首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urbanization as a major cause of biotic homogenization   总被引:4,自引:0,他引:4  
When measured by extent and intensity, urbanization is one of the most homogenizing of all major human activities. Cities homogenize the physical environment because they are built to meet the relatively narrow needs of just one species, our own. Also, cities are maintained for centuries in a disequilibrium state from the local natural environment by the importation of vast resources of energy and materials. Consequently, as cities expand across the planet, biological homogenization increases because the same “urban-adaptable” species become increasingly widespread and locally abundant in cities across the planet. As urbanization often produces a local gradient of disturbance, one can also observe a gradient of homogenization. Synanthropic species adapted to intensely modified built habitats at the urban core are “global homogenizers”, found in cities worldwide. However, many suburban and urban fringe habitats are occupied by native species that become regionally widespread. These suburban adapters typically consist of early successional plants and “edge” animal species such as mesopredator mammals, and ground-foraging, omnivorous and frugivorous birds that can utilize gardens, forest fragments and many other habitats available in the suburbs. A basic conservation challenge is that urban biota is often quite diverse and very abundant. The intentional and unintentional importation of species adapted to urban habitats, combined with many food resources imported for human use, often produces local species diversity and abundance that is often equal to or greater than the surrounding landscape. With the important exception of low-income areas, urban human populations often inhabit richly cultivated suburban habitats with a relatively high local floral and faunal diversity and/or abundance without awareness of the global impoverishment caused by urbanization. Equally challenging is that, because so many urban species are immigrants adapting to city habitats, urbanites of all income levels become increasingly disconnected from local indigenous species and their natural ecosystems. Urban conservation should therefore focus on promoting preservation and restoration of local indigenous species.  相似文献   

2.
Effects of age and intensity of urbanization on farmland bird communities   总被引:1,自引:0,他引:1  
Urban sprawl is now occurring worldwide and considered as a major large-scale perturbation on ecosystems. Consequently, urban territory is replacing other habitats such as agricultural areas. As farmland biotic communities are already reported to be declining, it seems necessary to assess the urbanization impact on them. We conducted a bird survey on 92 plots of 1 × 1 km chosen after stratification on the proportion of urban area and farmland habitat (either 0%, 25%, 50%, 75%), focusing on farmland habitat. Two aspects of urbanization were studied: its intensity and its age. We found that farmland bird species richness did not vary with increasing proportion of urbanized habitat. Non-farmland bird species richness increased from 0% to 25% classes and was constant for other classes. No effect of the urbanization age on farmland bird species richness was found, whereas a positive one was found on the non-farmland birds’ species richness. Abundance of the most specialized farmland birds decreases with urbanization intensity and age. We also found that, the more urbanized and the more recently urbanized the plots, the more similar bird communities. A strong difference in farmland bird’s communities’ compositions was found between 0% and 25% of urbanization, whereas no distinction was found between 50% and 75%. Altogether, our results suggest that to maintain for farmland birds, it is better to add new urban habitat in place where it already exist, rather than to spread it in small lots throughout the landscape.  相似文献   

3.
Changes in breeding bird diversity in the Netherlands between 1973-1977 and 1998-2000 were evaluated by testing three hypotheses related to the loss of biodiversity: (1) species diversity is declining, (2) biotic homogenization is increasing and (3) rare species are declining more severely than abundant species. Using data collected for two successive national breeding bird atlases, changes in diversity were assessed at different spatial scales (local, regional and national) and among species characteristic for different landscapes (farmland, woodland, heathland, wetland, coastal habitats and urban habitats). National species richness, diversity and equitability had increased between the two atlas periods, with more species increasing than decreasing in range and abundance. Most species in the large groups of woodland and wetland birds showed positive trends, whereas most in the smaller groups of heathland, reed-breeding and meadow birds showed negative trends. However, findings varied between regions and localities. Increases in species richness occurred mainly in regions in the low-lying, western part of the country which were previously relatively poor in species. By contrast, species richness decreased in some previously species-rich regions in the eastern part of the country. This has resulted in a homogenization of breeding bird communities between regions. We advocate the conservation and restoration of regional identity as a priority for landscape planning in the Netherlands. We did not find a clear relation between species abundance and trends, although both rare and very abundant species tended to decrease on average.  相似文献   

