共查询到20条相似文献,搜索用时 15 毫秒
1.
Twelve Charolais-crossbred steers (256 kg) received one of three treatments: nonimplanted controls (C), implanted initially and at 84 days with 36 mg zeranol (Ralgro, R) and implanted initially and at 84 days with 200 mg of progesterone and 20 mg of estradiol benzoate (Synovex-S,S). All steers were fed a corn-based diet (calculated metabolizable energy 2.89 Mcal/kg dry matter) ad libitum. In a parallel comparative slaughter trial, rates of empty body protein accretion were increased 14% in R and 24% in S steers (P less than .01). R and S steers in the present study had heavier pituitary weights (P less than .001), more pituitary growth hormone content (P less than .04) and more pituitary weight/unit live weight (P less than .05) than did C steers. Cattle implanted with R or S exhibited an increased growth hormone (GH) secretory response to a pituitary challenge with thyrotropin releasing hormone (TRH). Plasma insulin profiles were not significantly altered, but tended to be greater for steers given implants. Overall 9-hr GH secretory profiles were not affected by implantation. Plasma urea N at 94 days post-implantation was decreased (P less than .01) by implantation. Plasma glucose was increased (P less than .04) at both 94 and 199 days in R and S vs C steers. Overall mean and total (integrated area) plasma GH, as well as secretory profile components (baseline mean, amplitude of secretory spikes) were negatively correlated with body weight and size on days 94 and 199. Overall mean, baseline and integrated area of plasma insulin on days 94 and 199 were positively related to body weight and size. Thus positive protein anabolic growth responses from implantation (parallel comparative slaughter trial) were coupled with increased pituitary GH content and little change in circulating plasma GH concentrations between implanted and control steers. This may suggest that changes in tissue sensitivity, an increased plasma clearance rate of GH and/or a direct effect on target tissues may be involved in the improved growth performance of cattle implanted with R or S. 相似文献
2.
Rates of growth and partitioning of nutrients among tissues were measured in large (Simmental x [Hereford x Brahman]; n = 34) and very large (Chianina x Angus and Maine Anjou x Angus; n = 37) steers implanted with different anabolic growth regulators. All cattle were fed individually a whole shelled corn (13% crude protein) diet. Implant strategies were: none (n = 13), Ralgro 36 mg (n = 15), Ralgro 72 mg (n = 14), Synovex-S (n = 15) and Ralgro 36-Synovex-S (n = 14) administered at d 0 and 90. Empty body composition of all cattle was measured initially and at 90 d by D2O dilution procedures and at slaughter (average, 182 +/- 4.1 d) by carcass specific gravity. Empty body weight for large and very large cattle averaged 274 and 324 kg (P less than .05) initially and 497 and 603 kg (P less than .05) at slaughter. Empty body protein differed (P less than .05) for large and very large steers and averaged 51 and 61, 67 and 79, and 87 and 103 kg initially, at midpoint and at slaughter, respectively. Percentage empty body fat was lower for very large steers (13.5 vs 15.6%) initially (P less than .05) but was similar for very large and large steers at the midpoint (18.7 vs 18.1%) and at slaughter (23.2 vs 21.9%). Daily rates of empty body gain (DEBG) were greater (P less than .05) for very large vs large steers for both growing and finishing periods and averaged 1.53 vs 1.26 kg/d overall. Daily rates of protein gain (DPG) were similar for very large and large steers for the growing phase (204 vs 202 g/d) but greater (P less than .05) in very large steers for the finishing phase and overall (253 vs 204, and 229 vs 202 g/d). All implant strategies, except R36, increased DEBG and DPG and tended to decrease the percentage of fat in daily gain. In both large and very large cattle, implant growth regulators increased growth rate and partitioned nutrient use away from fat toward protein accretion, with the magnitude of partitioning toward protein increasing with greater rates of growth. These data indicate that anabolic growth regulators are viable strategies to enhance lean beef production in steers, regardless of animal size. 相似文献
3.
4.
