共查询到20条相似文献,搜索用时 15 毫秒
1.
不同经营措施对毛竹林土壤有机碳含量及季节动态的影响 总被引:3,自引:0,他引:3
Soil samples for conventional management (CM) and intensive management (IM) practices were taken over a year at 2-month intervals to determine the effect of management practices on soil organic carbon (SOC) and to quantify seasonal dynamics in SOC for bamboo (Phyllostachys pubescens Mazel ex H. de Lehaie) stands. The results with IM compared to CM showed large decreases in total organic carbon (TOC), microbial biomass carbon (MBC), water-soluble organic carbon (WSOC), and the MBC/TOC ratio in the soils. With all IM plots in the 0-20 cm depth across sampling periods, average decreases compared with CM were: TOC, 12.1%; MBC, 26.1%; WSOC, 29.3%; the MBC/TOC ratio, 16.1%; and the WSOC/TOC ratio, 20.0%. Due to seasonal changes of climate, seasonal variations were observed in MBC and WSOC. Soil MBC in the 0-20 cm depth in September compared to May were 122.9% greater for CM and 57.6% greater for IM. However, due primarily to soil temperature, soil MBC was higher during the July to November period, whereas because of soil moisture, WSOC was lower in July and January. This study revealed that intensive management in bamboo plantations depleted the soil C pool; therefore, soil quality with IM should be improved through application of organic manures. 相似文献
2.
植被和地形控制作用对土壤有机碳的空间变异性的影响 总被引:1,自引:0,他引:1
3.
杭州湾南岸土壤有机碳空间异质性研究 总被引:8,自引:0,他引:8
应用地统计学与地理信息系统相结合的方法,研究了杭州湾南岸慈溪市域内不同土层(0~20、20~40、40~60、60~80、80~100、0~100 cm)的土壤有机碳含量空间变异特征。结果表明:研究区各土层土壤有机碳平均含量变化范围为3.49~7.95 g kg-1,变异系数介于54.51%~67.34%之间,属中等程度变异;地统计分析得出块金效应变化范围为0.141~0.372,表现为较强空间自相关性;自表层至底层最优半方差模型依次为高斯、指数、指数、高斯和球状模型;Kriging插值结果显示各土层土壤有机碳含量自滩涂向内陆呈递增趋势,其中0~20 cm土层土壤有机碳含量呈平行于海岸线的带状分布;土壤有机碳含量随剖面深度增加呈递减规律;不同土地利用方式和不同围垦时期均增加了土壤有机碳的空间变异性。从研究结果看,慈溪市土壤有机碳空间异质性主要由结构性因素引起,研究结果可为了解杭州湾南岸土壤有机碳分布特征提供参考。 相似文献
4.
皖北平原蒙城县农田土壤有机碳空间变异及影响因素 总被引:8,自引:0,他引:8
以皖北平原典型农业生产大县亳州市蒙城县为代表,运用统计学、地统计学方法和GIS技术研究了其农田耕作层(0~20 cm)土壤有机碳(SOC)含量的空间分布及其影响因子。结果表明:研究区SOC含量为10.41±2.52 g kg-1,近30年来提高了55.61%,SOC变异系数为24%,属于中等变异程度。SOC含量在空间分布上表现为东北部、中部和西南部含量高,由西北向东南先逐渐增加后逐渐降低,变异程度较高。整个县域范围内SOC空间变异的主要影响因素为土壤机械组成(粉粒和砂粒含量),其次为秸秆还田。 相似文献
5.
长期不同施肥下黑土与灰漠土有机碳储量的变化 总被引:5,自引:1,他引:5
采用长期试验,研究了20年不同施肥下1 m深黑土与灰漠土有机碳含量与碳储量的剖面变化。结果表明,单施化肥和不施肥对黑土1 m土层有机碳储量没有显著影响,但灰漠土略有降低。有机肥配施化肥能显著提高土壤有机碳含量和储量。高量有机肥配施化肥(NPKM2)能提高020 cm和2040 cm土层土壤有机碳含量,黑土分别提高56.6%和49.6%、灰漠土提高143.1%和46.9%;常量有机无机配施(NPKM)效果较差,增幅分别为黑土35.1%和35.3%,灰漠土80.2%和4.1%。两种土壤1 m土体的有机碳储量,NPKM2处理分别提高了C 30.7 t/hm2与C 40.6 t/hm2。显然,有机无机肥配施可以显著提高1 m深土体中有机碳储量,主要是由于提高了040 cm土层土壤有机碳含量。 相似文献
6.
