首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adaptation of stevia to the growing conditions of NE Portugal is assessed, including the tolerance of this species to cold temperatures, and the potential to produce biomass when grown as an annual crop and when subjected to various nitrogen (N) rates and two harvesting regimes. Almost all the plants died during the winter of 2014 (minimum temperatures peaked at ?8.0°C), making it necessary to replant the crop the following spring. With the best cutting regime (double cut) and N rate (150 kg N ha?1), 1514.4 and 2390.0 kg ha?1 of dry leaves were produced, respectively, in 2014 and 2015. Leaf chlorophyll concentrations estimated by the SPAD (Soil and Plant Analysis Development)-502 chlorophyll meter and a NDVI (Normalized Difference Vegetation Index) carried out by the Field Scout CM 1000 spectroradiometer showed significant differences among N rates, proving to be good indicators of plant N nutritional status. Based on the leaf analysis, provisional sufficiency ranges for N are proposed, namely 25–35 g kg?1 for mid-summer and 15–25 g kg?1 for early autumn. The fluorescence of chlorophyll a and the transient fluorescence intensity performed by the OS-30p+ fluorometer failed to show any stress induced by no-N control treatments in comparison to N-treated plants.  相似文献   

2.
华北地区采用无机氮测试和植株速测进行夏玉米氮肥推荐   总被引:2,自引:0,他引:2  
A field experiment with a split-plot design was carried out at Dongbeiwang Farm in Beijing Municipality to establish reliable N fertilizer recommendation indices for summer maize (Zea mays L.) in northern China using the soil Nmin(mineral N) test as well as the plant nitrate and SPAD (portable chlorophyll meter readings) tests. The results showed that Nrnin sollwert (NS) 60 kg N ha^-1 at the third leaf stage and N rate of 40 to 120 kg N ha^-1 at the tenth leaf stage could meet the N requirement of summer maize with a target yield of 5.5-6 t ha^-1. Sap nitrate concentrations and SPAD chlorophyll meter readings in the latest expanded maize leaves at the tenth leaf stage were positively correlated with NS levels, indicating that plant nitrate and SPAD tests reflected the N nutritional status of maize well. Considering that winter wheat subsequently utilized N after the summer maize harvest, the 0-90 cm soil Nmin (74 kg N ha^-1) and apparent N loss (12 kg N ha^-1) in the NS60+40 treatment were controlled at environmentally acceptable levels. Therefore NS60+40, giving a total N supply of 100 kg N ha^-1, was considered the optimal N fertilizer input for summer maize under these experimental conditions.  相似文献   

3.
Soil hydric availability and nitrogen fertilization are important environmental factors that influence sugarcane production. In the present study, the physiological attributes SPAD index, maximum photochemical efficiency of photosystem II (Fv/Fm), leaf area index (LAI), chlorophyll and carotenoid content, and sugarcane productivity were assessed under different nitrogen doses (0, 50, 100, 150, and 200 kg N ha?1) applied in the form of urea via subsurface drip fertigation. The physiological attributes were determined 38, 121, 208, 291, and 381 days after the third harvest (DAH), and stalk and sugar productivity at 381 DAH. The 100 kg N ha?1 dose has produced better results for the sugarcane physiological attributes. Increasing doses of nitrogen applied via subsurface drip fertigation increased the productivity of stalks and sugar considerably.  相似文献   

4.
A field study was conducted to evaluate the nitrogen status and yield of spinach grown in soils amended with prunings of Leucaena leucocephala, (applied at a rate of 3, 5, 7 or 11 t ha?1). A ‘no fertilizer’ 0 nitrogen (N) and 150 kg N ha?1 (recommended) were the control treatments. SPAD readings were recorded for the top six leaves. Nitrogen sufficiency indices were used to indicate the N status of plants. Application of L. leucocephala prunings increased spinach yields (8.98–13.86 t DM ha?1) relative to the 0N treatment (1.35 t DM ha?1) and yields increased with increasing rate of pruning application. SPAD readings showed a linear increase with the increase in applied prunings. There was preferential distribution of N to upper leaves. The relationship between shoot N concentration and SPAD readings was linear and strongest for the top three leaves (r2 = 0.84–0.92). The results indicate the potential of chlorophyll meter readings in assessing N status of leafy vegetables grown on soils amended with different levels of legume tree prunings.  相似文献   