Elizabeth G Ross Jase J Ball Samantha J Werth Sebastian E Mejia-Turcios Yongjing Zhao Yuee Pan Patrick C Taube Todd R Meinert Nicholas K Van Engen F M Mitloehner 《Journal of animal science》2021,99(5)
With a growing global population and increased environmental concerns around animal agriculture, it is essential to humanely maximize animal performance and reduce environmental emissions. This study aims to determine the efficacy of feeding ractopamine hydrochloride (RAC), an orally active, β 1-adrenergic agonist (β1AA), to feedlot steers in the last 42 d of finishing to reduce ammonia (NH3) emissions and improve animal performance. A randomized complete block design was used to allocate 112 Angus and crossbred Angus steers (initial body weight [BW] = 566.0 ± 10.4 kg) to 8 cattle pen enclosures. Pens (n = 4 per treatment, 14 steers per pen, and 56 steers per treatment) were randomly assigned to one of two treatments: 1) CON; finishing ration containing no RAC, 2) RAC; finishing ration containing 27.3 g/907 kg dry matter (DM) basis RAC. Steers were weighed on day −1 and 0 before treatment and day 14, 28, and 42 during treatment. Treatment rations were mixed and delivered daily by masked personnel. Measured emissions included NH3, nitrous oxide (N2O), methane (CH4), hydrogen sulfide (H2S), and carbon dioxide (CO2). The primary response variables assessed were emissions standardized by live weight (LW) and hot carcass weight (HCW). Steers were harvested on day 43 and carcass data were collected on day 43 and 44. Steers fed RAC reduced NH3 emissions by 17.21% from day 0 to 28 (P = 0.032) and tended to reduce NH3 from day 0 to 42 by 11.07% (P = 0.070) vs. CON. When standardized for LW, NH3 was reduced by 23.88% from day 0 to 14 (P = 0.018), 17.80% from day 0 to 28 (P = 0.006), and 12.50% for day 0 to 42 (P = 0.027) in steers fed RAC vs. CON. Steers fed RAC had 14.05% (P = 0.013) lower cumulative NH3 emissions when standardized by HCW vs. CON. Feeding RAC to Steers reduced H2S by 29.49% from day 0 to 14 (P = 0.009) and tended to reduce H2S over day 0 to 28 by 11.14% (P = 0.086) vs. CON. When H2S emissions were standardized for LW, RAC fed steers had a 28.81% reduction from day 0 to 14 (P = 0.008) vs. CON. From day 0 to 42 the RAC fed steers tended to have a 0.24 kg/d greater average daily gain (ADG) (P = 0.066) and tended to eat 4.27% less (P = 0.069) on a DM basis vs. CON. The RAC fed steers had a 19.95% greater gain to feed ratio (G:F) compared to CON (P = 0.012). Steers fed RAC had an average of 12.52 kg greater HCW (P = 0.006) and an increase of 1.93 percentage units in dressing percent (DP) (P = 0.004) vs. CON. Ractopamine is an effective medicated feed additive for reducing NH3 and improving end product performance through HCW yields. 相似文献
5.
Behavioral traits of feedlot steers in Iowa 总被引:2,自引:0,他引:2
6.
Effects of cold environment and intake level on the energetic efficiency of feedlot steers. 总被引:3,自引:0,他引:3
The effects of cold climatic conditions on energy partitioning were investigated with 49 Hereford-type steers fed an all-concentrate, barley-based diet in a 2 x 3 factorial comparative slaughter trial. Steers (seven per treatment) were kept either indoors or outdoors (n = 2) and fed at 50, 65, or 80 g of DM/kg of BW.75 (n = 3) for up to 106 d. Mean temperatures were 16.9 +/- 2.7 degrees C and -7.6 +/- 6.8 degrees C in indoor and outdoor locations, respectively. Steers housed indoors grew 49% faster (P less than .001) and had 51% better gain: feed ratios (P less than .05) than those kept outdoors. Outdoor steers retained 65% less (P less than .001) energy. Estimated fasting heat production in the outdoor steers was 18% higher (P less than .01) and efficiency of ME use for maintenance 14% lower (P less than .01) than in the indoor steers, which resulted in an estimated increase of 41% in the ME requirements for maintenance in the outdoor steers. The NEg content of the diet was decreased from 1.29 Mcal/kg in the indoor steers to .76 Mcal/kg in the outdoor steers. Outdoor steers deposited 21% of their energy as protein, whereas indoor steers deposited only 14% of their energy as protein, which could explain the low NEg value of the diet in the cold environment. It was concluded that the main factors contributing to reduced energetic efficiency in the cold were an increased maintenance requirement and a greater proportion of the dietary energy retained as protein. 相似文献
7.