基于30年水稻土长期施肥定位试验,在保证原有定位试验正常开展的前提下,将部分化肥处理变更为有机肥处理(或反之),通过观测一年水稻轮作周期内不同处理甲烷(CH_4)排放通量季节性变化,探讨不同肥力水稻土中外源有机碳及土壤有机碳含量对田间CH_4排放的影响。结果表明:施化肥处理和有机肥处理,水稻土全年CH_4累积排放量范围分别为1.73~4.72和35.09~86.60 g·m~(-2)。有机肥处理改施化肥后,田间土壤CH_4的排放量显著降低;化肥处理改施有机肥或有机肥处理增施有机肥后,田间土壤CH_4的排放量显著提高。外源有机碳的输入量是田间土壤CH_4年排放量的决定性因素,外源有机碳输入量(x)与水稻土CH_4年累积排放量(y)之间满足直线方程:y=0.087 7 x+3.265 7(R~2=0.965 9,n=21)。土壤有机碳同样也是影响稻田CH_4排放的因素,在不同有机碳水平的水稻土上施用等量相同化肥或有机肥,土壤有机碳含量高的水稻土都更有利于CH_4的产生。单施化肥稻田土壤CH_4排放的最主要碳源是土壤有机碳,有机碳含量(x)和水稻土CH_4年累积排放量(y)之间的指数方程:y=0.162 4 e~(0.162 2 x)(R~2=0.940 6,n=9)。有机肥可促进土壤有机碳分解释放CH_4,土壤有机碳含量相同的条件下,高量有机肥比常量有机肥的土壤有机碳分解比率高0.65%,等量相同有机肥但土壤有机碳含量不同的条件下,土壤有机碳分解比率无显著差异;同样,土壤有机碳也可促进有机物料碳分解释放CH_4,在常量有机肥或高量有机肥处理中,土壤有机碳含量高者比低者的有机物料碳分解比率分别多出3.57%和2.34%。 相似文献
7.
N. D. Ananyeva E. A. Susyan I. M. Ryzhova E. O. Bocharnikova E. V. Stolnikova 《Eurasian Soil Science》2009,42(9):1029-1037
In two layers of the humus horizons in soddy-podzolic soils of different biogeocenoses (Kostroma oblast) representing a succession
series, the carbon content in the microbial biomass (Cmic) was determined using the method of substrate-induced respiration and the rate of microbial CO2 production (basal respiration, BR). The Cmic content was from 110 to 755 μg/g soil, and the BR was from 0.40 to 2.52 μg CO2-C/g/h. A gradual increase in the Cmic content and BR was found in the following sequence: cropland—fallow (7-year-old)—young (20- and 45-year-old) forests—secondary
and native (primary) forests (90- and 450-year-old, respectively). In the litter, the Cmic content was higher in the 45-year-old forest than in the secondary and native forests: 10423, 6459, and 4258 μg C/g of substrate,
respectively. The portion of Cmic in the soil organic carbon content in the upper layer of the soils studied varied from 1.3 to 5.4%; its highest value was
in the soils under the secondary and native forests. The pool of microbial biomass carbon and the microbial CO2 production in the upper 25-cm layer of the soils were calculated. 相似文献
8.
Abhay Omprakash Shirale Vilas Kashinath Kharche Rupesh Sakharam Zadode Bharat Prakash Meena Selladurai Rajendiran 《Archives of Agronomy and Soil Science》2017,63(14):2023-2034
The field experiments on calcareous sodic Vertisols were conducted on farmer’s fields in Purna valley of Vidarbha region of Maharashtra. The treatments comprised of different green manures (GMs); crop residues (CRs); gypsum. The chemical and biological properties after 2 years experiment showed that the application of gypsum recorded significant drop in pH and exchangeable sodium percentage (ESP) as compared to organic amendments. But later has outperformed with respect to biological activities viz., dehydrogenase activity (DHA) and microbial respiration and carbon sequestration by enhancing soil organic carbon (SOC), soil organic carbon (SOC) stock, soil microbial biomass carbon (SMBC) and labile carbon pool (POXC). Among the different organic amendments the application of dhaincha improved SMBC by 90%, microbial respiration by 104%, POXC by 59% and DHA by 265% as compare to control. High ESP of these soils showed negative relationship with microbial respiration and POXC (r = 0.48 and r = 0.43, p = < 0.05). While addition of biomass showed positive relationship with SMBC, microbial respiration, POXC and DHA (r = 0.93, r = 0.81, r = 0.83 and r = 0.91 p = < 0.01). The results of study showed green manuring in sodic black soil found to be alternative choice to gypsum, which besides gradual reclamation also enhance biological properties and carbon sequestration. 相似文献
9.
