首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies have compared the performances of exact algorithms (integer programming) and heuristic methods in the solution of conservation resource allocation problems, with the conclusion that exact methods are always preferable. Here, I summarize a potentially major deficiency in how the relationship between exact and heuristic methods has been presented: the above comparisons have all been done using relatively simple (linear) maximum coverage or minimum set models that are by definition solvable using integer programming. In contrast, heuristic or meta-heuristic algorithms can be applied to less simplified nonlinear and/or stochastic problems. The focus of this study is two kinds of suboptimality, first-stage suboptimality caused by model simplification and second-stage suboptimality caused by inexact solution. Evidence from comparisons between integer programming and heuristic solution methods suggests a suboptimality level of around 3%-10% for well-chosen heuristics, much depending on the problem and data. There is also largely anecdotal evidence from a few studies that have evaluated results from simplified conservation resource allocation problems using more complicated (nonlinear) models. These studies have found that dropping components such as habitat loss rates or connectivity effects from the model can lead to suboptimality from 5% to 50%. Consequently, I suggest that more attention should be given to two topics, first, how the performance of a conservation plan should be evaluated, and second, what are the consequences of simplifying the ideal conservation resource allocation model? Factors that may lead to relatively complicated problem formulations include connectivity and evaluation of long-term persistence, stochastic habitat loss and availability, species interactions, and distributions that shift due to climate change.  相似文献   

2.
Computational methods for marine reserve design are frequently used as decision-support tools for the identification of conservation areas. Most reserve-selection algorithms minimise the cost of the reserve system whilst aiming to meet specified biodiversity objectives. Here, we extend a widely-used selection algorithm, Marxan, to incorporate several important considerations related to biodiversity processes and management. First we relax the scorched earth assumption to allow conservation features in non-reserve zones to contribute explicitly to conservation objectives. To achieve this, we generate conservation targets at landscape scales rather than focusing purely on the representation of features within reserves. Second, we develop the notion of spatial dependencies further to incorporate spatial heterogeneity in the value of individual conservation features such as habitat types. We use the example of ontogenetic migrations of fish from mangroves to coral reefs because it nicely demonstrates how spatial ecological processes generate predictable heterogeneity in habitat value that should be considered in the reserve design process. Lastly, we show how habitat value can be disaggregated into ecosystem processes and services. Using a case study for the Belize Barrier Reef we compare reserve networks generated using our new approach with the results of traditional analyses. Consideration of the contribution of different protection zones, connectivity among habitats and more complex management goals resulted in up to a 52% increase in the mean biomass of commercially and ecologically-important fish species represented in the landscape. Our approach strengthens the ecological basis of reserve-design algorithms and might facilitate the uptake of ecosystem-based management into reserve design.  相似文献   

3.
The most widespread reserve selection strategy is target-based planning, as specified under the framework of systematic conservation planning. Targets are given for the representation levels of biodiversity features, and site selection algorithms are employed to either meet the targets with least cost (the minimum set formulation) or to maximize the number of targets met with a given resource (maximum coverage). Benefit functions are another recent approach to reserve selection. In the benefit function framework the objective is to maximize the value of the reserve network, however value is defined. In one benefit function formulation value is a sum over species-specific values, and species-specific value is an increasing function of representation. This benefit function approach is computationally convenient, but because it allows free tradeoffs between species, it essentially makes the assumption that species are acting as surrogates, or samples from a larger regional species pool. The Zonation algorithm is a recent computational method that produces a hierarchy of conservation priority through the landscape. This hierarchy is produced via iterative removal of selection units (cells) using the criterion of least marginal loss of conservation value to decide which cell to remove next. The first variant of Zonation, here called core-area Zonation, has a characteristic of emphasizing core-areas of all species. Here I separate the Zonation meta-algorithm from the cell removal rule, the definition of marginal loss of conservation value utilized inside the algorithm. I show how additive benefit functions and target-based planning can be implemented into the Zonation framework via the use of particular kinds of cell removal rules. The core-area, additive benefit function and targeting benefit function variants of Zonation have interesting conceptual differences in how they treat and trade off between species in the planning process.  相似文献   