R E Short E E Grings M D MacNeil R K Heitschmidt C B Williams G L Bennett 《Journal of animal science》1999,77(9):2406-2417
Beef production systems that increase use of unharvested forages and use animals with greater potential for gain affect age and size of animals placed on a finishing regimen. This experiment was conducted to evaluate effects of genetic potential for gain, age at the start of a finishing period, and time on feed on composition, quantity, and quality of beef produced and efficiency of production during finishing. Crossbred cows were bred by AI to Charolais or Line 1 Hereford bulls that represented potentially high (HG) or moderate growth (MG) rates, respectively, to produce spring- or fall-born calves. Steer calves from these matings were placed on an individually fed finishing diet at three ages (A). Spring-born steers were started at 6 or 18 mo of age (A6 and A18), and fall-born steers were started at 12 mo of age (A12). Slaughter times (T) were at 0, 90, 180, and 270 d for A6; 68, 136, and 204 d for A12; and 0, 45, 90, and 135 d for A18. Data collected on each animal included feed intake, growth, chemical composition of the complete body and carcass, and quantitative and qualitative assessment of the meat produced. Four steers of each sire group were slaughtered in each of the 11 A-T treatment groups, and the experiment was repeated for 2 yr in the A12 groups and 3 yr in the A6 and A18 groups (n = 237). Steers sired by HG bulls were larger and produced larger carcasses and more carcass protein than MG-sired steers (S, P < .05 or .01). Steers sired by MG bulls were fatter, had higher quality grades, and accumulated fat at a faster rate than HG-sired steers, and this effect was greater in older steers (G and GA, P < .05 or .01). Sire growth potential did not affect gain, intake, live weight efficiency, tenderness, or taste panel scores (P > .2). Steers sired by HG bulls were more efficient at producing carcass weight and carcass protein at A12 and A18 than were MG-sired steers. At the end of the finishing period, older (A18), HG-sired steers were too large with insufficient fat by current industry standards, and younger (A6), MG-sired steers were too small. Our conclusions are that both HG- and MG-sired steers can produce acceptable carcasses for current market standards with comparable efficiencies of live-weight gain, but the growing and finishing strategy must be adapted to the genotype. 相似文献
8.
T J Divers D M Blackmon C L Martin D E Worrell 《Journal of the American Veterinary Medical Association》1986,189(12):1579-1582
Blindness and convulsions were the predominant clinical signs in a group of feedlot steers inadvertently fed a vitamin-A deficient diet. Although vitamin A had been added to the feed at the time of preparation, it was believed that the vitamin A had been destroyed by heat, humidity, and minerals mixed in the feed. Feedlot heifers fed the same high-grain diet were clinically normal, and one heifer from which a blood sample was obtained had normal serum vitamin A content. The ingestion of sparse grasses and weeds found along the fence row of the heifers' pens was thought to have provided sufficient vitamin A to these animals. This episode demonstrated the importance of monitoring vitamin A and vitamin A precursor concentrations in stored feeds, especially those stored under adverse conditions and those fed to animals ingesting only a high-grain diet. 相似文献
9.
