首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The size and growth of the human population are often cited as key factors in threats to Earth’s biodiversity, yet the extent of their contribution to the endangerment and extinction of other species has remained unclear. Moreover, it could be valuable to know what additional threats may arise from continued human population growth. Here we quantify a model of the relationship between human population density and the number of threatened mammal and bird species by nation. Our multiple regression analysis revealed that two predictor variables, human population density and species richness (of birds and mammals), account for 88% of the variability in log-transformed densities of threatened species across 114 continental nations. Using the regression model with projected population sizes of each nation, we found that the number of threatened species in the average nation is expected to increase 7% by 2020, and 14% by 2050, as forecast by human population growth alone. Our findings strongly support the notion that abating human population growth is a necessary, if not sufficient, step in the epic attempt to conserve biodiversity on the global scale.  相似文献   

2.
This paper explores whether spatial variation in the biodiversity values of vertebrates and plants (species richness, range-size rarity and number or proportion of IUCN Red Listed threatened species) of three African tropical mountain ranges (Eastern Arc, Albertine Rift and Cameroon-Nigeria mountains within the Biafran Forests and Highlands) co-vary with proxy measures of threat (human population density and human infrastructure). We find that species richness, range-size rarity, and threatened species scores are all significantly higher in these three tropical African mountain ranges than across the rest of sub-Saharan Africa. When compared with the rest of sub-Saharan Africa, human population density is only significantly higher in the Albertine Rift mountains, whereas human infrastructure is only significantly higher in the Albertine Rift and the Cameroon-Nigeria mountains. Statistically there are strong positive correlations between human density and species richness, endemism and density or proportion of threatened species across the three tropical African mountain ranges, and all of sub-Saharan Africa. Kendall partial rank-order correlation shows that across the African tropical mountains human population density, but not human infrastructure, best correlates with biodiversity values. This is not the case across all of sub-Saharan Africa where human density and human infrastructure both correlate almost equally well with biodiversity values. The primary conservation challenge in the African tropical mountains is a fairly dense and poor rural population that is reliant on farming for their livelihood. Conservation strategies have to address agricultural production and expansion, in some cases across the boundaries and into existing reserves. Strategies also have to maintain, or finalise, an adequate protected area network. Such strategies cannot be implemented in conflict with the local population, but have to find ways to provide benefits to the people living adjacent to the remaining forested areas, in return for their assistance in conserving the forest habitats, their biodiversity, and their ecosystem functions.  相似文献   

3.
In North America, lawns are the most widely used plantings in urban areas. However, despite the ubiquity and ecological roles of turfgrass soil arthropods, many aspects of their composition and diversity have been neglected. We investigated assemblages of Collembola and their seasonal fluctuations in a newly established lawn and a 10-year old lawn located in Québec City, Canada. Collembola were sampled every month from May to October in 2003 and 2004 by extracting individuals from soil cores using a modified Berlese funnel. A total of 21 species representing 17 genera and nine families were identified. Four species are new records for the province of Quebec: Brachystomella parvula, Mesaphorura simplex, Isotomodes productus, and Sphaeridia pumilis. Turfgrass supports mainly three cosmopolitan species from the Isotomidae family, which represent 73.5% of all Collembola collected during the survey: Parisotoma notabilis, Isotoma viridis, and Cryptopygus thermophilus. Collembola were twice more abundant at the newly established site, but there were minor differences in species diversity between sites and years. No clear patterns of seasonal relative abundance were observed for the whole Collembola populations, as well as for the three dominant species. Turfgrass ecosystem provides a suitable habitat for epedaphic and hemiedaphic Collembola, such as the Isotomidae, most likely because turfgrass mowing and natural leaf, stem and root replacement produces large amounts of decaying organic matter.  相似文献   

4.
武夷山黄山松群落物种多样性与种群空问格局的研究   总被引:14,自引:0,他引:14  
对武夷山黄山松群落物种多样性和种群空间格局的研究结果表明 ,低海拔地区由于受人为干扰影响较大而物种多样性与种群空间分布格局未表现出明显规律性 ,高海拔地区群落物种多样性指数、丰富度和均匀度均有不同程度下降 ,黄山松种群空间格局均呈集群分布 ,且随海拔高度升高而黄山松种群生长受到一定抑制  相似文献   