4.
This study assesses the effects of considering within-site habitat configuration when designing reserve networks. This attribute takes all its importance in situations where the long-term integrity of (within-site) habitat patches cannot be preserved without protecting their surrounding environment. We addressed this issue through the concrete problem of selecting a reserve network of natural peatlands in southern Québec, Canada. We used a reserve-selection algorithm that minimized the total number of peatlands to include within networks. The algorithm was constrained to include peatlands containing habitat patches that met specific size thresholds. Five habitat-clustering thresholds were used to set the eligibility of each site to the selection process. The resulting reserve networks were evaluated according to their representation efficiency and to the expected consequences for the Palm Warbler (Dendroica palmarum), an area and isolation-sensitive bird restricted to peatlands in southern Québec.Constraining the algorithm to include peatlands showing increasingly larger patches of habitats led to larger networks, both in terms of area and number of sites, and to networks composed of smaller sites. These effects increased with the representation target (i.e., the % of each habitat preserved). With respect to the Palm Warbler, selecting peatlands with larger patches of habitats had only an indirect effect on its site-occupancy pattern. Indeed, despite the fact that the probability of occurrence of the warbler was negatively correlated with the size of habitat patches, the habitat-clustering threshold influenced the incidence of the warbler mainly via its effect on the physical attributes of the selected networks - including the area, isolation level, and the number of selected sites. Because increasing the habitat-clustering threshold led indirectly to a greater regional availability of prime breeding habitats for the Palm Warbler, it mitigated the severe negative impact of an hypothetical alteration or destruction of non-selected peatlands. Our study thus emphasizes the importance of determining how the different factors describing within-site configuration are correlated with other intrinsic characteristics of the sites available to the selection process before opting for a site-selection strategy.  相似文献   

5.
Theoretical advances in systematic reserve design aim to promote the efficient use of limited conservation resources and to increase the likelihood that reserve networks enhance the persistence of valued species and ecosystems. However, these methods have rarely been applied to species that rely on spatially disjunct habitats. We used the marbled murrelet, a seabird that requires old-growth forest in which to nest and high quality marine habitats in which to forage, as a case study to explore methods of incorporating multiple ecological values into single species spatial reserve design. Specifically, we used the cost function in MARXAN to include the ecological value of marine habitats while identifying spatial solutions for terrestrial nesting habitat reserves. Including marine values influenced terrestrial reserve designs most when terrestrial habitat targets were low and little or none of the target was represented in pre-existing protected areas. Our results suggest that including marine values in the planning process will influence marbled murrelet terrestrial reserve designs most where substantial terrestrial nesting habitat still exists, where new reserves are relatively unconstrained by pre-existing reserves, or when conservation resources only allow the protection of a small fraction of available habitat. This paper presents a novel framework for incorporating multiple measures of ecological value in the spatial reserve design process and should be particularly useful for species that rely on multiple habitats during their life cycle.  相似文献   

6.
Spatial reserve design concerns the planning of biological reserves for conservation. Typical reserve selection formulations operate on a large set of landscape elements, which could be grid cells or irregular sites, and selection algorithms aim to select the set of sites that achieves biodiversity target levels with minimum cost. This study presents a completely different optimization approach to reserve design. The reserve selection problem can be considerably simplified given the reasonable assumptions that: (i) maximum reserve cost is known; (ii) the approximate number of new reserves to be established is known; (iii) individual reserves need to be spatially contiguous. Further assuming the ability to construct a set of reserves in an efficient and close to optimal manner around designated reserve locations, the reserve selection problem can be turned into a search for a single interior point and area for each reserve. The utility of the proposed method is demonstrated for a data set of seven indicator species living in an conservation priority area in Southern Australia consisting of ca 73,000 selection units, with up to 10,000 cells chosen for inclusion in a reserve network. Requirements (ii) and (iii) above make interior point search computationally very efficient, allowing use with landscapes in the order of millions of elements. The method could also be used with non-linear species distribution models.  相似文献   