Two isonitrogenous diets (12.5% CP) containing 20 (20% NPN) or 40% (40% NPN) of the N as nonprotein N were evaluated with 0 or 10 mg laidlomycin propionate (LP)/kg in a 2 x 2 factorial arrangement. Changes in dietary NPN:N ratio were developed by partial substitution of urea N for fish meal N. In Trial 1, four Holstein steers (349 kg) with cannulas in the rumen and proximal duodenum were used to evaluate treatment effects on digestive function. Total tract OM digestion was slightly greater (1.2%, P < .10) for diets containing 20% of N as NPN, due to greater (3.4%, P < .05) postruminal OM digestion. Supplemental LP decreased passage of microbial N to the small intestine (7.4%, P < .10) and ruminal degradation of dietary CP (DIP, 8.1%, P < .10). Decreasing the NPN:N ratio decreased microbial N flow to the small intestine (7.5%, P < .10) and DIP (15%, P < .01) and increased (6%; P < .05) the flow of indispensable amino acids to the small intestine. Supplemental LP increased (P < .10) ruminal pH. There were no treatment effects (P > .10) on ruminal molar proportions of acetate or propionate. In Trial 2, 120 Holstein steers (122 kg) were used to evaluate treatment effects on growth performance. Decreasing the NPN:N ratio increased ADG (P < .01) by 36, 40, and 16%, respectively, for the initial three 56-d periods of the trial. Overall, ADG was 17% greater (P < .01) for cattle consuming diets containing 20 vs 40% NPN. Decreasing the NPN:N ratio increased (P < .01) gain efficiency by 17 and 14%, respectively, for the initial two 56-d periods. Overall, gain efficiency was 6% greater (P < .01) for diets containing 20% NPN. Dietary NPN:N ratio did not influence (P > .10) the NE value of diets. Supplemental LP did not affect DMI (P > .10) but increased ADG (6%, P < .01) and gain efficiency (5%, P < .05) and decreased (11%, P < .05) the maintenance energy requirements. Protein nutrition limited growth performance of calves receiving the 20% NPN diets during the initial 112 d of the trial. With the 40% NPN diets, protein nutrition limited growth performance throughout most of the trial (d 1 to d 224). We conclude that LP will enhance daily weight gain and gain efficiency of calf-fed Holstein steers. Conventional urea-based diets will not diminish response to LP, although they may not meet the metabolizable amino acid requirements of calf-fed Holsteins during the first three-quarters of the feeding period. 相似文献
10.
The effects of an implant of 140 mg of trenbolone acetate and 28 mg of estradiol (TBA + E2) on performance and carcass composition were evaluated with 72 individually fed steers. Holstein (n = 24), Angus (n = 24), and Angus x Simmental (n = 24) steer calves were allocated by breed and implant treatment to either an individual feeding pen (n = 36) or an electronic feeding door in a group pen (three pens with 12 animals per pen). Intake and refusal of the 85% concentrate diet were recorded daily. Animals were slaughtered when ultrasonic attenuation values of the longissimus muscle at the 12th rib reached .55, which is correlated with low Choice marbling. At slaughter, complete carcass measurements were taken and the right side of each carcass was separated into boneless wholesale cuts. Implanting with TBA + E2 improved (P less than .01) daily gain and feed efficiency. Daily gain was increased 17, 26, and 21% in Holstein, Angus, and crossbred steers, respectively. The implant increased overall daily protein and fat accretion 23%. Carcass conformation and dressing percentage were not affected (P greater than .05) by TBA + E2 treatment. Implantation with TBA + E2 had little effect on yield of wholesale boneless cuts when expressed as a percentage of carcass weight but increased absolute weight as a small degree of marbling by 6 to 40 kg. 相似文献
11.
