首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defects such as oxygen vacancies play a crucial role in the surface properties of transition metal oxides. By means of time-resolved, high-resolution scanning tunneling microscopy, we unraveled an adsorbate-mediated diffusion mechanism of oxygen vacancies on rutile TiO2(110). Adsorbed oxygen molecules mediate vacancy diffusion through the loss of an oxygen atom to a vacancy and the sequential capture of an oxygen atom from a neighboring bridging oxygen row, leading to an anisotropic oxygen vacancy diffusion pathway perpendicular to the bridging oxygen rows.  相似文献   

2.
Wet electrons at the H2O/TiO2(110) surface   总被引:1,自引:0,他引:1  
Onda K  Li B  Zhao J  Jordan KD  Yang J  Petek H 《Science (New York, N.Y.)》2005,308(5725):1154-1158
At interfaces of metal oxide and water, partially hydrated or "wet-electron" states represent the lowest energy pathway for electron transfer. We studied the photoinduced electron transfer at the H2O/TiO2(110) interface by means of time-resolved two-photon photoemission spectroscopy and electronic structure theory. At approximately 1-monolayer coverage of water on partially hydroxylated TiO2 surfaces, we found an unoccupied electronic state 2.4 electron volts above the Fermi level. Density functional theory shows this to be a wet-electron state analogous to that reported in water clusters and which is distinct from hydrated electrons observed on water-covered metal surfaces. The decay of electrons from the wet-electron state to the conduction band of TiO2 occurs in 相似文献   

3.
We studied the nucleation of gold clusters on TiO2(110) surfaces in three different oxidation states by high-resolution scanning tunneling microscopy. The three TiO2(110) supports chosen were (i) reduced (having bridging oxygen vacancies), (ii) hydrated (having bridging hydroxyl groups), and (iii) oxidized (having oxygen adatoms). At room temperature, gold nanoclusters nucleate homogeneously on the terraces of the reduced and oxidized supports, whereas on the hydrated TiO2(110) surface, clusters form preferentially at the step edges. From interplay with density functional theory calculations, we identified two different gold-TiO2(110) adhesion mechanisms for the reduced and oxidized supports. The adhesion of gold clusters is strongest on the oxidized support, and the implications of this finding for catalytic applications are discussed.  相似文献   

4.
Determining the atomic structures of oxide surfaces is critical for understanding their physical and chemical properties but also challenging because the breaking of atomic bonds in the formation of the surface termination can involve complex reconstructions. We used advanced transmission electron microscopy to directly observe the atomic structure of reduced titania (TiO2) (110) surfaces from directions parallel to the surface. In our direct atomic-resolution images, reconstructed titanium atoms at the top surface layer are clearly imaged and are found to occupy the interstitial sites of the TiO2 structure. Combining observations from two orthogonal directions, the three-dimensional positioning of the Ti interstitials is identified at atomic dimensions and allows a resolution of two previous models that differ in their oxygen stoichiometries.  相似文献   

5.
When low-energy electrons strike a titanium dioxide surface, they may cause the desorption of surface oxygen. Oxygen vacancies that result from irradiating a TiO2(011)-2x1 surface with electrons with an energy of 300 electron volts were analyzed by scanning tunneling microscopy. The cross section for desorbing oxygen from the pristine surface was found to be 9 (+/-6) x 10(-17) square centimeters, which means that the initial electronic excitation was converted into atomic motion with a probability near unity. Once an O vacancy had formed, the desorption cross sections for its nearest and next-nearest oxygen neighbors were reduced by factors of 100 and 10, respectively. This site-specific desorption probability resulted in one-dimensional arrays of oxygen vacancies.  相似文献   

6.
The scanning tunneling microscope has been used to image a reduced TiO(2)(110) surface in ultrahigh vacuum. Structural units with periodicities rangng from 21 to 3.4 angstroms have been clearly imaged, demonstrating that atomic resolution imaging of an ionic, wide band gap (3.2 electron volts) semiconductor is possible. The observed surface structures can be explained by a model involving ordered arrangements of two-dimensional defects known as crystallographic shear planes and indicate that the topography of nonstoichiometric oxide surfaces can be complex.  相似文献   

7.
The structure of RuO(2)(110) and the mechanism for catalytic carbon monoxide oxidation on this surface were studied by low-energy electron diffraction, scanning tunneling microscopy, and density-functional calculations. The RuO(2)(110) surface exposes bridging oxygen atoms and ruthenium atoms not capped by oxygen. The latter act as coordinatively unsaturated sites-a hypothesis introduced long ago to account for the catalytic activity of oxide surfaces-onto which carbon monoxide can chemisorb and from where it can react with neighboring lattice-oxygen to carbon dioxide. Under steady-state conditions, the consumed lattice-oxygen is continuously restored by oxygen uptake from the gas phase. The results provide atomic-scale verification of a general mechanism originally proposed by Mars and van Krevelen in 1954 and are likely to be of general relevance for the mechanism of catalytic reactions at oxide surfaces.  相似文献   

