with liming.  相似文献   

7.
A pot trial with acid yellow-brown soil was conducted to investigate the effects of molybdenum (Mo) and phosphorus (P) fertilizers on cold resistances of winter wheat. Molybdenum was applied at two rates (0 and 0.15 mg Mo kg?1 soil) and P at four rates [0, 100, 200, and 300 mg phosphorus pentoxide (P2O5) kg?1 soil] in experiment 1. Both Mo and P fertilizers were applied at two rates (0 and 0.15 mg Mo kg?1 soil; 0, 150 mg P2O5 kg?1 soil) in experiment 2. Seed yield, soluble sugar, water-soluble protein, ascorbic acid (AsA), malondialdehyde (MDA), and abscisic acid (ABA) concentrations were studied. The results indicated that Mo and P fertilizer increased seed yield, soluble sugar, water-soluble protein, and AsA but decreased the MDA. It implied that appropriate Mo applied with P application had beneficial effects on increasing seed yield and enhancing the cold resistance ability through changing biological substances concentration in winter wheat.  相似文献   

8.
The objective of this study was to evaluate the response of common bean plants to phosphorus (P) applied to the leaves at different growth stages, as a complement to phosphate fertilization at sowing. The experiment followed the 2 × 7-factor randomized block design (RBD) with four replicates. The first factor was fertilization with P at the base with 60 and 120 kg ha?1 of phosphorus pentoxide (P2O5). The second factor was the times and doses of P applied to the leaves: 0.5 or 1 kg ha?1 of P2O5, at the V3 phenological stage; parceled in the following manner: 20% in V3, another 40% in R5 and 40% in R6, or 50% in R5 and 50% in R6; and one treatment with no P2O5 application to the leaves. P-based foliar fertilization increased P content in the grains of plants grown in soils with greater P availability. The lower common bean biomass production under scarce P availability was minimized by the foliar fertilization, as well as its productivity when 1 kg ha?1 of P2O5 was applied to the leaves, 50% in the R5 phenological stage and 50% in R6. The highest productivity was obtained with the application of 0.5 kg ha?1 of P2O5 to the leaves in the V3 phenological stage with the 120 kg ha?1 dose at the base.  相似文献   

9.
Berpura alluvial soil series of the Indo‐Gangetic Plains is situated in the Ambala District of the Haryana State of India. Soils of this series had medium concentrations of both potassium (K) and phosphorus (P) and large concentrations of sulfur (S) before 1970. To study different fractions of K, Olsen P, and 0.15% calcium chloride (CaCl2)–extractable (available) S of soils of the Berpura series and to create nutrient indexing of rice crops growing on this series, surface soil samples were collected from 100 farmers' fields after the harvest of the wheat crop in 2005. During kharif season of same year, samples of upper two leaves at anthesis growth stage of rice crop were also collected from the same 100 farmers' fields that had earlier been sampled for soil analysis. Analysis of soil samples showed more K depletion in soils of this series, of which 86% of farmers' fields were deficient in ammonium acetate (NH4OAc) K (available K). Thirty and 62% of leaf samples of the rice crop growing on the 100 fields of this series were extremely and moderately deficient in K, respectively. The mean values of water‐soluble, exchangeable, nonexchangeable, lattice, and total K were 10.6, 30.3, 390.0, 8204, and 8635 mg kg?1, respectively. In soils of this series, 0.123, 0.351, 4.517, and 95.009% of total K were found in water‐soluble, exchangeable, nonexchangeable, and lattice K forms, respectively. On the other hand, long‐term farmers' practice of more application of P fertilizer in wheat crop has resulted in P buildup in the soils of the Berpura series. Olsen P in soils of farmers' fields of this series ranged from 9.0 to 153.0 mg kg?1, with the mean value of 41.8 mg kg?1. Eighty‐two percent of leaf samples of rice crops grown on this series without application of P fertilizer were sufficient in P. The analysis of soil and rice crops for P and K proved the suitability of 0.5 M sodium bicarbonate (NaHCO3) and 1 N NH4OAc for extracting available P and K, respectively, in alluvial soils of the Indo‐Gangetic Plains. The 0.15% CaCl2–extractable S in this soil ranged from 9.6 to 307 mg kg?1 with a mean value of 34.6 mg kg?1. Four and 26% of soil samples had low and medium, respectively, in 0.15% CaCl2–extractable S. S deficiency was recorded in rice crops, as 29% of the leaf samples were extremely deficient in S and 58% were moderately deficient in S. This indicated the unsuitability of the 0.15% CaCl2 to extract available S from the Udic ustochrept utilized for cultivation of rice crops.  相似文献   