7.
8.
Scenario planning should be an effective tool for developing responses to climate change but will depend on ecological assessments of broad enough scope to support decision-making. Using climate projections from an ensemble of 16 models, we conducted an assessment of a midcontinental area of North America (Minnesota) based on a resistance, resilience, and facilitation framework. We assessed likely impacts and proposed options for eight landscape regions within the planning area. Climate change projections suggest that by 2069, average annual temperatures will increase 3 °C with a slight increase in precipitation (6%). Analogous climate locales currently prevail 400–500 km SSW. Although the effects of climate change may be resisted through intensive management of invasive species, herbivores, and disturbance regimes, conservation practices need to shift to facilitation and resilience. Key resilience actions include providing buffers for small reserves, expanding reserves that lack adequate environmental heterogeneity, prioritizing protection of likely climate refuges, and managing forests for multi-species and multi-aged stands. Modifying restoration practices to rely on seeding (not plants), enlarge seed zones, and include common species from nearby southerly or drier locales is a logical low-risk facilitation strategy. Monitoring “trailing edge” populations of rare species should be a high conservation priority to support decision-making related to assisted colonization. Ecological assessments that consider resistance, resilience, and facilitation actions during scenario planning is a productive first step towards effective climate change planning for biodiversity with broad applicability to many regions of the world.  相似文献   

9.
Target-based spatial prioritization is the default approach in conservation resource allocation. Here, we clarify a poorly known feature of target-based spatial prioritization that may lead to an unbalanced allocation of resources between species or other biodiversity features. Highest per-species resources will be allocated to species occurring in costly and otherwise species-poor locations, whereas smallest per-species resources will be allocated to species that occur in species-rich locations at low-cost areas. Uncertainty in information about processes determining distributions of biodiversity features may lead to uncertainty in target setting. This can be a problem if unnecessarily high targets emerge to consume excessive resources thus detracting from other conservation action. Difficulties might be encountered in particular when there are many features, targets are given simultaneously to multiple different types of biodiversity features, or components of features, or when there are interactions or correlations between features. Consequently, we recommend that the costs of targets for individual features could be evaluated to screen for such targets that consume a disproportionate fraction of available resources. Costs of targets can be evaluated by a variant of the replacement cost technique. We also find that commonly used reserve selection methods, minimum set coverage, maximum coverage, and utility maximization differ significantly in how they treat targets and their costs.  相似文献   

10.
There has been much recent interest in the development of systematic reserve selection methods that are capable of incorporating uncertainty associated with site destruction. This paper makes a contribution to this line of research by presenting two different optimization models for minimizing species losses within a planning region. Given limited acquisition budgets, the first minimizes expected species losses over all possible site loss patterns outside the reserve network while the second minimizes maximum species losses following the worst-case loss of a restricted subset of nonreserve sites. By incorporating the uncertainty of site destruction directly into the decision planning process, these models allow a conservation planner to take a less defensive and more strategic view of reserve selection that seeks to minimize species losses through the targeted acquisition of high-value/high-risk sites. We compare both of these methods to a more standard approach, which simply maximizes within reserve representation without regard for the varied level of threat faced by different sites and species. Results on a realistic dataset show that significant reductions in species losses can be achieved using either of these more intelligent modeling frameworks.  相似文献   