8.
Scanning tunneling microscopy and monoenergetic molecular beams have been used to obtain real-space atomic images of the competition between abstractive and dissociative chemisorption. The size distribution of Si-F adsorbates on the Si(111)-(7x7) surface was examined as a function of the incident translational energy of the F(2) molecules. For F(2) molecules with 0.03 electron volt of incident energy, the dominant adsorbate sites were isolated Si-F species. As an F(2) molecule with low translational energy collides with the surface, abstraction occurs and only one of the F atoms chemisorbs; the other is ejected into the gas phase. For F(2) molecules with 0.27 electron volt of incident energy, many adjacent Si-F adsorbates (dimer sites) were observed because F(2) molecules with high translational energy collide with the surface and chemisorb dissociatively so that both F atoms react to form adjacent Si-F adsorbates. For halogens with very high incident energy (0.5-electron volt Br(2)), dissociative chemisorption is the dominant adsorption mechanism and dimer sites account for nearly all adsorbates.  相似文献   

9.
The dynamics of dangling bond (DB) diffusion was studied after deuterium desorption from the silicon (100)-2x1 surface. At elevated temperatures, paired DB sites produced after desorption unpaired as deuterium atoms hopped from adjacent dimers. Below 620 kelvin, the unpaired configuration most commonly observed corresponded to two DBs on adjacent silicon dimers. At higher temperatures, unpaired DBs executed one-dimensional walks along the dimer rows, and recombination was observed with the same partner after walks lasting many minutes. The frequency and extent of these excursions increased with temperature. Above 660 kelvin, complete dissociation was observed and was sometimes followed by recombination by means of partner exchange. The implications for low-temperature materials growth are discussed.  相似文献   

10.
The physical and chemical properties of the hydrated alpha-Al(2)O(3) (0001) surface are important for understanding the reactivity of natural and synthetic aluminum-containing oxides. The structure of this surface was determined in the presence of water vapor at 300 kelvin by crystal truncation rod diffraction at a third-generation synchrotron x-ray source. The fully hydrated surface is oxygen terminated, with a 53% contracted double Al layer directly below. The structure is an intermediate between alpha-Al(2)O(3) and gamma-Al(OH)(3), a fully hydroxylated form of alumina. A semiordered oxygen layer about 2.3 angstroms above the terminal oxygen layer is interpreted as adsorbed water. The clean alpha-Al(2)O(3) (0001) surface, in contrast, is Al terminated and significantly relaxed relative to the bulk structure. These differences explain the different reactivities of the clean and hydroxylated surfaces.  相似文献   

11.
High-temperature cuprate superconductors display unexpected nanoscale inhomogeneity in essential properties such as pseudogap energy, Fermi surface, and even superconducting critical temperature. Theoretical explanations for this inhomogeneity have ranged from chemical disorder to spontaneous electronic phase separation. We extend the energy range of scanning tunneling spectroscopy on Bi(2+y)Sr(2-y)CaCu(2)O(8+x), allowing a complete mapping of two types of interstitial oxygen dopants and vacancies at the apical oxygen site. We show that the nanoscale spatial variations in the pseudogap states are correlated with disorder in these dopant concentrations, particularly that of apical oxygen vacancies.  相似文献   

12.
The well-ordered aluminum oxide film formed by oxidation of the NiAl(110) surface is the most intensely studied metal surface oxide, but its structure was previously unknown. We determined the structure by extensive ab initio modeling and scanning tunneling microscopy experiments. Because the topmost aluminum atoms are pyramidally and tetrahedrally coordinated, the surface is different from all Al2O3 bulk phases. The film is a wide-gap insulator, although the overall stoichiometry of the film is not Al2O3 but Al10O13. We propose that the same building blocks can be found on the surfaces of bulk oxides, such as the reduced corundum (0001) surface.  相似文献   

13.
A high-pressure phase of titanium dioxide (TiO(2)) with an alpha-PbO(2)-type structure has been identified in garnet of diamondiferous quartzofeldspathic rocks from the Saxonian Erzgebirge, Germany. Analytical electron microscopy indicates that this alpha-PbO(2)-type TiO(2) occurred as an epitaxial nanometer-thick slab between twinned rutile bicrystals. Given a V-shaped curve for the equilibrium phase boundary of alpha-PbO(2)-type TiO(2) to rutile, the stabilization pressure of alpha-PbO(2)-type TiO(2) should be 4 to 5 gigapascals at 900 degrees to 1000 degrees C. This suggests a burial of continental crustal rocks to depths of at least 130 kilometers. The alpha-PbO(2)-type TiO(2) may be a useful pressure and temperature indicator in the diamond stability field.  相似文献   