5.
The objective of this growth chamber study was to evaluate the effect of adding N-(n-butyl) thiophosphoric triamide (NBPT) and dicyandiaminde (DCD) to urea fertilizer, on the physiology and growth of cotton (Gossypiumhirsutum L.) under normal and high temperatures. Treatments consisted of two day temperature regimes, 30°C and 38°C, and five nitrogen fertilization applications: unfertilized control, 125 kg ha?1 of urea, 93 kg ha?1 of urea, 93 kg ha?1 urea + NBPT, and 93 kg ha?1 urea + NBPT + DCD. The addition of NBPT to urea fertilizer had positive effects on leaf chlorophyll, leaf area, dry matter, nitrogen (N) uptake, and N use efficiency. The absence of a significant interaction effect indicated that N fertilization was not influenced by temperature. Deficiency of N significantly decreased leaf chlorophyll, increased glutathione reductase, decreased protein and increased leaf nitrate reductase. Physiological changes under high temperature included increased plant N uptake, glutamine synthetase, leaf chlorophyll, protein content, plant height and leaf area were due to high N uptake and utilization.  相似文献   

6.
The nitrogen (N) requirement of hybrid rice is generally greater than in conventional rice varieties. Recommendations for N monitoring at regular intervals of 7–10 days through leaf greenness are available, but farmers are accustomed to apply fertilizer N at selected growth stages only. An inexpensive leaf color chart (LCC) and nondestructive chlorophyll meters were evaluated for site-specific N management strategy in world’s first aromatic rice hybrid PRH-10 at the Indian Agricultural Research Institute, New Delhi. Two field experiments were conducted on PRH-10 with four levels of N (0, 70, 140, and 210 kg ha?1) during June–October of 2010 and 2011 to determine the LCC, soil–plant analysis development (SPAD), and Fieldscout CM 1000 (CM 1000) values for achieving economic optimum grain yield at three critical growth stages (tillering, panicle initiation, and flowering). Quadratic regression between N levels and grain yield were used to determine economic optimum grain yield (6427 kg ha?1 in 2010 and 6399 kg ha?1 in 2011) corresponding to optimum economical dose of 151 kg N ha?1 (2010) and 144 kg N ha?1 (2011). Nitrogen concentration in fully expanded youngest leaf correlated significantly (P < 0.01) and positively with LCC score, SPAD value, CM 1000 value, and total chlorophyll concentration at tillering, panicle initiation, and flowering for both years. The critical LCC score, SPAD, CM 1000 values, chlorophyll concentration, and leaf N concentration obtained were at tillering 4.4, 42.3, 285, and 2.16 mg g?1 fresh weight and 3.29%; at panicle initiation 4.4, 43.0, 276, and 2.16 mg g?1 fresh weight and 3.02%; and at flowering 4.5, 41.7, 270, and 2.05 mg g?1 fresh weight and 2.83%, respectively. Corrective N application should be done when observed leaf N indicator values at a particular growth stage reach or go below the critical values.  相似文献   

7.
The effects of bioorganic nutrients on stevia were studied during 2011 and 2012 at Institute of Himalayan Bioresource Technology, Palampur, India. Bioorganic nutrient sources were evaluated in fourteen treatment combinations. Results showed that number of leaves plant?1, leaf area plant?1, and fresh and dry leaf biomass plant?1 were significantly greater with the application of farmyard manure (FYM) 15 Mg ha?1 + vermicompost (VC) 5 Mg ha?1 + stevia seedlings treated with phosphorus-solubilizing bacteria (PSB) and azotobacter as compared to the control but plant height and the number of branches were not significantly affected by various treatments. This superior combination also resulted in considerably greater amounts of phosphorus (P) in stem (1.18 percent) and potassium (K) in leaf (2.39 percent). Stevia plants supplied with VC 7.5 Mg ha?1 + stevia seedlings treated with PSB and azotobacter recorded greater stevioside (7.2 percent) and total steviol glycoside (8.4 percent). Application of organic manures in combination with biofertilizers enhanced soil organic carbon and available nutrient status of soil as compared to control.  相似文献   