10.
Nitrogen (N) and phosphorus (P) deficiency is one of the important causes of degradation of cultivated pasture under tropical conditions. The aim of this study was to evaluate phosphate rates and sources, and N rates on the concentration and uptake of N and P, and shoot dry mass (SDM) yield of Megathyrsus maximum grass cv Mombasa in an Ultisol. The trial was carried out in a greenhouse in pots with 4.0 dm?3 of soil. The experiment was arranged in a completely randomized design with four replicates. The 3 × 3 × 3 factorial treatments consisted of phosphorus sources [reactive rock phosphate from Morocco (RPM), reactive rock phosphate from Algeria (RPA) and triple superphosphate (TSP)], three phosphorus rates (0, 150, and 300 mg kg?1), and three N rates (0, 250, and 500 mg kg?1). The SDM and tillering of Mombasa grass were significantly influenced with the TSP, RPM, and RPA application associated with N fertilization. The RPM, RPA, and TSP met the nutritional demands of Mombasa grass. The three P sources showed the same effect on the total N uptake by Mombasa grass. The P use efficiency (PUE) when fertilizer-P sources were added alone by Mombasa grass was <12% of the added P, and PUE decreased as follows: TSP > RPA > RPM. When P and N-fertilizer were added together, the fertilizer-N use efficiency (NUE) was 62%. The reactive phosphate (RPM and RPA) is an efficient P sources for Mombasa grass, but requiring higher rate of application compared to TSP source.  相似文献   

11.
Rice, dry bean, corn, and soybean are important food crops. Phosphorus (P) deficiency is one of the most yield-limiting factors for these crops grown on highly weathered Brazilian Oxisols. Four greenhouse experiments were conducted to determine P requirements of these four crops. The P levels used were 0, 50, 100, 200, and 400 mg kg?1. Growth, yield, and yield components evaluated of four crop species were significantly increased with the application of P fertilization. Most of the responses were quadratic in fashion when the P was applied in the range of 0 to 400 mg kg?1. Maximum grain yield of upland rice was obtained with the application of 238 mg P kg?1 of soil, maximum dry bean grain yield was obtained with the application of 227 mg P kg?1 of soil, and maximum grain yield of soybean was obtained with the application of 224 mg P kg?1 of soil. Maximum shoot growth of corn was obtained with the addition of 323 mg P kg?1 of soil. Most of the growth and yield components had significant positive association with grain yield or shoot dry weight. Phosphorus concentration and uptake were greater in the grain compared to straw in upland rice and dry bean plants. Overall, P-use efficiencies decreased with increasing P rates.  相似文献   