10.
Tianyun Wu Jeff J. Schoenau Fengmin Li Peiyuan Qian Sukhdev S. Malhi Yuanchun Shi 《植物养料与土壤学杂志》2003,166(3):328-335
The effects of selected tillage and rotation systems on soil organic carbon and its fractions were studied on Chernozemic soils in south‐western and east‐central Saskatchewan. After practicing a no‐till fallow unfertilized‐wheat rotation for 7 years on an Orthic Brown Chernozem in south‐western Saskatchewan, total soil organic carbon (TOC) in the 0 – 5 cm and 5 – 10 cm layers was slightly lower than the tillage fallow‐unfertilized wheat comparable treatment. However, light fraction of organic carbon (LFOC) was similar in the two treatments. Comparison of the tillage fallow‐unfertilized wheat to a treatment involving conversion to a fertilized continuous cropping system for 10 years showed TOC increased slightly in the two depths and LFOC increased by 24 % and 29 % in the 0 – 5 cm and 5 – 10 cm layer, respectively, of the continuous cropping treatment. Microbial biomass carbon (MB‐C) was increased significantly at the 5 – 10 cm depth. After conversion of fallow‐wheat to alfalfa as perennial forage for 10 years, TOC increased by 80 % and 27 %, LFOC by 245 % and 286 %, and HFOC by 63 % and 20 % at 0 – 5 cm and 5 – 10 cm depths, respectively, compared to the tilled cereal‐fallow system. Meanwhile, water soluble organic carbon (WSOC) was not affected but MB‐C increased significantly. In an Orthic Black Chernozem in east‐central Saskatchewan, the depletion and restoration of organic carbon was observed when native sod was changed into cropland and then back to grassland. For example, the TOC of cropland under cereal‐fallow rotation for 62 years decreased by 42 % and 33 % at 0 – 5 cm and 5 – 10 cm depths, respectively, compared to native sod. The LFOC decreased by 79 % and 74 % in the layers, and reductions in WSOC and MB‐C were even greater. After cropland was re‐seeded to grassland for 12 years, the concentration of total organic carbon was increased by 16 % and 22 % while the mass of organic carbon was the same as the cropland in the two layers. The LFOC and MB‐C amounts in the grass seed‐down were double that of the cropped land, but the amounts of TOC, LFOC, and MB‐C in grass seed‐down were still significantly lower than the native sod. 相似文献
11.
Mineralization of dissolved organic carbon in mineral soil solution of two forest soils 总被引:1,自引:0,他引:1
Dissolved organic carbon (DOC) constitutes an important carbon input flux to forested mineral soils. Seepage from mineral subsoils contains only small amounts of DOC because of mineralization, sorption or the formation of particulate organic matter (POM). However, the relation between these processes is largely unknown. Therefore, the objective of this study was to quantify the mineralization of DOC from different depths of forest soils, and to determine degradation rate constants for rapidly and slowly degradable DOC pools. Mineralization of DOC and formation of POM in mineral soil solution from two forested sites in northern Bavaria (Germany) were quantified in a 97 days laboratory incubation experiment. Furthermore, spectroscopic properties such as specific UV absorption and a humification index derived from fluorescence emission spectrometry were measured before and after incubation. DOC in all samples turned out to belong mainly to the stable DOC pool (> 95 %) with half‐lives ranging from years to decades. Spectroscopic properties were not suitable to predict the mineralization of DOC from mineral soils. However, together with data on DOC from the forest floor and long‐term data on DOC concentrations in the field they helped to identify the processes involved in C sequestration in mineral subsoils. Mineralization, formation of POM, and probably sorption seem all to be responsible for maintaining low concentrations of DOC in the upper mineral soil. DOC below the upper mineral soil is highly resistant to mineralization, and thus the further decrease of DOC concentrations in the subsoil as observed under field conditions cannot be attributed to mineralization. Our results suggest that sorption and to some minor extent the formation of POM may be responsible for C sequestration in the subsoil. 相似文献
12.