8.
Baby spinach is a relatively new crop of commercial significance in South Africa with considerable health attributes. Three parallel trials to investigate its response to nitrogen (N), phosphorus (P), and potassium (K) were conducted. N and P (0, 45, 75, 105, and 120 kg·ha?1) and K (0, 63, 85, 127, and 148 kg·ha?1) treatments were applied to baby spinach in a randomized block design with four replications. After the parallel trial, NPK combination trial was also done. The biomass yield, chlorophyll content, and leaf area index increased significantly with increase in N and P rates; K had no effect on the yield, chlorophyll content, stomatal conductance, and leaf area index. Yield and chlorophyll content peaked at 75 kg·ha?1 of N/P but growth was best optimized at the NPK combination of 45:45:60 kg·ha?1.  相似文献   

9.
《Journal of plant nutrition》2013,36(5):1117-1130
Abstract

The portable chlorophyll meter [Soil Plant Analysis Development (SPAD)] has been used successfully for measuring leaf‐nitrogen (N) of several crops. Determination of the appropriate sample size, in terms of number of plants to be sampled within each plot, has recently become a matter of concern. An insufficient sample size does not allow for the detection of small, but real differences between treatment means, whereas an excessively large sample size constitutes a waste of time and resources. In this study, SPAD meter data were collected at two sites. Each of these two field experiments was organized following a split‐plot design with three blocks and two treatment factors: four nitrogen levels (main plot factor) and six maize (Zea mays L.) hybrids (subplot factor), selected to represent a broad range of canopy types. The approach followed in collecting SPAD meter readings for the determination of an appropriate sample size consisted of sampling one leaf per plant and taking a single reading per leaf. Confidence intervals for the mean of SPAD meter readings and the associated required sample sizes for the variability observed were generated using a standard procedure. Taking a single reading per leaf near the midpoint of the leaf blade, a sample size of 15 to 20 plants provided a level of precision of 5% (about ± 2.8 SPAD meter units). The variability among and within hybrids was highest at the zero N fertilization level (kg ha?1), for which the leafy and non‐leafy reduced stature and leafy normal stature hybrids showed the largest required sample sizes at both sites. At the Ottawa site, where an N fertilization effect was observed, required sample sizes at the 0 N level were larger than at any other level, including the recommended 170 N level. In summary, a relationship between sample size and precision level is presented for maize researchers using the SPAD technology.  相似文献   

10.
Abstract

The SPAD‐502 chlorophyll meter was evaluated as a rapid tool to predict plant nitrogen (N) concentration. The SPAD‐502 index utility, as a comparative tool with respect to N nutritional status, was evaluated for Laurustine (Viburnum tinus L.), tobir (Pittosporum tobira Thumb.), and strawberry tree (Arbutus unedo L.). The effect of sampling time on the SPAD‐502 index measures was also evaluated. Two sand culture experiments evaluating 1, 3, 5, and 7 mmolc · L?1 of total N concentration in nutrient solution and 70/30, 50/50, 40/60, and 30/70% nitrate/ammonium (NO3 ?/NH4 +) ratios were applied. In a media experiment, with similar conditions and fertilization, the accuracy of the SPAD‐502 regression data was evaluated. Leaf, root, and sap samples were taken in the middle and at the end of each experiment. Regression equations were established among leaf N, root N, of sap N analyzed concentrations and SPAD values with regard to global, as well as specific, data within each sampling time. Regression coefficients (b) among leaf N and SPAD were highly significant (P<0.05) for practically all sampling times. However, liner regression equations were different in all treatments among all the sampling dates. Determination coefficients (R2), in some cases, show that the SPAD‐502 index is not an adequate method for leaf, root, or sap N concentration fir Viburnum tinus L. and Pittosporum tobira Thumb. or for root or sap for Arbutus unedo L. in these experimental conditions. Nonetheless, the SPAD‐502 index could be a useful tool for relative comparison purposes and field operational nutrient management. However, the SPAD‐502 leaf greenness meter is a relatively good tool for leaf N and nutritional diagnosis for Arbutus unedo L. within the 38–66 SPAD‐502 index range.  相似文献   