4.
The southeastern United States is a center of aquatic species diversity and endemism in North America, but many taxa are imperiled or in decline. Proactive conservation strategies depend on developing sensitive measures of ecological response to environmental degradation early in the process. In the southern Appalachian highlands, much of the region has reforested following extensive logging and agriculture in the last century, but recently exurban development has surged. Patterns of aquatic ecosystem response to these changes were examined in 36 watersheds along a gradient of forest cover from moderately to heavily forested. A linear combination of watershed-scale measures reflecting the extent contemporary forest cover, the trajectory of forest cover change over time, and building and road density were stronger predictors of fish assemblage composition than topographic features. A measure of biotic homogenization relating the abundance of endemic highland fishes to abundance of broad-ranged fishes was sensitive to the gradient of anthropogenic disturbance. Across the watershed disturbance gradient, cosmopolitan species were clear winners as forms unique to the Appalachian highlands were lost. Similar measures of homogenization may be suitable elsewhere for tracking early warning signs of ecosystem stress, particularly in regions with significant endemism. Quantification of the homogenization process in response to urban development and other stressors is a promising avenue for proactive conservation, land use planning, and sustainable development efforts.  相似文献   

5.
In 1997, the National Wildlife Institute, in co-operation with the University of Turin, produced an action plan to eradicate the American grey squirrel from Italy, as this introduced species replaces the native red squirrel through competitive exclusion and damages trees through de-barking. The first step, a trial eradication of a small population of grey squirrels at Racconigi (Turin) to evaluate the efficiency of the removal techniques, started in May 1997. Preliminary results showed that eradication was feasible, but the project was opposed by radical animal rights groups which took the National Wildlife Institute to court in June 1997. This legal action caused a suspension of the project and led to a lengthy judicial enquiry that ended in July 2000 with the acquittal of the Institute. Nevertheless, the 3-year suspension of all actions led to a significant expansion of the grey squirrel's range and thus eradication is no longer considered practical. Therefore, in the medium to long term, grey squirrels are likely to expand through continental Eurasia. This constitutes a major threat to the survival of the red squirrel over a large portion of its distribution range and will have a significant impact on forests, with economic damage to timber crops.  相似文献   

6.
Growing urbanization adjacent to aquatic systems may alter water, sediment and benthic community interactions. The ecological effects of urbanization on regional, local and site-specific spatial variations of benthic macrofauna and of sediment and water properties were investigated in relatively pristine rivers and in urban rivers of southern Brazil. The benthic communities were found to be different in urbanized and protected areas. Their predominant responses to environmental conditions were characterized as either a: (i) sensitive species assemblage, formed by polychaetes Nephtys fluviatilis and Heteromastus similis and the crustacean Kalliapseudes schubarti; or a (ii) tolerant species assemblage, formed by the polychaete Laeonereis acuta and by an unidentified oligochaeta Tubificidae. The relationships between fauna and environment differed between protected and urban rivers. In protected areas the fauna distribution was directly related to grain sorting and phaeophytin a in sediments; and to chlorophyll a, dissolved oxygen and phosphorus in water. In urban sites the strongest determinants of fauna distribution were the presence of lead, copper, dissolved phosphorus, chlorophyll a and phaeophytin a in sediments, and suspended particulate matter, dissolved phosphorus, nitrogen, and silicate in water. The comparison of animal-sediment-water interaction in natural and urban areas can be useful in planning environmental impact mitigation strategies for conservation even in rivers and estuaries with non-point sources of pollution.  相似文献   

7.
In coastal California, the invasive Argentine ant (Linepithema humile) displaces nearly all above ground foraging native ant species. The loss of native ants following invasion by Argentine ants homogenizes these faunas; natural habitats invaded by L. humile have lower beta diversity compared to comparable uninvaded areas. Argentine ant abundance in the seasonally dry mediterranean environments of this region correlates strongly and positively with soil moisture. For this reason, the displacement of native ants across natural and artificial moisture gradients often resembles an edge effect, the magnitude of which is inversely proportional to the suitability of the physical environment from the perspective of L. humile. The direct effects of Argentine ant invasions in natural environments are therefore amplified by inputs of urban and agricultural run off. Indirect ecological effects of these invasions arise from the loss of large-bodied ants, arid adapted ants, and behavioral repertoires unique to particular native ant species. Further research is needed to quantify how these aspects of functional homogenization affect invaded communities. The close association between L. humile and moist soils suggests that, at least in arid regions, control strategies might be aimed at reducing urban run off in order to maintain functionally diverse communities of native ants.  相似文献   