Current trends of soil organic carbon in English arable soils 总被引:1,自引:0,他引:1
Abstract. A model of the impact of land management changes upon soil organic carbon (SOC) was constructed, and the total amount of topsoil organic carbon was estimated for the arable area of England from 1940 to 2000. The largest influence on the overall mean SOC in arable topsoils proved to be a decline in the area of both permanent and temporary grassland. SOC declined over a prolonged period (60 years), but has now reached a plateau. Modelling changes in mean values enabled a statistical evaluation to be made between a measured decline in the number of sites with 'high' SOC levels between 1980 and 1995, and the decline predicted by the model. The SOC content of arable soils in England was measured at National Soil Inventory sites twice in recent decades: in 1980 and 1995. The proportion of fine textured soils in the lowest SOC class (<2.3%) rose from just over 40% to about 50% over the same period. There was a significant difference between the observed values of 1995 and those expected from modelling the decline from 1980 values, in the category of 'low SOC' fine textured soils. The variation in the fine textured soils represents a significant and widespread decline in topsoil organic carbon concentrations, which was greater than the underlying long-term trend. 相似文献
13.
土壤生物活性有机碳库及其表征指标的研究 总被引:36,自引:0,他引:36
土壤生物活性有机碳库 (C0)的大小和周转可以指示土壤供应养分的能力以及养分的循环状况。对浙江省 11个土壤的研究表明 ,生物活性有机碳库的变化幅度为 184.87~ 3022.41mg/kg ,占土壤总有机碳的2.91%~8.94% ,生物活性有机碳库的周转速率k为0.0070~0.0199d-1。C0与土壤总有机碳、全氮、有效氮、CEC、重铬酸钾易氧化有机碳、微生物生物量碳、微生物生物量氮、水溶性有机碳、热水提取有机碳、轻组有机碳都呈显著性正相关 ,k与这些指标均无相关性。C0与重铬酸钾易氧化有机碳、微生物生物量碳、微生物生物量氮、水溶性有机碳、热水提取有机碳、轻组有机碳占土壤总有机碳的百分比均无相关性 ,k只与水溶性有机碳占土壤总有机碳的百分比呈显著性正相关 (R2=0.4684 ,P0.025)。水溶性有机碳占土壤总有机碳的百分比是表征土壤生物活性有机碳库周转的较好指标。 相似文献
14.
Ieva Jokubauskaite Danute Karčauskienė Alvyra Slepetiene Regina Repsiene Kristina Amaleviciute 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2016,66(8):647-652
ABSTRACTA meta-analysis of 297 treatment data from the Vezaiciai Branch of the Lithuanian Research Centre for Agriculture and Forestry long-term field experiment published from 2006 to 2015 was used to characterize the changes in SOC under different fertilization treatments and residue management practices in Lithuania’s acid soil. A meta-analysis was performed to quantify the relative annual change (RAC) of SOC content and the average RAC rate of SOC under four fertilization modes (farmyard manure (FYM) (40?t?ha?1)); alternative organic fertilizers (in the manure background (40?t?ha?1)); FYM (60?t?ha?1); alternative organic fertilizers (in the manure background (60?t?ha?1)) in two soil backgrounds (naturally acid and limed soil). The average RAC under four fertilization modes was 1.46 g?kg?1?yr?1, indicating that long-term fertilization had considerable SOC sequestration potential. Incorporation of alternative organic fertilizers in unlimed soil showed negative effects (?0.39 and ?0.66 g?kg?1?yr?1) in the observed long-term experiment. The RAC in the limed soil with incorporated organic fertilizers (FYM and alternative organic fertilizers), compared to the control, and varied from 0.25 g?kg?1?yr?1 in the treatment with incorporated alternative organic fertilizers (in the manure background (40?t?ha?1)) to 0.71 g?kg?1?yr?1 in the soil with FYM (60?t?ha?1). In this study, the average RAC rate of SOC under organic fertilization treatments in limed soil (5.07–6.54%) was longer than organic fertilization in unlimed soil (2.11–3.49%), which might be attributed to the application of organic manure that would result in a slow release of fertilizer efficiency. Our results indicate that the application of manure (40 or 60?t?ha?1) showed the greatest potential for C sequestration in agricultural soil and produced the longest SOC sequestration duration. 相似文献
15.
16.
子午岭植被自然恢复过程中土壤有机碳密度的时空变化 总被引:11,自引:0,他引:11
To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-year chronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in the central part of the Loess Plateau, China. Results showed that during the 150 years of local vegetation rehabilitation SOC increased significantly (P 〈 0.05) over time in the initial period of 55-59 years, but slightly decreased afterwards. Average SOC densities for the 0-100 cm layer of farmland, grassland, shrubland and forest were 4.46, 5.05, 9.95, and 7.49 kg C m^-3, respectively. The decrease in SOC from 60 to 150 years of abandonment implied that the soil carbon pool was a sink for CO2 before the shrubland stage and became a source in the later period. This change resulted from the spatially varied composition and structure of the vegetation. Vegetation recovery had a maximum effect on the surface (0-20 cm) SOC pool. It was concluded that vegetation recovery on the Loess Plateau could result in significantly increased sequestration of atmospheric CO2 in soil and vegetation, which was ecologically important for mitigating the increase of atmospheric concentration of CO2 and for ameliorating the local eco-environment. 相似文献
17.