12.
Abstract

Use of adequate rates of phosphorus (P) in crop production on high‐P‐fixing acid soils is essential because of high crop response to P fertilization and the high cost of P fertilizers. Information on lowland rice response to thermophosphate fertilization grown on Inceptisols is limited, and data are also lacking for soil‐test‐based P fertilization recommendations for this crop. The objective of this study was to evaluate response of lowland rice to added thermophosphate and to calibrate P soil testing for making P fertilizer recommendations. A field experiment was conducted for two consecutive years in central Brazil on a Haplaquept Inceptisol. The broadcast P rates used were 0, 131, 262, 393, 524, and 655 kg P ha?1, applied as thermophosphate Yoorin. Rice yield and yield components were significantly increased with the application of P fertilizer. Average maximum grain yield was obtained with the application of 509 kg P ha?1. Uptake of macro‐ and micronutrients had significant quadratic responses with increasing P rates. Application of thermophosphate significantly decreased soil acidity and created favorable macro‐ and micronutrient environment for lowland rice growth. Across 2 years, soil‐test levels of Mehlich 1–extractable P were categorized, based on relative grain yield, as very low (0–17 mg P kg?1 soil), low (17–32 mg P kg?1 soil), medium (32–45 mg P kg?1 soil), or high (>45 mg P kg?1 soil). Similarly, soil‐test levels of Bray 1–extractable P across 2 years were very low (0–17 mg P kg?1 soil), low (17–28 mg P kg?1 soil), medium (28–35 mg P kg?1 soil), or high (>35 mg P kg?1 soil). Soil P availability indices for Mehlich 1 extractant were slightly higher at higher P rates. However, both the extracting solutions had highly significant association with grain yield.  相似文献   

13.
Aim of the present research is to investigate the effect of nitrogen (N) and phosphorus (P) on soil food webs (microbes, nematodes and microarthropods) trophic interactions in agriculture ecosystems. A complete randomized block design experiment of N and P fertilization was initiated in 2010 with four treatments: (1) P-addition, (2) N-addition, (3) NP-addition and (4) control. After 4 years of fertilization, compared with control, N-addition had a negative effect on microarthropods and clarify indirectly by significantly (< 0.05) increasing soil total nitrogen (0.37 g kg?1) and available nitrogen (20.03 mg kg?1). The reduction in microarthropods resulted significant (< 0.05) increase in bacterivores and fungivores feeding on bacteria and fungi, an example of top-down control. P-addition had indirect negative effects on microarthropods by means of significantly (< 0.05) increasing soil total phosphorus (0.62 g kg?1) and available phosphorus (24.17 mg kg?1), aggravated fungivores feeding on fungi and strengthened top-down control. NP-addition significantly (< 0.05) increased total microbial biomass, nematodes and microarthropods and resulted in bottom-up control. These results suggested that top-down effects were the dominant force in N- or P-addition treatments. NP-addition strengthened bottom-up control by enriching food resource. Unbalance fertilization could pose adverse on agricultural soil ecosystem and yield potential of crops.  相似文献   

14.
The effects of vermicompost (VC) (0% and 1% w/w) on treated calcareous clay soil with 0 and 50 mg phosphorus (P) kg?1 as calcium phosphate [Ca(H2PO4)2.H2O] was investigated. The soil samples were incubated for 7, 30, 60, 120, and 150 d at 25 ± 1°C and Olsen-P was measured after each incubation time. Results showed that Olsen-P increased 36% and 38% after VC addition in treated soil with 0 and 50 mg P kg?1, respectively. Recovery of Olsen-P in treated soils with VC, combined fertilizer VC + P, and fertilizer P was 42%, 42%, and 17%, respectively. The rate coefficient in treated soils with fertilizer, VC, and combined fertilizer VC + P was 0.033, 0.026, and 0.023 mg kg?1 d?1/2, respectively. It seems that the process that leads to the decrease in available P in amended soils, is controlled by P diffusion into sorption sites in micropores of aggregates.  相似文献   