8.
Natural areas are becoming increasingly fragmented and embedded in an urban matrix. Natural and semi-natural areas at the urban/wildland interface are threatened by a variety of ‘edge effects’, and are especially vulnerable to invasion by introduced plants, with suburban gardens acting as significant sources of alien propagules. Urban/wildland interfaces also provide access for humans, leading to various types of disturbance. Alien plant invasions are one of the biggest threats facing remaining natural areas on the Cape Peninsula, South Africa. The area provides an ideal opportunity to study the dynamics of invasions at the urban/wildland interface, since the largest natural area, the Table Mountain National Park (TMNP), is surrounded by the city of Cape Town. We explored invasion patterns in Newlands Forest (a small section of the TMNP) and detailed the roles of habitat features and distance from putative source populations in three main habitat types: natural Afromontane forest, riverine woodland habitats, and plantations of exotic pines (Pinus radiata and P. pinaster). We also examined the role of disturbance in driving invasions in two of these habitat types (Afromontane forest and pine plantations). We hypothesized that alien richness and alien stem density would decrease with distance from the urban/wildland interface, and that alien richness and alien stem density would increase with increasing levels of human disturbance.Distance from putative source populations and levels of anthropogenic disturbance influenced alien richness in Newlands Forest but not alien stem density. Alien richness decreased significantly with distance from presumed sources in the pine habitat, and increased significantly with disturbance in the forest habitat. Percentage overstorey cover and soil pH were important environmental variables associated with alien plant species. A socio-economic approach is discussed as being the most effective approach to the management and prevention of alien plant species in Newlands Forest.  相似文献   

9.
Large-scale correlates of alien plant invasion in Catalonia (NE of Spain)   总被引:1,自引:0,他引:1  
Identification of the main correlates of the invasion process is a fundamental step in alien species management at the regional scale. This paper explores the main climatic, territorial, and anthropic correlates of alien plant species richness and percentage in Catalonia (NE of Spain), by means of GIS techniques. We used floristic data collected in FLORACAT per UTM 10 km × 10 km to set up the number and the percentage of alien species. The association of these variables with climate, topography, landscape, human settlement, and geographic position was explored by means of stepwise regression models applied on the axes obtained from principal component analysis. The significance of the resulting correlates was tested using the modified t test of Dutilleul to remove the effects of spatial autocorrelation. PCA reduced the 22 variables to 12 principal components (PC) that explained 90% of the cumulative variance. Regression models were highly significant and captured a high proportion of total variance (adjusted r2 = 0.70 for alien species richness and r2 = 0.56 for alien species percentage). Both alien species richness and percentage were mainly correlated to PC summarising variables concerning climate, habitat and landscape heterogeneity, and potential anthropogenic disturbance. However, while these PC exhibited similar weights on alien species richness, species percentage was mainly determined by climate. Implications for conservation are discussed considering a future scenario of climate warming and increasing land use change in Mediterranean areas.  相似文献   

10.
The rise of extinction rates associated with human activities has led to a growing interest in identifying extinction-prone taxa and extinction-promoting drivers. Previous work has identified habitat alterations and invasive species as the major drivers of recent bird extinctions. Here, we extend this work to ask how these human-driven impacts differentially affect extinction-prone taxa, and if any specific driver promotes taxonomic homogenization of avifauna. Like most previous studies, our analysis is based on global information of extinction drivers affecting threatened and extinct bird species from the IUCN Red List. Unlike previous studies, we employ a multivariate statistical framework that allows us to identify the main gradients of variation in extinction drivers. By using these gradients, we show that bird families with the highest extinction risk are primarily associated with threats posed by invasive species, once species richness and phylogeny are taken into account. As expected, the negative impact of invasive species was higher on island species, but our results also showed that it was particularly high in those species with small distribution ranges. On the other hand, mainland species and island species with large ranges tended to be affected by habitat destruction. Thus the impacts of invasive species promote the process of taxonomic homogenization among islands and between islands and continents. Consequently, introduced species may increase biotic homogenization not only directly, as generally believed, but also indirectly through their disproportional impact on endemic species imperilment.  相似文献   