为了深入理解侵蚀影响下的碳排放机制,本文以黄土丘陵区不同有机碳背景的水蚀坡面土壤为研究对象,采用3因素(土壤有机碳水平、温度和土壤含水量)4水平的正交试验设计,通过对坡面不同部位土壤的室内矿化培养实验,分析水蚀坡面土壤有机碳矿化特征,并模拟土壤有机碳矿化动态.结果表明:土壤有机碳质量分数是影响水蚀坡面有机碳矿化的主要因素,不同有机碳背景下,水蚀坡面表现出不同有机碳矿化特征.当土壤有机碳水平较低时,坡面侵蚀促进了沉积区土壤有机碳矿化;当土壤有机碳水平较高时,沉积区土壤有机碳矿化受到抑制.一级动力学方程较好的描述土壤有机碳矿化累积动态(R>0.98),有机碳矿化潜力(Cp值)能综合反映土壤有机碳水平、温度和含水量对有机碳矿化的影响.通过Cp值修正,得到的土壤有机碳矿化多因素方程拟合度较高(R2>0.95),能够很好地拟合不同有机碳水平下土壤有机碳矿化动态. 相似文献
18.
不同施肥处理对黑垆土各粒级团聚体中有机碳含量分布的影响 总被引:23,自引:1,他引:23
依托中国科学院黄土高原长武农业生态试验站中的长期定位试验(始于1984年),利用湿筛法获得不同粒径的团聚体,研究了长期施肥对不同粒级水稳性团聚体中有机碳分布的影响。试验涉及化肥和轮作培肥两个长期试验的9个处理。化肥试验:同一施磷基础上的5个施氮水平(N0、N45、N90、N135、N180);轮作培肥试验:不施肥(CK)、化肥(NP)、有机肥(M)、化肥有机肥配施(NPM)。结果表明:长期施肥显著影响土壤水稳性团聚体含量(p0.05),提高了2mm粒级水稳性团聚体含量,降低了0.25mm水稳性团聚体含量。施氮(N45、N90、N135、N180)处理主要提高了5mm、0.5~0.25mm水稳性团聚体中有机碳的含量,与N0相比,提高量为44.3%~73.3%;有机肥(M、NPM)处理对各粒级团聚体中有机碳的含量均有提高,与CK相比,提高量为40.7%~92.2%,其中5mm团聚体中有机碳含量分别提高了66.7%和92.2%。低氮(N0、N45、N90)处理、不施肥(CK)处理的1~0.5mm团聚体中的有机碳对土壤有机碳的贡献率最大,占13.7%~23.7%;高氮(N135、N180)处理和氮磷配施(NP)处理、有机肥(M、NPM)处理的5mm团聚体中的有机碳对土壤有机碳的贡献率最大,占17.3%~24.9%。土壤有机碳与5mm、5~2mm团聚体含量呈显著正相关关系,与0.25mm团聚体含量呈极显著负相关。 相似文献
19.
20.
Organic layers of acid forest soils are highly dynamic carbon reservoirs. During forest succession the stored amount of organic carbon (OC) changes drastically. Because of feedback between OC storage in organic layers and in mineral soils and other compartments of the environment (plant, atmosphere, and groundwater), there is a strong need for applicable carbon balance models, particularly for organic layers. In this paper a simplified model for the carbon balance of organic layers (CABOLA model) of acid forest soils is presented. The model considers two horizons, the L and O horizon. Decomposition and transport processes are described by first order differential equations. C input into the organic layer is due to litter fall onto the L horizon. The governing equations are solved by integration. To demonstrate the model's capability of simulating the OC dynamics of organic layers, data on OC storage in organic layers of acid sandy forest soils with deep groundwater tables (Podzols) under pine stands were used. Together with literature data and some assumptions, these data were used for a first, rough estimation of the model parameters. Model calculations confirm that the CABOLA model is in principle able to simulate the dynamics of OC storage in organic layers during forest succession. Nevertheless, intensive research efforts will be necessary to independently parameterize the model for broad applications. 相似文献