5.
European earthworms are invading many ecosystems worldwide and fundamentally transform habitats by acting as dominant ecosystem engineers. However, there is little knowledge of the consequences of earthworm invasion on the composition and diversity of native soil organisms. Particularly functionally similar groups, such as enchytraeids (Annelida: Enchytraeidae), may be affected through changes in the chemical and physical properties of the soil, but also due to competition for resources. In 2010–2011, we studied the impact of earthworm invasion on enchytraeids at two sites in the northern hardwood forests of North America: one site within the Chippewa National Forest in northern Minnesota and one site in the Chequamegon-Nicolet National Forest in northern Wisconsin, USA. At each site, three plots were sampled along a transect, representing (1) a non-invaded or very slightly invaded area, (2) the leading edge of earthworm invasion and (3) a heavily invaded area with an established population of the anecic earthworm Lumbricus terrestris (among other species). In total, 29 enchytraeid (morpho)species were identified (some yet to be formally described, several first or second records for the continent); of those 24 occurred at the Minnesota site and 17 at the Wisconsin site. The structure of enchytraeid assemblages differed significantly among the three invasion stages, although this was not equally pronounced at the two sites. Each stage was characterized by one or several indicator species. Mean enchytraeid densities (10,700–30,400 individuals/m2) did not differ significantly among the invasion stages, but were lowest at the leading edge of earthworm invasion at both sites. In the heavily invaded plot at the Minnesota site, the mean enchytraeid density and biomass in L. terrestris middens were significantly higher than in soil in-between the middens. This was due to a pronounced effect of L. terrestris middens in the uppermost 3 cm of soil. Differences in biomass among earthworm invasion stages were most apparent for mean individual biomass. This was significantly higher in the heavily invaded area than at the leading edge or in the non-invaded area at the Minnesota site. Compositional changes of the enchytraeid assemblage are likely to result in changes in the functioning of soil foods webs. Our results suggest that earthworm invasions can cause a loss of native species in soil, including heretofore unknown ones, that might go unnoticed.  相似文献   

6.
A key element in the efficient allocation of scarce resources for conservation is the identification of areas of high biological value and high threat. Habitat loss and human population density have proved useful predictors of spatial variation in the current threat status of species albeit at coarse spatial resolution. We present a global analysis, intersecting Endemic Bird Areas (EBAs), to which restricted-range bird species are endemic, with fine-scale data of agricultural extent and human population density and test: (a) how well variation in land use mapped at 0.5° × 0.5° resolution predicts spatial variation in threat status of species and (b) how the predictive power compares with that of human population density mapped at the same resolution. Variation among EBAs in the proportion of restricted-range species that are threatened can be predicted by both the proportion of land used for agriculture and human population density. Agricultural land use was a better predictor of threat status than human population. Further, the average levels of threat attributable to agriculture were better predicted by land use than human population density, whereas threats due to causes other than agriculture were equally well predicted by land use and human population density. We fitted quantitative empirical models to describe these relationships. These results could be used, together with spatially explicit future scenarios of land use change, to project the geographical distribution and magnitude of future threats to birds at global and regional scales.  相似文献   

7.
Presence of higher plant species was recorded in 1455 permanently marked quadrats located across Britain in 1978, 1990 and 1998 in a stratified, random sample of 259 1 km squares. Significant increases and decreases in frequency of each species were summarised as changes in the representation of simple traits, each of which had an established relationship with varying levels of fertility or disturbance. By testing the null hypothesis that the trait values represented among increasing or decreasing species were a random draw from the 1978 species pool, we determined the consistency of botanical change with changes in land-use in different vegetation types and landscape locations across Britain.Overall, 63% of significant changes in species occupancy were decreases and 37% increases. Trait changes were largely consistent with the impact of increased nutrient availability across vegetation types associated with inherently low fertility, such as infertile grassland, heath, bog and moorland. Linear habitats in lowland Britain saw trait changes consistent with secondary succession. Although trait changes were highly consistent with eutrophication in upland vegetation, the identity of the changing species left open the possibility that increased N deposition, sheep grazing intensity and local improvement could all have played a part.Recent changes in common plant species across Britain suggest that objectives for large-scale restoration and maintenance of plant communities must address four problems: (a) the increasing scarcity of stress-tolerant species in lowland species pools, (b) exploitation and maintenance of species populations on habitat fragments and linear features in the lowlands, (c) the spread and persistence of generalist species in upland Britain, (d) systemic nutrient enrichment in both lowland and upland environments.  相似文献   