11.
12.
Private, residential gardens form a substantial proportion of the undeveloped land in urban areas. Evaluating their role in supporting biodiversity is crucial to (i) predicting which plant and animal species can persist in towns and cities, (ii) understanding the regional impacts of urbanisation, and (iii) guiding sympathetic garden management by owners. To obtain baseline information on a poorly-studied component of garden biodiversity, we measured the size and composition of the cryptogam assemblages in 61 domestic gardens in the city of Sheffield, UK. A total of 67 bryophyte and 77 lichen taxa were recorded. Bryophytes ranged from 3 to 24 species per garden, with a mean richness of 11.3 species; lichens ranged from 2 to 30, with a mean of 14.9 species. Stone substrates supported the highest lichen richness, although minor substrates contributed unique species. Just over one fifth of bryophyte species were recorded in grass lawns, and these were more widespread than those of other habitats. Most cryptogams were scarce, with around one quarter of both bryophytes and lichens occurring in single gardens, and only 10% were found in more than half of the gardens. Garden area - correlated with substrate richness - and garden altitude were the only two factors explaining variation in cryptogam richness (bryophytes 39.1%, lichens 32.4%). Positive correlations existed among bryophyte, lichen and vascular plant richness, and these were only partially mediated by the effect of garden area. Therefore the opportunity remains for garden owners to support cryptogam richness, the most effective action being to enhance substrate diversity.  相似文献   

13.
Biotic homogenization, driven by native species losses and invasive species gains was investigated for the flora of California. Data from a variety of available databases were aggregated at the county level to examine patterns in county population density and growth in relation to floristic change. Based on population, California was divided into three zones: high (n = 9; 257-1320 people/km2), medium (n = 25; 28-177 people/km2), and low (n = 24; 1-24 people/km2) density counties. Examining patterns of rare plant occurrences among these counties revealed that high and medium density counties contained, on average, as many or more rare and endemic species than low density counties. The largest pool of these species, 48 percent of the 962 highly threatened taxa in California, is restricted to high and medium density counties. Thus, urban and urbanizing counties play a strategic role in maintaining a part of California’s flora that is both globally significant and threatened with extinction. Examining species losses and noxious weed additions across high density counties, reveals a consistent pattern of low similarity among species that have been extirpated from high density counties and a high similarity among noxious weeds that these counties now share. The consequence is that California’s urban county floras appear to be homogenizing. Examining homogenization using the entire flora for urban counties demonstrates that less similar counties become more similar. The effect of loss of rare species could outweigh the gain in exotics, under an assumption of strong extinction. Finally, a strong negative relationship between population density and the proportion of county land in public ownership suggests that high and medium density counties are in a poor position to protect rare plant populations on a localized basis.  相似文献   

14.
《Pedobiologia》2014,57(4-6):285-291
Invasive plants can disturb interactions between soil organisms and native plants and thereby alter ecosystem functions and/or reduce local biodiversity. Collembola and Acari are the most abundant microarthropods in the leaf litter and soil playing a key role in the decomposition of organic material and nutrient cycling. We designed a field experiment to examine the potential effects of the annual invasive plant Impatiens glandulifera on species diversity, abundance and community composition of Collembola and Acari in leaf litter and soil in a deciduous forest in Switzerland. Leaf litter and soil samples were obtained from plots invaded by I. glandulifera since 6 years, from plots in which the invasive plant had been removed for 4 years and from plots which were not yet colonized by the invasive plant. The 45 leaf litter and soil samples were equally distributed over three forest areas, which were differently affected by a wind throw 12 years prior to sampling representing a natural gradient of disturbance. Collembola species richness and abundance in the leaf litter and soil samples were not affected by the presence of the invasive plant. However, the species composition of Collembola was altered in plots with I. glandulifera. The abundance of leaf-litter dwelling Acari was increased in invaded plots compared to the two other plot types. Furthermore, the presence of the invasive plant shifted the composition of Acari individuals belonging to different groups. Our field experiment demonstrates that an annual invasive plant can affect microarthropods which are important for nutrient cycling in various ecosystems.  相似文献   