15.
Phosphorus (P) deficiency is one of the most yield limiting factors for crop production in South American soils. Upland rice (Oryza sativa L.) is an important crop in South American cropping systems, including Brazil. A field experiment was conducted with the objective to evaluate 20 upland rice genotypes for phosphorus (P) use efficiency. The P rate used was low (0 kg P ha?1) and high [87 kg P ha?1 or 200 kg phosphorus pentoxide (P2O5) ha?1]. Plant height, shoot dry weight, grain yield, panicle number, 1000 grain weight, spikelet sterility, and grain harvest index were significantly influenced by P and genotype treatments. The P X genotype interaction was significant for grain yield, indicating that genotypes responded differently under two P rates. Overall, grain yield increased by 12% with the addition of P fertilization. Based on grain yield efficiency index, genotypes were classified into efficient, moderately efficient, and inefficient group. The genotypes that were classified as efficient in P use were BRA032048, BRA042094, BRA02601, BRA032051, BRA032033, BRA052015, BRA042156, BRA01600, BRA01506, BRA052023 and BRA042160. The inefficient genotypes in P us efficiency were BRS Primavera, BRA052045, BRA01596, and BRS Sertaneja. Grain harvest index had a significant positive association with grain yield and spikelet sterility had a significant negative association with grain yield, as expected. Average, P-use efficiency of five genotypes was about 17 kg kg?1 (kg grain yield per kg P applied).  相似文献   

16.
中国稻田土壤有效磷时空演变特征及其对磷平衡的响应   总被引:8,自引:2,他引:6  
以农业农村部始于1988年的全国稻田土壤监测数据库为基础,将稻作区划分为东北、长江三角洲(简称"长三角")、长江中游、华南和西南五个区域,分析近30 a各稻作区土壤有效磷含量、磷肥回收率及农学效率和磷素的表观平衡,揭示各区域间稻田土壤磷素时间演变和空间差异特征,为稻田土壤磷素科学管理提供理论依据.结果表明,全国主要稻作...  相似文献   

17.
Abstract

In an attempt to search for a cheaper source of phosphorus (P), both for direct application and industrial use, three P fertilizers were evaluated in incubation and greenhouse studies. Indigenous Sokoto rock phosphate (SRP) imported, Togo rock phosphate (TRP), and conventional single superphosphate (SSP) were applied on three soil types namely Oxisol, Ultisol, and Alfisol at rates ranging from 0–800 mg P kg‐1 soil. Evaluation of the P sources was conducted for 12 weeks in incubation study, and five weeks in the greenhouse using maize as test crop. Evaluation of direct application of SSP and SRP on an oxic paleudult was carried out in the field for three years. The results of incubation studies revealed in general, that P availability increased as fertilizer rates increased. The P availability was, however, greater when SSP was applied on the Alfisol than on the Oxisol and Ultisol. The rock phosphates on the other hand were more efficient on acid soils than on soils neutral in pH. Optimum P availability from the fertilizers was observed to occur predominantly between four and eight weeks of incubation. In the greenhouse study, SSP gave the highest cumulative P uptake and optimum rate of application was 200 mg P kg‐1 soil, while optimum rate for rock phosphate was 400 mg P kg‐1 soil. The agronomic effectiveness (EA) of the rock phosphates was about 40% relative to SSP on the Alfisol. The EA, however, for TRP and SRP was 120% and 160%, respectively, on the Oxisol, while on the Ultisol, SRP was equally effective as SSP and TRP had 65% effectiveness. The results of the field trial indicated that the SRP had 54%, 83%, and 107% agronomic effectiveness of SSP, respectively, in the first, second, and third year of cropping. Optimum rate for SSP and SRP application was considered to be 50 and 75 kg P2O5 ha‐1, respectively.  相似文献   