11.
Excessive nitrogen (N) fertilizer with improper split-application in small-scale farming is widespread for reducing N use efficiency and polluting the environment. The objective of this study was to develop a strategy for providing winter wheat with twice-topdressing N by quickly measuring the soil and plant N status. During the period 2009–2011, a field experiment was conducted for winter wheat cultivar Zhongmai-175 in the North China Plain. The mineral N (Nmin) pool at a soil depth of 0–90 cm and topdressing N twice, as total N supply, was gradually increased from 0 to 420 kg N ha–1 to mimic the farmers´ practices. Measurements with the Soil Plant Analysis Development (SPAD) meter were taken on the uppermost fully expanded leaf, and the SPAD index was expressed relative to SPAD readings of sufficiently fertilized plants. Grain yield exhibited linear-plus-plateau responses to total N supply with a significant difference between years, the r2 ranged from 0.73 to 0.94. With a basal N application of 30 kg ha–1, the soil Nmin at 0–90 cm supplemented by twice-topdressing N (1:1 ratio) at Zadoks growth stage (ZGS) 22–23 in early spring and ZGS 47–52 was required at 150–165 kg N ha–1 to achieve a maximum grain yield of 3.9–5.3 t ha–1. The SPAD index exhibited a strong exponential response to N supply irrespective of plant growth stage and year (r2 = 0.95–0.97); the value of 0.94 was critical in denoting N deficiency from sufficiency status. The N topdressing at ZGS 47–52 could be precisely modified/estimated by the equation y = 161.7–218x5.16, where x is the SPAD index. Since SPAD readings varied significantly from year to year, our study suggests that it might be difficult to precisely manage field N for winter wheat.  相似文献   

12.
In 2‐years field experiments near Nienstädt (60 km west of Hannover, northern Germany), the effects of rate and timing of nitrogen (N) application on leaf N‐concentration, leaf greenness (SPAD chlorophyll meter readings), canopy greenness (canopy light reflectance), leaf area development, photosynthetic activity of leaves, and yield and quality of sugar beet were studied. In 1999 (pre‐planting soil mineral N: 15 kg ha—1), N fertilizer was applied at rates of 0, 105, 125, 145, 165 and 205 kg N ha—1. In 2000 (pre‐planting soil mineral N: 60 kg ha—1), an N rate of 100 kg ha—1 was applied at planting (100/0/0/0) or split applied at planting and 8 (60/40/0/0), 12 (60/0/40/0), and 16 (60/0/0/40) weeks after planting (WAP), respectively. In both years, canopy greenness as indicated by ”︁sensor values” (a combination of the reflectance of visible and near infrared light) changed with crop age. However, at each time of measurement, sensor values precisely reflected the different N application treatments and were significantly correlated with leaf N‐concentrations and SPAD chlorophyll meter readings. Beet yield and processed white sugar yield increased up to an N supply (fertilizer N + pre‐planting soil mineral N) of 160 kg ha—1. Split N application slightly retarded leaf growth but had no effect on photosynthetic activity per unit leaf area. Beet yield and beet quality were not systematically affected by the timing of N application. Certain application schemes tended to favor either beet yield or beet quality, resulting in similar processed white sugar yields. Our data suggest that moderate N topdressing can be integrated in site‐specific N management systems in sugar beet production. Canopy light reflectance might serve as a useful diagnostic tool to assess the N status and sidedress N demand of sugar beets. However, due to changing sensor values over time, on‐site calibration (using established standard methods or reference plots receiving extra N at planting) will be necessary. The applicability of this approach has to be tested in further field studies.<?show $6#>  相似文献   

13.
With the objective of studying the effect of two nutrient solutions and two crop systems (greenhouse and openfield) on nitrate accumulation, incidence of tipburn and chlorophyll content, endive (cv. Cuartana) was planted in 8 L pots, filled with a mixture of coconut coir:perlite (1:1) in three different cycles C1 (winter), C2 (spring) and C3 (summer). Plants were irrigated with two nutrient solutions of different nitrate content: S1, low ([NO?3] = 7.91 mmol L?1) and S2 moderate nitrate content ([NO?3] = 16.91 mmol L?1). Nitrate content was determined by reflectometry, tipburn was evaluated using a qualitative scale and chlorophyll content by soil plant analysis development(SPAD) values. Plants irrigated with S2 showed higher nitrate accumulation in leaves in all cycles, however, no influence of the nutrient solution was observed on the incidence of tipburn. Greenhouse-cultivated plants accumulated more nitrates than those cultivated in open field and also showed a higher incidence of tipburn and SPAD values.  相似文献   