15.
德国高等院校食品科学技术教学体制的分析   总被引:3,自引:0,他引:3  
德国食品科学技术教学体制的发展是以德国有关食品生产和检验的法规为基础,并根据食品生产企业的实际需要而逐步完善的。教学目标是为食品生产企业和与食品生产有关的科研机构及政府管理部门培养专业技术人才,教学内容包括与食品生产有关的自然科学知识,工程技术知识,食品营养科学知识,食品法和企业经营管理知识五个方面。其教学体制的特点是教学知识面宽,试验和实习课程所占的比重较大,教学与生产实际紧密结合。因此,德国食品科学技术专业的毕业生具有较强的在食品生产企业和与食品生产有关部门从事工作的能力。  相似文献   

16.
Patterns of invasion in temperate nature reserves   总被引:1,自引:0,他引:1  
The extent of plant invasions was studied in 302 nature reserves located in the Czech Republic, central Europe. Lists of vascular plant species were obtained for each reserve, alien species were divided into archaeophytes and neophytes (introduced before and after 1500, respectively). The statistical analysis using general linear models made it possible to identify the effects of particular variables. Flora representation by neophytes decreased with altitude (explained 23.8% of variance) while, with archaeophytes, the effect of altitude depended on their interaction with native species in particular vegetation types. The proportion of neophytes increased with increasing density of human population. Both the number and proportion of aliens plants significantly increased with increasing number of native species in a reserve. This relationship was affected by altitude, and after filtering out this variable, the effect remained positive for neophytes but became negative for archaeophytes in humid grasslands. The positive relationship between neophytes and native species is not a mere side effect of species-area relationship of native flora, but indicates that the two groups do not directly compete. Vegetation type alone explained 14.2 and 55.5% of variation in proportion of aliens in regions of mesophilous and mountain flora, respectively. Humid grasslands were the least invaded vegetation type. Positioning the reserve within large protected sections of landscape significantly decreases probability of it being invaded by potentially invasive alien species. Within the context of SLOSS debate, a new model — several small inside single large (SSISL) — is suggested as an appropriate solution from the viewpoint of plant invasions to nature reserves.  相似文献   

17.
Overgrazing has led to severe degradation and desertification of semi-arid grasslands in Northern China over the last decades. Despite the fact that vegetation is often heterogeneously distributed in semi-arid steppes, little attention has been drawn to the effect of grazing on the spatial distribution of soil properties. We determined the spatial pattern of soil organic carbon (SOC), total nitrogen (Ntot), total sulphur (Stot), bulk density (BD), pH, Ah thickness, and carbon isotope ratios (δ13C) at two continuously grazed (CG) and two ungrazed (UG79 = fenced and excluded from grazing in 1979) sites in Leymus chinensis and Stipa grandis dominated steppe ecosystems in Inner Mongolia, Northern China. Topsoils (0–4 cm) were sampled at each site using a large grid (120 m × 150 m) with 100 sampling points and a small plot (2 m × 2 m) with 40 points. Geostatistics were applied to elucidate the spatial distribution both at field (120 m × 150 m grid) and plant (2 m × 2 m plot) scale. Concentrations and stocks of SOC, Ntot, Stot were significantly lower and BD significantly higher at both CG sites. At the field scale, semivariograms of these parameters showed a heterogeneous distribution at UG79 sites and a more homogeneous distribution at CG sites, whereas nugget to sill ratios indicated a high small-scale variability. At the plant scale, semivariances of all investigated parameters were one order of magnitude higher at UG79 sites than at CG sites. The heterogeneous pattern of topsoil properties at UG79 sites can be attributed to a mosaic of vegetation patches separated by bare soil. Ranges of autocorrelation were almost congruent with spatial expansions of grass tussocks and shrubs at both steppe types. At CG sites, consumption of biomass by sheep and hoof action removed vegetation patches and led to a homogenization of chemical and physical soil properties. We propose that the spatial distribution of topsoil properties at the plant scale (<2 m) could be used as an indicator for degradation in semi-arid grasslands. Our results further show that the maintenance of heterogeneous vegetation and associated topsoil structures is essential for the accumulation of SOM in semi-arid grassland ecosystems.  相似文献   