Brethour JR 《Journal of animal science》2004,82(11):3366-3372
Selection for growth and improved carcass merit has resulted in cattle that are variable in composition of gain during the finishing phase. This study assessed the relative performance among cattle with different levels of initial backfat thickness. It also exploited the ability to track carcass composition in the live animal with ultrasound estimates of backfat and marbling. A procedure was developed to partition and estimate relative efficiency of fat and protein gain. The trial periods were the last 43 or 50 d before slaughter and included 10 pens (average of 27 animals per pen) that ranged in average backfat thickness from 6.3 to 13.1 mm. There was no correlation (r2 = 0.0026) between average backfat thickness and G:F (g/kg of DMI). Correlations between average backfat thickness and ADG or DMI were also nearly zero (r2 = 0.0007 and 0.0042, respectively). Fat deposition from NEg was 3.98 times more efficient than protein deposition. Carcass backfat thickness was a poor predictor of carcass marbling score (r2 = 0.083), even though backfat thickness was an important predictor of the percentage of empty body fat (r2 = 0.807). The results indicate that a measure of backfat thickness on the live animal during the finishing phase is not an effective predictor of future feed efficiency. They also confirm that protein accretion is energetically expensive, and that using a single coefficient for predicting gain from NEg is valid regardless of whether gain is predominantly muscle or fat. These data document that there is little relationship between body composition and marbling score, which is contrary to models that assume a USDA quality grade target at a specified percent fat end point. 相似文献
12.
Gruber SL Tatum JD Engle TE Mitchell MA Laudert SB Schroeder AL Platter WJ 《Journal of animal science》2007,85(7):1809-1815
Effects of ractopamine hydrochloride (RAC) supplementation on growth performance and carcass characteristics of feedlot steers differing in biological type were investigated using British, Continental crossbred, and Brahman crossbred calf-fed steers (n = 420). Steers of each type were weighed at reimplantation [British, mean BW = 375 kg (SD = 38 kg); Continental crossbred, mean BW = 379 kg (SD = 42 kg); Brahman crossbred, mean BW = 340 (SD = 32 kg)] and sorted into 7 BW blocks, each block consisting of 2 pens (10 steers per pen) per type. Pens within a block x type subclass were randomly assigned to RAC treatments (0 or 200 mg x steer(-1) x d(-1) fed during the final 28 d of the finishing period). The type x RAC interaction did not affect (P > 0.05) any of the traits evaluated in this study. Feeding RAC improved (P = 0.001) ADG (1.50 vs. 1.73 +/- 0.09 kg) and G:F (0.145 vs. 0.170 +/- 0.005), but did not affect (P = 0.48) DMI of steers. Dressing percentage, adjusted fat thickness, KPH percentage, and yield grade were not affected by RAC supplementation. Carcasses of steers fed RAC had heavier (P = 0.01) HCW (359 vs. 365 +/- 4.9 kg), larger (P = 0.046) LM areas (81.7 vs. 84.0 +/- 1.1 cm(2)), and tended (P = 0.07) to have lower mean marbling scores (487 vs. 477 +/- 5.2; Slight = 400, Small = 500) than did carcasses of control steers. Among the 3 biological types, Brahman crossbred steers had the lowest DMI and produced the lightest-weight carcasses that had the lowest mean marbling score (P < 0.05). Compared with Continental crossbred and Brahman crossbred steers, British steers produced carcasses with the greatest (P = 0.001) mean marbling scores. Continental crossbred steers had the heaviest BW and greatest dressing percentages and produced the heaviest carcasses with the largest LM areas (P < 0.05) compared with British and Brahman crossbred steers. In the present study, 28 d of supplementation with RAC at a dosage rate of 200 mg x steer(-1) x d(-1) elicited consistent responses in growth performance and carcass traits among 3 diverse biological cattle types. 相似文献
13.
Biological type effects on postweaning growth, feed efficiency and carcass characteristics of steers
Postweaning growth, feed consumption and carcass characteristics of 259 individually fed F1 Angus-, Red Poll-, Pinzgauer-, Simmental- and Tarentaise-sired steers from Hereford dams were compared. Average daily gain to 382 d of age for Simmental-sired steers exceeded (P less than .05) the ADG for Red Poll, Angus and Pinzgauer, which were not different. Tarentaise-sired steers were intermediate in growth rate. Simmental-sired steers required less (P less than .05) feed per kilogram of gain than Red Poll- and Angus-sired steers to reach either 382 d of age or 400 kg. Feed conversion (FC) by Simmental, Pinzgauer and Tarentaise-sired steers did not differ (P greater than .05), nor did FC by Red Poll- and Angus-sired steers to reach 382 d or 400 kg. Angus-sired steers required less ME per kilogram of gain to reach 12.7 mm of carcass backfat than did Red Poll-, Pinzgauer- or Tarentaise-sired steers, which were similar. Simmental-sired steers were intermediate in feed conversion to 12.7-mm fat depth and did not differ from the other breed groups. Rankings of breed groups for traits indicative of lean tissue growth were similar to rankings for live animal growth traits. At age- and weight-constant endpoints, Angus-sired steers had more (P less than .05) fat cover and marbling than did steers sired by the other breeds. At these endpoints, Red Poll-sired steers also had more (P less than .05) fat cover than did Pinzgauer-, Simmental- and Tarentaise-sired steers, which were similar. 相似文献
14.