14.
Because limited information is available about the validated use of a chlorophyll meter for predicting nitrogen requirements for optimum growth and yield of wheat after application of herbicides, field experiments were carried out in the winter seasons of 2011/2012 and 2012/2013 under different weed and N fertilization treatments. Five weeded treatments, application of herbicides 25 days after sowing (DAS), hand pulling once at 55 DAS and a weedy check were combined with four N application rates. Weeds were completely absent in the non-fertilized plots, either with metribuzin or hand pulling as well as in isoproturon-treated plots fertilized with 190 or 285 kg N ha?1. The grain yield was similar in the treatments of isoproturon × 190 kg N ha?1, isoproturon + diflufenican × conditional N treatment (113.9) or 190 kg N ha?1, hand pulling × conditional N treatment (104.8) or 285 kg N ha?1 and metribuzin × 190 kg N ha?1. Under weeded practices, conditional N treatment recorded the maximum nitrogen use efficiency and almost equaled the grain protein content of the 190 kg N ha?1 application rate. N application based on SPAD readings saved about 40.0% and 44.8% N with isoproturon + diflufenican or hand pulling, respectively, compared to the recommended rate (190 kg N ha?1) without noticeable yield loss.  相似文献   

15.

Commercial fertilizer (particularly nitrogen) costs account for a substantial portion of the total production costs of cellulosic biomass and can be a major obstacle to biofuel production. In a series of greenhouse studies, we evaluated the feasibility of co-applying Gibberellins (GA) and reduced nitrogen (N) rates to produce a bioenergy crop less expensively. In a preliminary study, we determined the minimum combined application rates of GA and N required for efficient biomass (sweet sorghum, Sorghum bicolor) production. Co-application of 75 kg ha?1 (one-half of the recommended N rate for sorghum) and a modest GA rate of 3 g ha?1 optimized dry matter yield (DMY) and N and phosphorus (P) uptake efficiencies, resulting in a reduction of N and P leaching. Organic nutrient sources such as manures and biosolids can be substituted for commercial N fertilizers (and incidentally supply P) to further reduce the cost of nutrient supply for biomass production. Based on the results of the preliminary study, we conducted a second greenhouse study using sweet sorghum as a test bioenergy crop. We co-applied organic sources of N (manure and biosolids) at 75 and 150 kg PAN ha?1 (representing 50 and 100% N rate respectively) with 3 g GA ha?1. In each batch of experiment, the crop was grown for 8 wk on Immokalee fine sand of minimal native fertility. After harvest, sufficient water was applied to soil in each pot to yield ~1.5 L (~0.75 pore volume) of leachate, and analyzed for total N and soluble reactive P (SRP). The reduced (50%) N application rate, together with GA, optimized biomass production. Application of GA at 3 g ha?1, and the organic sources of N at 50% of the recommended N rate, decreased nutrient cost of producing the bioenergy biomass by ~$375 ha?1 (>90% of total nutrient cost), and could reduce offsite N and P losses from vulnerable soils.  相似文献   

16.
This research investigates and compares artificial neural network and multiple linear regression for predicting the chlorophyll concentration index of Saint John’s wort leaves (Hypericum perforatum L.). Plants were fertilized with 0, 30, 60, 90, and 120 kg ha?1 nitrogen [34% nitrogen ammonium nitrate (NH4NO3)]. Chlorophyll concentration index of each leaf was measured using SPAD meter. Afterwards, rgb (red, green, and blue color) values of all leaf images were determined by image processing. Values obtained were modeled using both multiple regression analysis and artificial neural networks. Using multiple regression analysis R2 values were between 0.61 and 0.97. Coefficient of determination values (R2) using artificial neutral network values were found to be 0.99. Artificial neutral network modeling successfully described the relationship between actual chlorophyll concentration index values and predicted chlorophyll concentration index values.  相似文献   