18.
Tropical dry forests are among the most endangered ecosystems in the world in general and in Hawaii in particular. To investigate the regeneration ecology of native and alien dry forest species on the island of Hawaii, we used a factorial experiment with microsite (sub-canopy vs. inter-canopy), water (supplemental vs. ambient), and weeding (alien species removed vs. not removed) treatments, and also seeded six native woody species into each plot at the start of the experiment. At the end of the 21-month study, the biomass of the volunteer native and alien species (i.e. unplanted species consisting mainly of relatively fast-growing shrubs) was nearly three and 13 times that of the seeded species, respectively. The biomass of the native volunteers was greater in the inter-canopy plots, greater for the seeded species in the sub-canopy plots, and did not differ significantly within this treatment for the alien species. Few species survived in the ambient water plots, resulting in greater biomass in the watered plots for all species. There were no significant differences in the biomass of the native species within the weeded vs. non-weeded plots; on the contrary, we found consistently positive correlations between the abundance of the seeded species and the volunteer native and alien species. Thus it may be possible to restore Hawaii's degraded dry forests by manipulating these naturally recruiting species to create microsites favorable for the eventual re-establishment of the endangered native canopy tree flora.  相似文献   

19.
Urbanization changes bird community structure during the breeding season but little is known about its effects on migrating birds. We examined patterns of habitat use by birds at the local and landscape level during 2002 spring migration at 71 riparian plots along an urban gradient in Cincinnati, Ohio, USA. Using linear regression, we examined variation in relative density, species richness, and evenness of four migratory guilds associated with natural land covers and building area at four scales (50, 100, 250, 500 m radial buffers). We also examined the influence of local vegetation using multiple regression models. As building area increased, riparian forests tended to be narrower and have fewer native trees and shrubs. In general, native birds were positively associated with tree cover (within 250-500 m of stream) and native vegetation, and negatively with building area (within 250 m); exotic species responded inversely to these measures. Short-distance migrants and permanent residents displayed the weakest responses to landscape and vegetation measures. Neotropical migrants responded strongest to landscape and vegetation measures and were positively correlated with areas of wide riparian forests and less development (>250 m). Resident Neotropical migrants increased with wider riparian forests (>500 m) without buildings, while en-route migrants utilized areas having a wide buffer of tree cover (250-500 m) regardless of buildings; both were positively associated with native vegetation composition and mature trees. Consequently, developed areas incorporating high native tree cover are important for conserving Neotropical migrants during stopover.  相似文献   

20.
Tall-grass prairies are a critically endangered ecosystem in North America. Our objectives were to evaluate potential roles of prairie patch structure (defined in terms of prairie patch area, matrix type, and edge effects) in explaining changes in number, size, and quality of northern tall-grass prairies over time. In 2006, we evaluated changes in remnant tall-grass prairies at the most northern extent of the tall-grass prairie range, by resurveying plant communities in 65 remnant patches in Manitoba, Canada, that were previously surveyed in 1987 or 1988. In 2007 and 2008 we conducted more detailed surveys of vegetation structure and composition at 580, 0.2 × 0.5 m quadrats distributed within 24 remnant patches of northern tall-grass prairie. Our findings suggest remnant northern tall-grass prairies continue to suffer from serious threats: 37% of the patches surveyed in 1987 or 1988 had changed to other habitat types by 2006; patches smaller than 21 ha tended to decrease in size, while larger patches increased in size; and most patches, particularly smaller ones, declined in quality. Both native and alien species responded more strongly to distance to edge than to patch size or matrix type. Edge effects may explain why prairie quality is lower and more likely to decline in smaller remnants. Richness of native plants was negatively correlated with cover and richness of alien species, suggesting that alien species may displace native species. Few existing northern tall-grass prairies are likely to be self-sustaining, and immediate active management is required to prevent further loss of remnant northern tall-grass prairies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号