15.
Two experiments were conducted to investigate a feeding regimen in which a programmed amount of feed was offered daily to control growth rate of steers. In Exp. 1, steers (n = 107, 309 +/- 3 kg) were used to determine effects of offering ad libitum access to feed (AL) vs a programmed intake feeding regimen (PI) and the number of days steers were fed (168 vs 203) on performance and carcass characteristics. Steers in the programmed intake feeding regimen were fed to achieve a predicted gain of 1.13 kg/d for the first 78 kg of gain, 1.36 kg/d for the next 124 kg of gain, and were given ad libitum access to feed for the final 54 or 103 kg of gain before slaughter (for steers fed for 168 d or 203 d, respectively). Feed efficiency was greater (P < 0.02) for steers in the PI than for those in the AL feeding regimen (0.193 vs 0.183 kg gain/kg feed, respectively). From d 169 to 203, steers in the PI feeding regimen had greater (P < 0.06) ADG (1.60 vs 1.38 kg/d) and similar (P = 0.38) feed efficiency than steers in the AL regimen. In Exp. 2, steers (n = 96; 308 +/- 3 kg BW) were offered feed ad libitum throughout the experiment (AL) or were programmed to gain at a high (PI-H) or low (PI-L) growth rate. For the first 78 kg of gain, intake was restricted to achieve predicted gains of 1.13 kg/d (PI-L) or 1.25 kg/d (PI-H). For the next 124 kg of gain, intake was restricted to achieve predicted gains of 1.36 kg/d (PI-L) or 1.47 kg/d (PI-H). Feed was offered ad libitum for the final 58 kg of gain. Overall ADG was similar (P > 0.37) among feeding regimens despite lower DMI for the steers in the PI-L and PI-H feeding regimens than for those in the AL regimen. Feeding regimen did not affect (P < 0.22) carcass characteristics. Programmed intake feeding regimens sustained growth rate and feed efficiency for an extended period of time without detrimental effects on carcass characteristics. 相似文献
16.
Two experiments were conducted to investigate the effects of proportion of dietary corn silage during periods of feed restriction on performance of steers. In Exp. 1, Simmental x Angus steer calves (n = 107; initial BW = 273 +/- 3.8 kg) were allotted to 12 pens with eight or nine steers/pen and four pens/treatment. Periods of growth were 273 to 366 kg BW (Period 1), 367 to 501 kg BW (Period 2), and 502 to 564 kg BW (Period 3). In two of the dietary regimens, steers were given ad libitum access to feed throughout the experiment and were fed either a 15% corn silage diet in each period or an 85, 50, and 15% corn silage diet in Periods 1, 2, and 3; respectively. In the third feeding regimen, a programmed intake feeding regimen was used. Steers were fed a 15% corn silage diet in each period. However, feed intake was restricted to achieve a predicted gain of 1.13 kg/d in Period 1 and 1.36 kg/d in Period 2, and feed was offered for ad libitum consumption in Period 3. For the entire experiment, ADG was similar (P = 0.41) among treatments and feed efficiency was lower (P < 0.10) for steers in the corn silage regimen than for steers in the programmed intake and ad libitum regimens. In Exp. 2, Simmental x Angus steer calves (n = 106; initial BW = 233 +/- 2 kg) were allotted by BW to 12 pens (three pens/treatment) and fed in three periods similar to those described in Exp. 1. Four feeding regimens were investigated: 1) AL; steers were offered a 15% corn silage diet for ad libitum consumption in all three periods; 2) PI; DMI was programmed to achieve gains as described in Exp. 1; 3) CS-HLL; programmed intake as described above except diets contained 85, 15, and 15% corn silage in Periods 1, 2, and 3, respectively; and 4) CS-HIL; same feeding regimens as CS-HLL, except diets contained 85, 50, and 15% corn silage in Periods 1, 2, and 3, respectively. Steers were given ad libitum access to feed in Period 3. Overall ADG was lower (P < 0.05) for steers in the CS-HLL and CS-HIL feeding regimens than for steers in the AL and PI regimens; feed efficiency was greatest for steers in the PI regimen. Few effects of feeding regimen on carcass characteristics were observed. 相似文献
17.