11.
To be effective, reserve networks should represent all target species in protected areas that are large enough to ensure species persistence. Given limited resources to set aside protected areas for biodiversity conservation, and competing land uses, a prime consideration for the design of reserve networks is efficiency (the maximum biodiversity represented in a minimum number of sites). However, to be effective, networks may sacrifice efficiency. We used reserve selection algorithms to determine whether collections of existing individual protected areas in Canada were efficient and/or effective in terms of representing the diversity of disturbance-sensitive mammals in Canada in comparison to (1) an optimal network of reserves, and (2) sites selected at random. Unlike previous studies, we restricted our analysis to individual protected areas that met a criterion for minimum reserve size, to address issues of representation and persistence simultaneously. We also tested for effectiveness and efficiency using historical and present-day data to see whether protected area efficiency and/or effectiveness varied over time. In general, existing protected areas did not effectively capture the full suite of mammalian species diversity, nor are most existing protected areas part of a near-optimal solution set. To be effective, Canada’s network of reserves will require at minimum 22 additional areas of >2700 km2. This study shows that even when only those reserves large enough to be effective are considered, protected areas systems may not be representative, nor were they representative at the time of establishment.  相似文献   

12.
The Conservation Reserve Program (CRP) was initiated to reduce water and wind erosion on marginal, highly erodible croplands by removing them from production and planting permanent, soil-conserving vegetation such as grass. We conducted a field study at two sites in Wyoming, USA, in order to quantify changes in soil C and N of marginal croplands seeded to grass, and of native rangeland plowed and cropped to wheat–fallow. Field plots were established on a sandy loam site and a clay loam site on wheat–fallow cropland that had been in production for 60+ years and on adjacent native rangeland. In 1993, 6 years after the study was initiated, the surface soil was sampled in 2.5 cm depth increments, while the subsurface soil was composited as one depth increment. All soil samples were analyzed for total organic C and N, and potential net mineralized C and N. After 60+ years of cultivation, surface soils at both study sites were 18–26% lower (by mass) in total organic C and N than in the A horizons of adjacent native range. Six years after plowing and converting native rangeland to cropland (three wheat–fallow cycles), both total and potential net mineralized C and N in the surface soil had decreased and NO3–N at all depths had increased to levels found after 60+ years of cultivation. We estimate that mixing of the surface and subsurface soil with tillage accounted for 40–60% of the decrease in surface soil C and N in long-term cultivated fields; in the short-term cultivated fields, mixing with tillage may have accounted for 60–75% of the decrease in C, and 30–60% of the decrease in N. These results emphasize the need to evaluate C and N in the entire soil solum, rather than in just the surface soil, if actual losses of C and N due to cultivation are to be distinguished from vertical redistribution. Five years after reestablishing grass on the sandy loam soil, both total and potential net mineralized C and N in the surface soil had increased to levels equal to or greater than those observed in the A horizon of the native range. On the clay loam soil, however, significant increases in total organic C were observed only in the surface 2.5 cm of N-fertilized grass plots, while total organic N had not significantly increased from levels observed in the long-term cultivated fields.  相似文献   

13.
Because the threat of habitat destruction can never be entirely eliminated, there is a legitimate concern that some reserve networks, especially highly complementary ones with minimal species overlap, may be predisposed to severe losses in species representation if one or more core reserve sites are destroyed. In order to address this problem in a systematic way, we propose the use of two different optimization models for designing complementary reserve networks that are also highly robust to possible site losses. Given limited budgets, the first maximizes expected species representation over all possible site loss patterns while the second maximizes a combination of representation given all sites and remaining representation following the worst-case loss of a restricted subset of reserve sites. By incorporating reserve loss in fundamentally different ways, these two models provide a range of options in terms of information requirements, assumptions about risk aversion, and structural complexity. We compare both of these methods to a more standard approach, which completely ignores the inherent risk posed by reserve site loss. Results confirm that significantly more robust solutions can be obtained for a marginal decrease in initial species representation within the reserve system.  相似文献   