14.
以 Mn(NO3)2为锰源,用水热法成功合成了TiO2及 Mn(NO3)2掺杂的TiO2光催化剂,利用 X-射线衍射(XRD)和紫外-可见漫反射(UV-Vis DRS)对样品进行了表征,并利用紫外-可见吸收光谱测试样品在可见光下对染料酸性桃红(SRB)的降解能力。结果显示各浓度 Mn(NO3)2掺杂的 TiO2样品均为锐钛矿晶型,与纯TiO2相比均增加了对可见光的吸收,相同条件下 Mn(NO3)2掺杂的 TiO2对染料的降解效果比纯TiO2好,16 h后降解率可达到83.9%。低浓度锰掺杂TiO2比高浓度锰掺杂TiO2光催化活性好,催化活性顺序为 HT-0.25 Mn(NO3)2-TiO2>HT-0.5 Mn(NO3)2-TiO2>HT-0.1 Mn(NO3)2-TiO2>HT-TiO2>HT-1Mn (NO3)2-TiO2>HT-2 Mn(NO3)2-TiO2>HT-5 Mn(NO3)2-TiO2。  相似文献   

15.
The slow rate of the oxygen reduction reaction (ORR) in the polymer electrolyte membrane fuel cell (PEMFC) is the main limitation for automotive applications. We demonstrated that the Pt3Ni(111) surface is 10-fold more active for the ORR than the corresponding Pt(111) surface and 90-fold more active than the current state-of-the-art Pt/C catalysts for PEMFC. The Pt3Ni(111) surface has an unusual electronic structure (d-band center position) and arrangement of surface atoms in the near-surface region. Under operating conditions relevant to fuel cells, its near-surface layer exhibits a highly structured compositional oscillation in the outermost and third layers, which are Pt-rich, and in the second atomic layer, which is Ni-rich. The weak interaction between the Pt surface atoms and nonreactive oxygenated species increases the number of active sites for O2 adsorption.  相似文献   

16.
Computer simulations of hydrocarbon and related molecules using empirical force fields have become important tools for studying a number of biological and related processes at the atomic scale. Traditional force fields, however, cannot be used to simulate dynamic chemical reactivity that involves changes in atomic hybridization. Application of a many-body potential function allows such reactivity to occur in a computer simulation. Simulations of the reaction of small hydrocarbon molecules adsorbed on a reconstructed diamond {001}(2x1) surface suggest that these hydrocarbons are highly reactive species and that initial stages of diamond growth proceed through a dimer-opening mechanism. Rates estimated from transition state theory of two interconversions between states where the dimer is open and closed are given.  相似文献   

17.
Excellent crystals of (TMTSF)(2)AsF(6) (TMTSF, tetramethyltetraselenafulvalene) were employed to obtain x-ray diffraction data for a determination of the electron density distribution in this organic superconductor. Electron density was observed between molecules in a stack of donors of an organic metal and between certain interstack selenium atoms of these donors.  相似文献   

18.
采用溶剂热法合成了MIL-53(Al),以此为载体负载TiO_2制备得到TiO_2/MIL-53(Al)光催化剂用于污水中次甲基蓝的催化降解研究,并与传统载体材料Al_2O_3负载的TiO_2催化剂的光催化效果进行比较。样品通过热重-差热扫描量热(TG-DSC)、红外光谱(FTIR)、扫描电镜(SEM)、X射线衍射(XRD)、N_2物理吸附-脱附等方法进行表征。采用光度吸收法分析污水中次甲基蓝的降解率,结果显示,TiO_2/MIL-53(Al)光催化剂对次甲基蓝的光催化降解率达到98.6%,而TiO_2/Al_2O_3光催化剂对次甲基蓝的降解率只有70.3%,TiO_2/MIL-53(Al)光催化剂对污水中次甲基蓝的降解去除能力明显优于TiO_2/Al_2O_3光催化剂对次甲基蓝的降解去除能力。  相似文献   

19.
固定在颗粒活性炭中的TiO_2光催化降解阿特拉津   总被引:3,自引:0,他引:3  
利用30W低压汞灯作光源,采用固定颗粒活性炭中的TiO2(TiO2/GAC)作光催化剂,在浅盘反应器中考察了阿特拉津溶液的光催化降解。结果表明,在平均光强为4.38mW·cm-2,光催化剂投加量为7.0g·L-1,阿特拉津初始浓度为21.9mg·L-1,3wt%H2O2用量为30μL·15mL-1,投加方式为1次·2h-1,光照时间为6~10h时,去除率可达92.7%~94.7%,TOC去除率可达67.1%~78.3%。光催化剂增至10g·L-1,H2O2用量一次性加60μL,光照时间为3~4h时,去除率可达91.6%~93.7%,TOC去除率可达65.9%~73.9%。通过组合实验和紫外光谱图分析,估计了体系中影响去除率的光催化、吸附、光降解、H2O2的作用性质和大小,并估计了降解途径,认为同时存在侧链脱烷基反应和OH取代Cl的反应,在有H2O2存在时,使前反应较强。TOC值测定表明阿特拉津已从8个碳降至含2~3个碳的物质。  相似文献   

20.
We observed directional dynamics in the photodissociation of an oriented molecule. When a laser dissociated hexapole-oriented carbonyl sulfide molecules, the three-dimensional recoil of carbon monoxide fragments, which we measured with ion imaging, was strongly asymmetric. We obtained a microscopic view of molecular bond breaking that revealed both the sign and the magnitude of the deflection angle of the fragment in the molecular frame. This experimental approach can be applied to study and control the three-dimensional dynamics of photoinitiated reactions of fixed molecules or molecules oriented by emerging techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号