A meta-analysis was conducted to assess the effects of biological type (early-moderate or late maturity) and implant status (estrogenic, combination, or nonimplanted; repeats included) on HCW (kg); LM area (cm2); 12th-rib fat thickness (fat thickness, cm); KPH (%), and intramuscular fat (%) at harvest, to provide inputs to an ongoing program for modeling beef cattle growth and carcass quality. Forty-three publications from 1982 to 2004 with consistent intramuscular fat data were evaluated. Two studies were undertaken: 1) with fat thickness as a covariate and 2) with BW as a covariate. The intercept-slope covariance estimate was not statistically different from 0 for LM area (P = 0.11), KPH (P = 0.19), and intramuscular fat (P = 0.74) in study 1, and for LM area (P = 0.44), fat thickness (P = 0.11), KPH (P = 0.19), and intramuscular fat (P = 0.74) in study 2; therefore, a reduced model without a covariance component was fitted for these carcass characteristics. A covariance component was fitted for HCW (P = 0.01, study 1 and P = 0.05, study 2) and for intramuscular fat (P = 0.05, study 2). In study 1, the results for maturity indicated differences between early-moderate and late maturity for HCW (P < 0.01) and LM area (P < 0.01) but no differences for KPH (P = 0.26) and intramuscular fat (P = 0.50); for implant status, an estrogenic or combination implant increased HCW by 2.9% (P = 0.27) or 4.8% (P < 0.01), increased LM area by 3.2% (P = 0.23) or 6.3% (P < 0.01), decreased intramuscular fat by 8.1% (P < 0.01) or 5.4% (P < 0.01), respectively, and decreased KPH by 7.6% (P = 0.34) for estrogenic implants but increased KPH by 1.1% (P = 0.36) for combination implants, compared with nonimplanted steers. In study 2, the results at 600 kg of BW for implant status (implant or nonimplant) indicated no differences for HCW (P = 0.63) and LM area (P = 0.73), but there were differences for fat thickness (P < 0.01), KPH (P < 0.01), and intramuscular fat (P < 0.01); the results for maturity (early-moderate or late maturity) indicated no differences for HCW (P = 0.94), but there were differences for LM area (P < 0.01), fat thickness (P < 0.01), KPH (P < 0.01), and intramuscular fat (P < 0.01). The difference between early-moderate and late maturity (studies 1 and 2) confirmed that frame size accounts for a substantial portion of the variation in carcass composition. Studies 1 and 2 also indicate that implant status had significant effects on carcass quality. 相似文献
18.