8.
Habitat degradation through over-grazing and wood collection is especially prevalent in developing countries such as South Africa. As human populations expand and the demand for land increases, the traditional idiom of setting aside protected areas for conservation is insufficient and assessment and protection of diversity outside these areas is needed. We assessed the impact of land use on lizard assemblages in communal rangelands in South Africa by comparing abundance, species richness and species diversity between degraded communal lands with a protected area. We first quantified vegetation differences between the study areas and found marked differences. Communal lands had significantly fewer large trees and less ground cover. Contrary to prediction, we found no evidence that any species of lizard was negatively affected by habitat disturbance. Some species were more common in communal lands, and species richness and diversity were also higher using certain sampling techniques. Terrestrial diversity was likely enhanced due to the preference of many terrestrial lizards for open, sparsely grassed areas. We discuss other reasons for increased diversity such as the intermediate disturbance hypothesis and/or reduced numbers of predators and competitors. We also conducted surveys of households and traditional healers to investigate the relationship between human uses of reptiles and abundance. The predominant users of reptiles were traditional healers. The most commonly used species were not encountered in our field surveys, and respondents indicated that they appeared to be declining. Our results emphasise the importance of integrating local knowledge into biodiversity assessment and conservation planning. Although we did not identify a negative impact of disturbance on lizard communities, community structure was different and this likely influenced ecosystem integrity and function in some way.  相似文献   

9.
张宁  廖燕  孙振钧  王冲 《土壤学报》2012,49(2):364-372
采用样方法对华北平原(河北曲周)盐渍化改造区7种土地利用方式下的蚯蚓种群进行详细调查,并通过培养实验研究了蚯蚓种群特征对若干土壤生物学指标的影响。结果表明:(1)在7种土地利用调查样地中共存在蚯蚓有3个科,5个属,5个种,其中赤子爱胜蚓(Eisenia fetida)占调查样地总个体数的60%以上,梯形流蚓(Aporrectodea trapezoides)和赤子爱胜蚓两个种在本地区广泛分布,样点出现频率分别为74%和44%,为该地区的优势种;(2)不同土地利用方式的蚯蚓种群密度及生物量变化趋势是:庭院菜地>直立免耕>清茬免耕>商品菜地>传统玉米地>果园>原貌地。其中庭院菜地蚯蚓种群的平均密度和生物量分别达到272 Ind.m-2和68.04gm-2;(3)蚯蚓种群密度和物种数等种群特征与土壤基础呼吸强度、微生物生物量碳含量成显著正相关(p<0.01),与土壤基础呼吸商成显著负相关(p<0.01);(4)不同土地利用方式下,蚯蚓的种群密度、生物量等种群特征对土壤中微生物群落的影响作用显著。蚯蚓生物量越大、种群越丰富的土壤有机质、氮、磷、钾等有效成分越高,反之则相反。室内培养实验表明,随着蚯蚓个体数量增加土壤原生动物总丰度、微生物生物量碳、氮也存在升高的趋势,与用土壤生物学特性指标及土壤化学特性指标评价的结果基本一致。  相似文献   

10.
Vermicomposting is an efficient and environmentally friendly technology to dispose of agricultural organic residues. The efficiency of organic residue decomposition during vermicomposting is directly affected by the biomass and population structure of earthworms. In this study, we investigated how the earthworm biomass and population structure responded to changes in the physicochemical properties of six types of organic residue (cattle dung, herbal waste, rice straw, soybean straw, garden waste, and tea residues) during vermicomposting. Each type of organic residues was placed in a pot with earthworms Eisenia fetida, and the physicochemical properties of the organic residues and earthworm growth dynamics were recorded at 0, 30, 60, and 90 d of vermicomposting. The biomass and population structure of earthworms were stable or increased in rice straw, garden waste, and cattle dung within 60 d of vermicomposting, whereas in tea residues and herb waste, very little earthworm activity (3 adults and 2 cocoons) was recorded on day 30. Among the physicochemical parameters, the substrate C/N ratio was negatively correlated with earthworm growth dynamics. Decomposing organic residues showed higher NH4+-N and NH3--N concentrations but a lower total organic carbon content, which negatively affected earthworm growth and reproduction. We recommend that chemical properties of vermicomposting systems should be monitored regularly. At the threshold levels of decomposing organic residue NH4+-N and NH3--N concentrations, earthworms should be removed and the vermicompost can be harvested. Small- and large-scale farmers thus need to monitor the physicochemical properties of vermicompost to sustain active earthworm populations.  相似文献   

11.
以"Lemont"和"Dular"杂交建立的包含123个家系的水稻重组自交系(RILs)群体为材料,选用水稻根系硅吸收能力和叶片硅利用率为指标,进行水稻硅营养遗传性状QTL定位,并分析其与UV-B辐射增强的互作效应。结果表明,控制水稻叶片硅利用率的4个加性QTL分别在第2、3、10染色体上,而控制根系硅吸收能力的1个加性QTL位于第11染色体上。QTL与UV-B辐射互作分析发现2对控制根系硅吸收能力和3对控制叶片硅利用率的基因×环境上位性QTL,其中只有1对控制根系硅吸收能力的QTL效应值较大。说明水稻这两种硅营养性状中,根系硅吸收能力较叶片硅利用率受UV-B辐射影响大,在抗UV-B辐射育种中以叶片硅利用率为水稻硅营养遗传选择的指标具有较高效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号