14.
The identification of priority sites that ensure the achievement of conservation goals is key to direct conservation efforts. An estimation of the level of vulnerability of each priority area allows the identification of sites that need urgent conservation action. We present a systematic reserve selection for 1654 African mammals and amphibians that uses habitat suitability models as estimates of the area occupied by each species. These are based on the geographic range and habitat preferences for each species, which we collected in the framework of the World Conservation Union (IUCN) Global Amphibian Assessment and IUCN Global Mammal Assessment. Our results showed that in addition to existing protected areas, approximately 2.8 million km2 of land is irreplaceable to achieve the protection of 10% of the area occupied by all amphibians and mammals. This figure is higher than previous estimates from other studies. Most irreplaceable sites are located in the sub-Saharan region. More than half (55%) of the irreplaceable sites have high human population density; for only 17% the human population density is low. African amphibians and mammals have therefore to be conserved in densely populated areas where innovative management policies will be required to accommodate conservation successfully.  相似文献   

15.
No-take reserves constitute one tool to improve conservation of marine ecosystems, yet criteria for their placement, size, and arrangement remain uncertain. Representation of biodiversity is necessary in reserve planning, but will ultimately fail for conservation unless factors affecting species’ persistence are also incorporated. This study presents an empirical example of the divergent relationships among multiple metrics used to quantify a site’s conservation value, including those that address representation (habitat type, species richness, species diversity), and others that address ecological processes and viability (density and reproductive capacity of a keystone species, in this case, the black chiton, Katharina tunicata). We characterized 10 rocky intertidal sites across two habitats in Barkley Sound, British Columbia, Canada, according to these site metrics. High-richness and high-production sites for K. tunicata were present in both habitat types, but high richness and high-production sites did not overlap. Across sites, species richness ranged from 29 to 46, and adult K. tunicata varied from 6 to 22 individuals m−2. Adult density was negatively correlated with species richness, a pattern that likely occurs due to post-recruitment growth and survival because no correlation was evident with non-reproductive juveniles. Sites with high adult density also contributed disproportionately greater potential reproductive output (PRO), defined by total gonad mass. PRO varied by a factor of five across sites and was also negatively correlated with species richness. Compromise or relative weighting would be necessary to select valuable sites for conservation because of inherent contradictions among some reserve selection criteria. We suspect that this inconsistency among site metrics will occur more generally in other ecosystems and emphasize the importance of population viability of strongly interacting species.  相似文献   

16.
We compared four approaches to conservation site selection to protect forest biodiversity in the Triangle Region of North Carolina, USA. Using biological inventory data and an inventory-based conservation plan as benchmarks, we evaluated the potential effectiveness of a focal species plan and three “simple” plans (large forested patches, close to wetlands and riparian areas, diverse forest types). Effectiveness was measured in three ways: the number of inventory elements captured at least once by the plan (representation), the total number of inventory elements captured (completeness), and the proportion of land in the inventory-based plan included (overlap). We further examined the potential effectiveness of the simple plans by calculating their overlap with land identified by the focal species approach. The simple and focal species plans did not differ markedly in terms of representation, but diverged when completeness and overlap were considered. Although representation rates for all four plans were relatively high, lower rates for completeness and overlap raise concerns about long-term viability. The simple plans did not identify the same lands as the focal species plan, and are thus unlikely to provide appropriate habitat for the focal species. Each approach we tested failed to capture some subset of species and communities, highlighting the importance of explicit conservation targets and consideration of ecological processes. Forced to act quickly and with little data, our findings suggest using initially a set of complementary simple plans, each focused on a different habitat type. This should be considered a stopgap measure, however, while more sophisticated plans are constructed, defining explicit conservation targets and considering ecological processes.  相似文献   