18.
A series of experiments on the effects of form and rate of seed row placed phosphorus (P) fertilizer were carried out under controlled environment conditions using flats of a P-deficient Brown Chernozemic soil from Saskatchewan, Canada. The experiments were conducted in the laboratory and growth chamber using rates of seed row placed granular P fertilizer up to 100 kg P2O5 ha?1. Two forms of monoammonium phosphate fertilizer were compared: 1) conventional MAP granules and 2) controlled release phosphorus (CRP) fertilizer granules (Agrium Inc, Denver, CO, USA.) made with a polymer coating to slow the release of phosphate to soil solution. Six crops were utilized in the study to provide a range of commonly grown cereal, oilseed, pulse and forage crops in Western Canada: wheat (Triticum aestivum), canola (Brassica napus), mustard (Brassica juncea), flax (Linum usitatissimum), yellow pea (Pisum sativum) and alfalfa (Medicago sativum). Parameters measured were percentage of planted seeds that had emerged after two weeks, plant biomass yield, and plant P uptake after four weeks. Most of the crops tested showed no negative impact on emergence with seed row placed conventional P fertilizer at rates up to ~20 to 30 kg P2O5 ha?1. Pea, flax and mustard tended to be most sensitive to injury from high rates of seed placed MAP while wheat was least sensitive. The controlled release phosphorus fertilizer (CRP) product greatly increased the tolerance of crops to high rates of seed row placed P, with rates of 80 kg P2O5 ha?1 placed in the seed row producing no significant injury for most crops. This effect is attributed to the coating reducing the harmful salt effect that occurs when high rates of fertilizer are placed in the seed row in close proximity to the seed. Generally, a rate of 30 kg P2O5 ha?1 was sufficient to produce maximum early season biomass yield and P uptake for both conventional MAP and CRP fertilizers. Large differences in early P availability were not evident between the conventional P and controlled released P fertilizer products.  相似文献   

19.
Abstract

The purpose of this article was to compare soil phosphorus (P) extraction by sodium bicarbonate solution (Olsen P) and by ammonium lactate (AL P) and to create a model for prediction of Olsen P using ordinary soil‐fertility control data. The soils data used in this study included Olsen P, pHKCl, pHH2O, organic matter, AL P, and AL K. Soil pHKCl ranged from 3.5 to 8, organic matter up to 5%, AL K up to 400 mg kg?1, and AL P up to 200 mg kg?1. Olsen P and AL P were significantly correlated, and the difference between them was influenced by soil pH. Regression models included all soil data grouped by soil pH range, which significantly decreased the difference between predicted and measured Olsen P. The validation of the model was conducted on new data sets from field fertilization trials. The results show that Olsen P can be related to AL P and used for fertilizer recommendations instead of AL P.  相似文献   

20.
Abstract

The large variation in phosphorus acquisition efficiency of different crops provides opportunities for screening crop species that perform well on low phosphorus (P) soil. To explain the differences in P efficiency of winter maize (Zea mays L.), wheat (Triticum aestivum L.), and chickpea (Cicer arietinum L.), a green house pot experiment was conducted by using P‐deficient Typic ustochrept loamy sand soil (0.5 M NaHCO3‐extractable P 4.9 mg kg?1, pH 7.5, and organic carbon 2.7 g kg?1) treated with 0, 30, and 60 mg P kg?1 soil. Under P deficiency conditions, winter maize produced 76% of its maximum shoot dry weight (SDW) with 0.2% P in shoot, whereas chickpea and wheat produced about 30% of their maximum SDW with more than 0.25% P in shoot. Root length (RL) of winter maize, wheat, and chickpea were 83, 48, and 19% of their maximum RL, respectively. Considering relative shoot yield as a measure of efficiency, winter maize was more P efficient than wheat and chickpea. Winter maize had lower RL/SDW ratio than that of wheat, but it was more P efficient because it could maintain 2.2 times higher P influx even under P deficiency conditions. In addition, winter maize had low internal P requirement and 3.3 times higher shoot demand (i.e., higher amount of shoot produced per cm of root per second). Even though chickpea had 1.2 times higher P influx than winter maize, it was less P efficient because of few roots (i.e., less RL per unit SDW). Nutrient uptake model (NST 3.0) calculations satisfactorily predicted P influxes by all the three crops under sufficient P supply conditions (CLi 48 µM), and the calculated values of P influx were 81–99% of the measured values. However, in no‐P treatment (CLi 3.9 µM), under prediction of measured P influx indicated the importance of root exudates and/or mycorrhizae that increase P solubility in the rhizosphere. Sensitivity analysis showed that in low P soils, the initial soil solution P concentration (CLi) was the most sensitive factor controlling P influx in all the three crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号