17.
In order to investigate the changes in chlorophyll fluorescence, chlorophyll, relative water content (RWC) and forage yield of corn and sorghum under various irrigation regimes and combination treatments of barley residue, zeolite and superabsorbent polymer, an experiment was conducted over 2 years in Kerman, Iran. A randomized complete block design arranged in a factorial split was used with three replications. Two irrigation regimes of normal and drought stress based on 70 and 140 mm cumulative pan evaporation, respectively, and two plant species (corn and sorghum) as factorial combinations were compared in the main plots. Five treatments, (1) 10 t ha?1 zeolite + 4.5 t ha?1 residue, (2) 60 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (3) 5 t ha?1 zeolite + 30 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (4) 4.5 t ha?1 residue and (5) – control, were compared in subplots. In both plants, forage yield, potential quantum yield (Fv/Fm), chlorophyll a, total chlorophyll and carotenoid contents decreased significantly under drought stress. Chlorophyll a content, SPAD index and Fv/Fm were higher in corn than in sorghum, but RWC was higher in sorghum. Corn produced higher forage yield (62.8 t ha?1) than sorghum (49.3 t ha?1). The application of 10 t ha?1 zeolite with 4.5 t ha?1 residue increased most traits more than any of the other treatments, but the superabsorbent had no significant effect on the studied traits.  相似文献   

18.
This study was designed to observe physiological indices of a spring maize response with the integration of beneficial microorganism, organic and inorganic nitrogen (N) fertilizer, and N levels. Field experiments were conducted in three replications during 2014 and 2015 at Agronomy Research Farm, the University of Agriculture Peshawar, Pakistan. Different beneficial microbes (BM) (with BM and without BM), organic (farm yard manure, FYM) and inorganic (ammonium nitrate) N ratios (0:100, 25:75, 50:50, 75:25, and 100:0), and nitrogen levels (N) (100, 150, and 200 kg ha?1). Beneficial microorganism, 50:50 ratio of organic and inorganic N, and 200 kg N ha?1 seem better in terms of improving SPAD value, plant height (cm), leaf rea (cm2), and leaf area index (LAI) of spring maize. Therefore, the application of BM, 50:50 ratio of organic and inorganic N, and 200 kg N ha?1 were recommended for enhancing crop physiology in agro-climatic condition for Peshawar, Pakistan.  相似文献   

19.
Over application of fertilizer N to cotton is not only a potential threat to environment but also leads to increased costs of cultivation. The study aimed to establish the indicator leaf and its critical greenness for in-season management of fertilizer nitrogen (N) in Bt cotton using chlorophyll (SPAD) meter and leaf color chart (LCC). The response of three varieties and N treatments viz. 0, 30, 60, 90,120, 150 and 180?kg N ha?1 applied in two splits {(50% at thinning and 50% at first flowering) and three splits (50% at thinning, 25% at first flowering and 25% at boll formation)} was studied through split plot design. SPAD values and LCC scores of first, second, third and fourth fully opened leaves from the top of the main stem was recorded at first flowering and boll formation. The physiological efficiency and harvest index was highest for 90?Kg N ha?1 applied in two splits. Beyond 120?kg N ha?1, the N use efficiency parameters were higher for the N treatments applied in three split compared to the respective two split N treatments. The fourth leaf from the top in terms of SPAD values and LCC scores correlated best with N concentration compared to other leaves at all growth stages. The calculated critical SPAD values for the fourth leaf were 45 and 41 at first flowering and boll formation, respectively. Critical score of fourth leaf was 4.1 and 4, respectively at first flowering and boll formation, respectively. It is suggested that color of the fourth leaf from the top of Bt cotton can well indicate N supply from the soil and can help in need based N management.  相似文献   

20.
The optimum dose of nitrogen (N) and phosphorus (P) for Withania somnifera was determined by utilizing graded levels of 0, 30, 45 and 60 kg ha?1 N and 0, 13, 26 and 40 kg ha?1 P in two separate simple randomized pot experiments. Soil-application of 45 kg N ha?1 and 26 kg P ha?1 proved the best dose for increasing shoot and root length, leaf area, fresh and dry weight of shoot and root, total chlorophyll and leaf-N, P, and potassium (K) content, nitrate reductase, and carbonic anhydrase activity, total alkaloid content, seed-yield per plant, root- yield per plant and berries per plant. While 30 kg N ha?1 proved best for root length, fresh and dry weights, as well as root-yield per plant. However, the effect of N and P fertilizers on carotenoid content, seeds per berry and 100-seed weight were insipid. Leaf- P remained unaffected by nitrogen application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号