The beta-adrenergic agonist L-644,969 was evaluated to determine its effects on growth performance and carcass composition of Friesian steers. L-644,969 is the R,R isomer of 6-amino [[(1-methyl-3-phenylpropyl) amino] methyl]-3-pyridine methanol dihydrochloride. Four groups of 18 steers, averaging 380 kg body weight, were individually given ad libitum access to a pelleted concentrate diet that contained either 0, .25, 1.0 or 4.0 ppm L-644,969 for the final 12 wk of the finishing period. Live weight gain was not affected by L-644,969, but feed consumption was linearly reduced (5.5, 6.3 and 15.7%; P less than .01) and feed conversion efficiency was linearly increased (16, 25 and 31%; P less than .01) relative to unmedicated controls, respectively. In addition, L-644,969 quadratically increased carcass weight (3.7, 9.3 and 8.5%; P less than .01) and dressing percentage (2.7, 7.9 and 7.9%; P less than .001). The proportion of trimmed fat in the carcass was quadratically reduced (14.5, 29 and 36%; P less than .001) and yield of lean meat quadratically increased (6.7, 13 and 15.6%; P less than .001). beta-adrenergic agonist treatment altered the distribution of lean meat such that a greater (P less than .001) proportion of the total lean was in the hind portion of carcasses from treated animals. Based on these findings, we suggest that L-644,969 may have utility as an agent to improve efficiency of production of lean beef. 相似文献
19.
Density of steam-flaked sorghum grain, roughage level, and feeding regimen for feedlot steers. 总被引:3,自引:0,他引:3
Two hundred fifty-two steers (366 kg) were assigned to a 3 x 2 x 2 factorial arrangement of three densities of steam-flaked sorghum grain (bulk [flake] density of 437, 360, and 283 g/liter, B34, B28, and B22, respectively), two roughage levels (9 [R9] and 18% [R18]) and two feeding strategies (ad libitum [AD] or multiple of maintenance [MM], 2.3, 2.5, and 2.7 MM for wk 1, 2, and 3, and 2.9 MM thereafter). Steers fed R18-AD gained faster than steers fed R18-MM (1.59 vs 1.52 kg/d, P = .10); for R9 diets, no difference (P greater than .25) was found between steers fed AD and MM (interaction, P = .07). Flake density did not affect ADG (1.53 kg, P greater than .2). Dry matter intake decreased (9.8, 9.3, and 9.0 kg/d, linear, P less than .001) and gain efficiency (G/DMI, kg of gain/100 kg of DMI) increased (15.7, 16.5, and 16.9, linear, P less than .001; quadratic, P = .19) as processing degree increased (B34 to B22). Percentage of choice carcasses for B34 (67.0%) was higher (linear, P = .05) than for B28 (51.9%) and B22 (52.3%). Fecal starch and pH were 10.8, 5.7, and 4.0%, and 6.11, 6.23, and 6.37 for B34, B28, and B22, respectively (linear, P less than .001). The correlation between fecal starch and pH was -.51 (P less than .001, n = 252). Enzymatic glucose release, in vitro 6-h gas production, microbial protein synthesis, and protein degradability were 375, 483, and 559 mg/g; 24.7, 28.2, and 31.1 ml/.2 g; 6.15, 6.88, and 7.84 g/100g; and 61.4, 56.6, and 42.2% for B34, B28, and B22, respectively (linear, P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Mader CJ Montanholi YR Wang YJ Miller SP Mandell IB McBride BW Swanson KC 《Journal of animal science》2009,87(4):1548-1557
Ninety-three crossbred steer calves (BW+/-SD=385+/-50 kg) were used (n=48 steers in yr 1, n=45 steers in yr 2) to examine the relationship among carcass traits, lean, bone, and fat proportions, visceral tissue weights, and pancreatic digestive enzyme activity with DMI, ADG, G:F, and residual feed intake. Calves were progeny from crossbred dams predominantly of Angus and Simmental breeding and were sired by Angus, Simmental, crossbred (predominantly of Angus and Simmental breeding), Charolais, or Piedmontese bulls. Steers were fed a high-moisture corn-based diet for an average of 112 d. Partial correlation analysis accounting for year, pen within year, week of slaughter within year, and sire breed was conducted. Gain:feed was negatively correlated (P 0.10) between performance measures and the pancreatic proportional content of alpha-amylase and trypsin activity (units/kg of BW). These data indicate that carcass fatness traits and changes in the proportional weight of total viscera may be negatively associated with G:F and that visceral fat weight proportion and trim and kidney fat weight proportion may be important factors influencing this relationship. 相似文献