17.
Prioritizing new areas for conservation in the Rocky Mountains of North America is important because the current intensity and scale of human development poses an immediate threat to biodiversity. We identified priority areas for avian biodiversity within a 3200-km corridor from Yellowstone National Park in Wyoming, US to the Yukon in Canada (the Y2Y region). We applied the conservation planning tool, MARXAN, to summarize 21 avian values. MARXAN minimizes the area delineated, while simultaneously incorporating multiple criteria (species richness representation, spatial clustering) and biodiversity targets into a single mappable solution. We prioritized avian biodiversity ‘hotspots’ at continental and ecoprovincial scales based on: (1) avian species richness; and (2) habitat associations of 20 focal species. At the continental scale, the single best solution represented 19% of the Y2Y region; 29% of this solution overlapped with existing protected areas. In northern Y2Y, large contiguous areas with high avian value were concentrated on the western edge of the continental divide. In southern Y2Y, contiguous areas were smaller and more numerous than in the north. In contrast to the majority of studies prioritizing conservation areas, we explored the effect of varying the extent of the target region by analyzing data at the scale of the entire Y2Y region and for eight ecoprovinces separately. We found that (1) large contiguous patches characterized only three ecoprovinces, while for the remaining ecoprovinces, numerous single scattered habitat patches of varying sizes were required to meet conservation goals; and (2) generally, only a small percentage of sites was already protected within the existing protected areas network. Our results are important for conservation planners and resource managers in the Y2Y region for incorporating areas of high conservation value for birds at regional and ecoprovincial scales during conservation project design and adaptive planning.  相似文献   

18.
Biological reserves are established to protect natural resources and represent the diversity of environments found within a region. Unfortunately, many systems of protected areas do not proportionally capture the range of environmental conditions occupied by species and communities. Combinations of habitat loss and climate change may exacerbate these representational biases, and result in future distributions of environmental conditions that bare little resemblance to historic patterns. New protected areas need to be established to correct existing biases, and create conservation networks that remain representative despite climate change, habitat loss, and changes in species distributions. We demonstrate a new method to identify and prioritize habitat based on its value for improving bioclimatic representation. We assessed representation provided by existing protected areas for 301 Proteaceae species under historic and projected 2050 climate across the Cape Floristic Region in South Africa. The existing reserve system has relatively modest biases with respect to current species distributions and climate. However, if the system is not supplemented, protected areas in 2050 will capture an increasingly skewed sample of climatic conditions occupied by Proteaceae. These biases can be repaired through the systematic establishment of new protected areas, and many of the most valuable areas coincide with high priority ecosystem components and irreplaceable elements identified in the Cape Action for People and the Environmental conservation plan. Protecting these areas achieves nearly the best possible improvement in climatic representation while also meeting biodiversity representation goals.  相似文献   

19.
A range of different biodiversity-based selection methods for nature reserves has been tested for terrestrial environments, including those based on diversity hotspots, endemicity hotspots and complementarity. In this study, we investigate the utility of these approaches for a coral reef embayment. We compare coral and fish species richness in a random accumulation of reserve sites with (a) hotspots analysis, (b) stratified selection of hotspots, and (c) complementarity. Cumulative species-site curves indicated that complementarity maximized the rate of accumulation of species of both corals and fishes in reserves, while the hotspot approach performed moderately well. An equivalent number of reserve sites supported a greater proportion of the coral biodiversity when compared to fishes, reflecting the broader distribution of corals. Our results indicate that when choosing an indicator group as a proxy for representing overall diversity in a reserve network, the group with the greatest heterogeneity will provide the best results. Our findings also show that although a modest number of protected sites (20%) will incorporate much of the local diversity (>75%), species-specific approaches must be incorporated to target rare species.  相似文献   

20.
An effective nature reserve network design should reflect the ecological requirements of target species, while simultaneously considering costs. In this study, we propose a design method that considers the ecological role of the spatial arrangement of reserve sites in relation to the long-term persistence of metapopulations of the target species. We apply our design method to an amphibian metapopulation, which illustrates how varying the emphasis on the importance of design factors can affect estimated metapopulation persistence. Comparisons among reserve design methods show that considering the ecological function, rather than generic spatial rules, of the spatial location of reserve sites may be more likely to support species survival. A piecemeal treatment or mechanistic application of spatial rules in reserve design may be subject to the risk of not producing the most effective reserve network, and in some cases may even compromise the conservation objective which could be achieved otherwise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号